Computer Graphics II

Size: px
Start display at page:

Download "Computer Graphics II"

Transcription

1 MoCap (contd.) Computer Graphics II Autumn

2 Outline MoCap (contd.) 1 MoCap (contd.) Bruderlin & Williams, 1995

3 Outline 1 MoCap (contd.) Bruderlin & Williams, 1995

4 Blending and Time Warping We have seen this idea previously with keyframe animation For each DOF i f Ti (t) = (1 α(t))f Mi (t) + α(t)f Ni (t) where, for each DOF, i, T i is the transition sequence, M i is the from sequence, N i is the to sequence and α(t) varies from 0 to 1 during transition If the curves are represented by B-spline control points then we would represent the jth blend point of the ith DOF by d ij = αb ij + (1 α)c ij 0 α 1 But this won t be enough because it is unlikely this will correspond to a real motion Even in transition from walk to run the foot must touch earth before being lifted; the motions must be aligned

5 Blending and Time Warping (contd.) To achieve alignment we need to time warp the sequences, a non-uniform re-sampling method We stretch and compress the samples of one motion so that the key positions match the time they occur in the other That is we require poses k 1, k 2 and k 3 to occur at times t 1, t 2 and t 3 to match keys in some other sequence

6 Blending and Time Warping (contd.) Time warping can be used even if the end goal isn t to create a blend of two sequences If we have two styles of walking, say a drunken walk and a brisk walk, then we can time warp the drunken walk with the brisk walk to get a drunken walk at a brisk pace This idea, sometimes called multi-target interpolation, can be used to create a new library sequence that has characteristics of both

7 Blending and Time Warping Aligning Motion Sequences Automatic time-warping requires finding the (best) alignment between the two sequences This involves finding the best combination of compression and expansion of one sequence to align with the others Expensive (and complicated) process that needs to be carried out offline Need to bear in mind that for complex motions dance movements, gymnastics it may be impossible to blend into a feasible motion, due to multiple DOFs One approach (Bruderlin, Williams, 1995) finds the best correspondence between the two sets of vertices The cost of each correspondence is the amount of work it takes to deform one signal (sequence) by means of stretching and compressing into the other in manner of previous figure

8 Blending and Time Warping Aligning Motion Sequences (contd.) The cost is computed as the sum of local stretching and bending Bending measures the difference in angles between corresponding vertex triples in each signal; stretching measures the distance between corresponding vertex pairs

9 Blending and Time Warping Aligning Motion Sequences (contd.) After previous step we get a correspondence between vertices of the two sequences (Fig. 10 previously) With the correspondence between vertex sets made, we must now plan how to warp one into the other

10 Blending and Time Warping Aligning Motion Sequences (contd.) If sequence B is being warped into sequence A (we want to change B to look like A) then three cases arise. If there is a 1:1 correspondence between A i and B j then the warped B sample Bi w will be simply B j there are multiple B samples, say B j, B j+1,..., B j+k mapped to a single A i then the average of these is taken as the warped value Bi w one sample B j corresponds to several A samples, say A i, A i+1,..., A i+k, then k B w samples need to be generated and this is done by extrapolating a B-spline around B j

11 Motion Warping Motion warping, also known as motion displacement, means making local adjustments to the amplitude to motion data signals The aim is to maintain the same global characteristics of the sequence yet make local adjustments For example, we might modify a MoCap sequence for knocking on a door to knocking on the door higher up; or we could modify a walking sequence so that the person crouches down to walk through a low doorway

12 Motion Warping (contd.) For a given DOF we can displace it at time t with f (t) = f (t) + d(t) where d(t) is the required displacement Although we may want just a displacement, d, in a single frame the advantage of d(t) is that we can add the required displacement into the original motion gradually acting over a number of frames Given a set of displacements and their associated times we interpolate them using B-splines to create d(t) (dotted curve resulting from Step 2 below) and adjusted if necessary (Step 3) This displacement is then added to f (t) in Step 4 to get the new motion curve

13 Motion Warping (contd.)

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-184: Computer Graphics Lecture #20: Motion Capture Prof. James O Brien University of California, Berkeley V2005-F20-1.0 Today Motion Capture 2 Motion Capture Record motion from physical objects Use

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do

Course Outline. Advanced Computer Graphics. Animation. The Story So Far. Animation. To Do Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 18 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir 3D Graphics Pipeline Modeling (Creating 3D Geometry) Course Outline Rendering (Creating, shading

More information

Animation. Itinerary Computer Graphics Lecture 22

Animation. Itinerary Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University Itinerary Review Basic Animation Keyed Animation Motion Capture Physically-Based Animation Behavioral

More information

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22

Animation. Itinerary. What is Animation? What is Animation? Animation Methods. Modeling vs. Animation Computer Graphics Lecture 22 15-462 Computer Graphics Lecture 22 Animation April 22, 2003 M. Ian Graham Carnegie Mellon University What is Animation? Making things move What is Animation? Consider a model with n parameters Polygon

More information

Motion Synthesis and Editing. Yisheng Chen

Motion Synthesis and Editing. Yisheng Chen Motion Synthesis and Editing Yisheng Chen Overview Data driven motion synthesis automatically generate motion from a motion capture database, offline or interactive User inputs Large, high-dimensional

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

Computer Graphics II

Computer Graphics II Computer Graphics II Autumn 2017-2018 Outline MoCap 1 MoCap MoCap in Context WP Vol. 2; Ch. 10 MoCap originated in TV and film industry but games industry was first to adopt the technology as a routine

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Motion capture data processing From Data Capture to motion

More information

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion Realistic character animation with control Optimal motion trajectories Physically based motion transformation, Popovi! and Witkin Synthesis of complex dynamic character motion from simple animation, Liu

More information

CS-184: Computer Graphics

CS-184: Computer Graphics CS-184: Computer Graphics Lecture #19: Motion Capture!!! Prof. James O Brien! University of California, Berkeley!! V2015-S-18-1.0 Today 1 18-MoCap.key - April 8, 2015 Motion Capture 2 2 18-MoCap.key -

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Overview: Motion data processing In this course Motion editing

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

Animated Modifiers (Morphing Teapot) Richard J Lapidus

Animated Modifiers (Morphing Teapot) Richard J Lapidus Animated Modifiers (Morphing Teapot) Richard J Lapidus Learning Objectives After completing this chapter, you will be able to: Add and adjust a wide range of modifiers. Work in both object and world space

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

Blender Animation Editors

Blender Animation Editors Blender Animation Editors Animation Editors Posted on September 8, 2010 by mrsiefker Blender has several different editors for creating and fine tuning our animations. Each one is built around a specific

More information

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION Rémi Ronfard, Animation, M2R MOSIG 2 Outline Principles of animation Keyframe interpolation Rigging, skinning and walking

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

Fundamentals of Warping and Morphing

Fundamentals of Warping and Morphing Fundamentals of Warping and Morphing Luiz Velho IMPA - Institututo de Matemática Pura e Aplicada Outline Metamorphosis in Nature Conceptual Framework Overview of Warping and Morphing Applications in Computer

More information

Automating Expressive Locomotion Generation

Automating Expressive Locomotion Generation Automating Expressive ocomotion Generation Yejin Kim and Michael Neff University of California, Davis, Department of Computer Science and Program for Technocultural Studies, 1 Shields Avenue, Davis, CA

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

animation projects in digital art animation 2009 fabio pellacini 1

animation projects in digital art animation 2009 fabio pellacini 1 animation projects in digital art animation 2009 fabio pellacini 1 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2 how animation works? flip

More information

CSE 554 Lecture 7: Deformation II

CSE 554 Lecture 7: Deformation II CSE 554 Lecture 7: Deformation II Fall 2011 CSE554 Deformation II Slide 1 Review Rigid-body alignment Non-rigid deformation Intrinsic methods: deforming the boundary points An optimization problem Minimize

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Blending & State Machines. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017

Blending & State Machines. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Blending & State Machines CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Blending & Sequencing Now that we understand how a character rig works and how to manipulate animation

More information

Splines. Connecting the Dots

Splines. Connecting the Dots Splines or: Connecting the Dots Jens Ogniewski Information Coding Group Linköping University Before we start... Some parts won t be part of the exam Basically all that is not described in the book. More

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

About this document. Introduction. Where does Life Forms fit? Prev Menu Next Back p. 2

About this document. Introduction. Where does Life Forms fit? Prev Menu Next Back p. 2 Prev Menu Next Back p. 2 About this document This document explains how to use Life Forms Studio with LightWave 5.5-6.5. It also contains short examples of how to use LightWave and Life Forms together.

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC

Warping and Morphing. Ligang Liu Graphics&Geometric Computing Lab USTC Warping and Morphing Ligang Liu Graphics&Geometric Computing Lab USTC http://staff.ustc.edu.cn/~lgliu Metamorphosis "transformation of a shape and its visual attributes" Intrinsic in our environment Deformations

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) Deformation BODY Simulation Discretization Spring-mass models difficult to model continuum properties Simple & fast to implement and understand Finite Element

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1 Modelling and Animating Human Figures 7-1 Introduction Modeling and animating an articulated figure is one of the most formidable tasks that an animator can be faced with. It is especially challenging

More information

18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY

18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY 18.S34 (FALL 2007) PROBLEMS ON HIDDEN INDEPENDENCE AND UNIFORMITY All the problems below (with the possible exception of the last one), when looked at the right way, can be solved by elegant arguments

More information

Reviewing Principles and Elements of Animation for Motion Capture-based Walk, Run and Jump

Reviewing Principles and Elements of Animation for Motion Capture-based Walk, Run and Jump 2010 Seventh International Conference on Computer Graphics, Imaging and Visualization Reviewing Principles and Elements of Animation for Motion Capture-based Walk, Run and Jump Jong Sze Joon Faculty of

More information

CS 231. Deformation simulation (and faces)

CS 231. Deformation simulation (and faces) CS 231 Deformation simulation (and faces) 1 Cloth Simulation deformable surface model Represent cloth model as a triangular or rectangular grid Points of finite mass as vertices Forces or energies of points

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Adding Hand Motion to the Motion Capture Based Character Animation

Adding Hand Motion to the Motion Capture Based Character Animation Adding Hand Motion to the Motion Capture Based Character Animation Ge Jin and James Hahn Computer Science Department, George Washington University, Washington DC 20052 {jinge, hahn}@gwu.edu Abstract. Most

More information

BCC Video Morph. Here s a step by step tutorial on how this filter is used in Adobe After Effects:

BCC Video Morph. Here s a step by step tutorial on how this filter is used in Adobe After Effects: BCC Video Morph The OpenGL hardware- accelerated BCC Video Morph filter performs a combined warp and dissolve blend from one video clip into another clip, resulting in the generation of an animated image

More information

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2

Lecture overview. Visualisatie BMT. Fundamental algorithms. Visualization pipeline. Structural classification - 1. Structural classification - 2 Visualisatie BMT Fundamental algorithms Arjan Kok a.j.f.kok@tue.nl Lecture overview Classification of algorithms Scalar algorithms Vector algorithms Tensor algorithms Modeling algorithms 1 2 Visualization

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Character Animation 1

Character Animation 1 Character Animation 1 Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

IEEE TRANSACTIONS ON CYBERNETICS 1

IEEE TRANSACTIONS ON CYBERNETICS 1 IEEE TRANSACTIONS ON CYBERNETICS 1 Animation Control of Surface Motion Capture Margara Tejera, Student Member, IEEE, Dan Casas, Student Member, IEEE, and Adrian Hilton, Member, IEEE Abstract Surface motion

More information

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010)

To Do. History of Computer Animation. These Lectures. 2D and 3D Animation. Computer Animation. Foundations of Computer Graphics (Spring 2010) Foundations of Computer Graphics (Spring 2010) CS 184, Lecture 24: Animation http://inst.eecs.berkeley.edu/~cs184 To Do Submit HW 4 (today) Start working on HW 5 (can be simple add-on) Many slides courtesy

More information

Advanced Graphics and Animation

Advanced Graphics and Animation Advanced Graphics and Animation Character Marco Gillies and Dan Jones Goldsmiths Aims and objectives By the end of the lecture you will be able to describe How 3D characters are animated Skeletal animation

More information

CS 231. Motion Capture Data I. The Pipeline. Bodenheimer et al

CS 231. Motion Capture Data I. The Pipeline. Bodenheimer et al CS 231 Motion Capture Data I The Pipeline Bodenheimer et al 1 Marker Magnetic Optical Marker placement On limbs vs joints neither is ideal Over tight clothing or thin skin In repeatable 'landmarks' Using

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Character Animation. Presented by: Pam Chow

Character Animation. Presented by: Pam Chow Character Animation Presented by: Pam Chow Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. PLAZMO AND

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris)

INFOMCANIM Computer Animation Motion Synthesis. Christyowidiasmoro (Chris) INFOMCANIM Computer Animation Motion Synthesis Christyowidiasmoro (Chris) Why Motion Synthesis? We don t have the specific motion / animation We don t have the skeleton and motion for specific characters

More information

Motion Control Methods for Skeleton Daniel Thalmann

Motion Control Methods for Skeleton Daniel Thalmann Motion Control Methods for Skeleton Daniel Thalmann Cagliari, May 2008 Animation of articulated bodies Characters, humans, animals, robots. Characterized by hierarchical structure: skeleton. Skeleton:

More information

CS230 : Computer Graphics Lecture 12: Introduction to Animation. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 12: Introduction to Animation. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 12: Introduction to Animation Tamar Shinar Computer Science & Engineering UC Riverside Types of animation keyframing rotoscoping stop motion procedural simulation motion

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Spline Control. How to Create the Spline

Spline Control. How to Create the Spline Spline Control How to Create the Spline Getting Started with Spline Control Going Further Modeler Spline for Spline Control How to View the Spline How to Tweak the Spline How to Activate/Deactivate Spline

More information

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc.

Overview. Animation is a big topic We will concentrate on character animation as is used in many games today. humans, animals, monsters, robots, etc. ANIMATION Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character is represented

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Chapter 5.2 Character Animation

Chapter 5.2 Character Animation Chapter 5.2 Character Animation Overview Fundamental Concepts Animation Storage Playing Animations Blending Animations Motion Extraction Mesh Deformation Inverse Kinematics Attachments & Collision Detection

More information

Mocap in a 3D Pipeline

Mocap in a 3D Pipeline East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses 5-2014 Mocap in a 3D Pipeline Logan T. Maides Follow this and additional works at: http://dc.etsu.edu/honors

More information

Unit 6. Multimedia Element: Animation. Introduction to Multimedia Semester 1

Unit 6. Multimedia Element: Animation. Introduction to Multimedia Semester 1 Unit 6 Multimedia Element: Animation 2017-18 Semester 1 Unit Outline In this unit, we will learn Animation Guidelines Flipbook Sampling Rate and Playback Rate Cel Animation Frame-based Animation Path-based

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object!

The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! The aim is to find an average between two objects Not an average of two images of objects but an image of the average object! How can we make a smooth transition in time? Do a weighted average over time

More information

The Cartoon Animation Filter

The Cartoon Animation Filter The Cartoon Animation Filter Jue Wang 1 Steven M. Drucker 2 Maneesh Agrawala 3 Michael F. Cohen 2 1 University of Washington 2 Microsoft Research 3 University of California, Berkeley Figure 1: A punch.

More information

Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm

Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm Acta Technica 61, No. 4A/2016, 189 200 c 2017 Institute of Thermomechanics CAS, v.v.i. Research on time optimal trajectory planning of 7-DOF manipulator based on genetic algorithm Jianrong Bu 1, Junyan

More information

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007

Image Warping and Morphing. Alexey Tikhonov : Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping and Morphing Alexey Tikhonov 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Image Warping in Biology D'Arcy Thompson http://www-groups.dcs.st-and.ac.uk/~history/miscellaneous/darcy.html

More information

BONE CONTROLLER ASSET VERSION 0.1 REV 1

BONE CONTROLLER ASSET VERSION 0.1 REV 1 Foreword Thank you for purchasing the Bone Controller! I m an independent developer and your feedback and support really means a lot to me. Please don t ever hesitate to contact me if you have a question,

More information

Quaternions and Exponentials

Quaternions and Exponentials Quaternions and Exponentials Michael Kazhdan (601.457/657) HB A.6 FvDFH 21.1.3 Announcements OpenGL review II: Today at 9:00pm, Malone 228 This week's graphics reading seminar: Today 2:00-3:00pm, my office

More information

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data

Motion Retrieval. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data. Motion Capture Data Lecture Information Retrieval for Music and Motion Meinard Müller and Andreas Baak Summer Term 2008 Motion Capture Data Digital 3D representations of motions Computer animation Sports Gait analysis 2 Motion

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine)

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Reflections Horizontal Translation (c) Vertical Translation (d) Remember: vertical stretch horizontal stretch 1 Part A: Reflections

More information

Image Morphing. Michael Kazhdan ( /657) HB Ch Feature Based Image Metamorphosis, Beier and Neely 1992

Image Morphing. Michael Kazhdan ( /657) HB Ch Feature Based Image Metamorphosis, Beier and Neely 1992 Image Morphing Michael Kazhdan (601.457/657) HB Ch. 16.5 Feature Based Image Metamorphosis, Beier and Neely 1992 Image Morphing Animate transition between two images H&B Figure 16.9 Image Morphing Animate

More information

Creating Loopable Animations By Ryan Bird

Creating Loopable Animations By Ryan Bird Creating Loopable Animations By Ryan Bird A loopable animation is any-length animation that starts the same way it ends. If done correctly, when the animation is set on a loop cycle (repeating itself continually),

More information

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout

Animation Charts. What is in the Animation Charts Package? Flying Cycle. Throw Side View. Jump. Side View. Sequence Layout Toon Boom Animation provides several animation charts designed to help you animate different characters. The Animation Chart Package contains main actions and animation such as, walking, flying, weight

More information

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker Beginners Guide Maya To be used next to Learning Maya 5 Foundation 15 juni 2005 Clara Coepijn 0928283 Raoul Franker 1202596 Index Index 1 Introduction 2 The Interface 3 Main Shortcuts 4 Building a Character

More information

Splines, or: Connecting the Dots. Jens Ogniewski Information Coding Group

Splines, or: Connecting the Dots. Jens Ogniewski Information Coding Group Splines, or: Connecting the Dots Jens Ogniewski Information Coding Group Note that not all is covered in the book, especially Change of Interpolation Centripetal Catmull-Rom and other advanced parameterization

More information

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2

Parametric Surfaces. Michael Kazhdan ( /657) HB , FvDFH 11.2 Parametric Surfaces Michael Kazhdan (601.457/657) HB 10.6 -- 10.9, 10.1 FvDFH 11.2 Announcement OpenGL review session: When: Wednesday (10/1) @ 7:00-9:00 PM Where: Olin 05 Cubic Splines Given a collection

More information

2D transformations: An introduction to the maths behind computer graphics

2D transformations: An introduction to the maths behind computer graphics 2D transformations: An introduction to the maths behind computer graphics Lecturer: Dr Dan Cornford d.cornford@aston.ac.uk http://wiki.aston.ac.uk/dancornford CS2150, Computer Graphics, Aston University,

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics Preview CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles

More information

CS770/870 Spring 2017 Animation Basics

CS770/870 Spring 2017 Animation Basics CS770/870 Spring 2017 Animation Basics Related material Angel 6e: 1.1.3, 8.6 Thalman, N and D. Thalman, Computer Animation, Encyclopedia of Computer Science, CRC Press. Lasseter, J. Principles of traditional

More information

Muscle Based facial Modeling. Wei Xu

Muscle Based facial Modeling. Wei Xu Muscle Based facial Modeling Wei Xu Facial Modeling Techniques Facial modeling/animation Geometry manipulations Interpolation Parameterizations finite element methods muscle based modeling visual simulation

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Geometric Distortion Geometric Distortion: Errors in image geometry, (location, dimensions,

More information

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017

Computer Graphics. Si Lu. Fall uter_graphics.htm 11/27/2017 Computer Graphics Si Lu Fall 2017 http://web.cecs.pdx.edu/~lusi/cs447/cs447_547_comp uter_graphics.htm 11/27/2017 Last time o Ray tracing 2 Today o Animation o Final Exam: 14:00-15:30, Novermber 29, 2017

More information

05 Mesh Animation. Steve Marschner CS5625 Spring 2016

05 Mesh Animation. Steve Marschner CS5625 Spring 2016 05 Mesh Animation Steve Marschner CS5625 Spring 2016 Basic surface deformation methods Blend shapes: make a mesh by combining several meshes Mesh skinning: deform a mesh based on an underlying skeleton

More information