visual boundary (a) a vector format region (b) a raster format region region b region a Boundary Interior of region a Interior of region b

Size: px
Start display at page:

Download "visual boundary (a) a vector format region (b) a raster format region region b region a Boundary Interior of region a Interior of region b"

Transcription

1 A Spatial Algebra for Content-based Retrieval Mohan S. Kankanhalli Jiang Xunda Jiankang Wu Real World Computing Partnership, Novel Function ISS Laboratory Institute of Systems Science, National University of Singapore Kent Ridge, Singapore ( Abstract We present a scheme for retrieval by spatial reasoning in a spatial information system such asage- ographic Information System. We base this scheme on a spatial algebra consisting of topological (point, line and region), metric and morphological operators. We detail the operations available in this algebra and show howcontext can be built in for exible retrieval of spatial data. 1 Introduction We have developed a spatial algebra for the purpose of exible retrieval of spatial information. Traditionally, spatial algebra work has been been conned mainly to topological operations [] or to metric operations [1]. Also, all this work has been limited to mainly -D point sets (areal objects). Wepresent a comprehensive spatial algebra which can combine topological, metric and morphological operations. The topological operators allow for lineal and point objects also. These are distinguishing features of our spatial algebra 1. Data Structure This will use the dual rastervector data structure [6] and hence will be able to exibly handle both vector as well as raster representation of data. Due to the concept of the visual boundary which ensures a zero-thickness boundary in the raster domain, many operations will be very easy in this domain.. Contexts Since most real world operations have an implicit context built, we provide a mechanism for explicit building of contexts by the user/application of this spatial algebra.. Eciency All operations are performed in the raster domain for the sake of eciency. For this purpose we have developed an ecient vector-toraster conversion algorithm.. Comprehensive We have developed a wide suite of operators which can be used as primitive spatial operators for a very large range of spatial queries. In particular, we have developed (a) Topological Operators These operations are invariant under any topological homeomorphism. They are not sensitive to metric information. The spatial algebra we have developed can handle point objects and lineal objects. They can be exibly combined with areal operators. (b) Metric Operators These operators depend on the underlying metric space. (c) Morphological Operators These are shape transforming operators. Data Representation We consider the dual raster-vector data structure (DRVDS) [6] as the basis for all operations. We emphasize this aspect because most of the previous work has neglected practical implementation aspects of spatial algebras. We believe that the practicality consideration is vital and hence wehave designed the algebra for easy implementation. Basically, DRVDS represents the continuous data (i.e. the vector data) in the cartesian coordinate system having innite precision. The discrete information (raster data) is represented in a digital grid system having nite precision. An example of vector and raster data is shown in gure 1. There is a problem having data in two very dierent representations { a zero-thickness vector line boundary has a one-pixel thick analog in the raster domain. This makes the spatial algebra very complicated requiring additional neighborhood information []. It also introduces ambiguity in situations such asgure. We avoid this problem by using the concept of a visual boundary which is a zero-thickness line representation which separates two areal regions (shown in two dierent colors). So fundamentally, aline boundary corresponds to the raster visual boundary between two areal objects. See gure for an example. This representation scheme has three classes of objects 1. Class 1 These are point objects which are objects that represent positional information e.g. control points, ight paths etc.. Class These are lineal objects which are objects whose one or more dimensions are neglectable e.g. a cable.. Class These are areal objects which are objects with two dimensions e.g. areas, buildings etc. We use the vector representation for class 1 and class objects while for the class objects, we use the native data format i.e. either vector or raster. For example,

2 the map information is usually in vector format while satellite information is usually in a raster format. For all mixed operations, we use the raster representation for eciency. A vector-to-raster conversion algorithm can be used for all the vector objects. We have developed an ecient algorithm for this conversion which has a provably nite bounded loss in accuracy. Topological Operators In this section we consider the pure topological operations i.e. they are invariant under all topological transformations (which means they are homeomorphic). We assume a point set topological model [] and our work is similar to that of []..1 Areal-Areal Object Operators We assume that all topological operators are for \spatial regions" which are dened to be -D points sets homeomorphic to a -disk []. For an object A (corresponding to a spatial region), the interior of A, denoted by A 0, is dened as the union of all open sets in A. The closure of A, denoted by A, istheintersec- tion of all closed sets of A. The exterior, denoted by A ;, is the complement ofa, which are all the points belonging to R not contained in A. The boundary of A, denoted is the intersection of the closure of A and the closure of A ;. Assume that 1. The continuous domain spans RR and the discrete domain spans ZZ.. In the discrete domain, the interior and the boundary are 8-connected.. In the discrete domain, the exterior is - connected. Assume that we have two objects A and B having interiors A 0, B 0 exteriors A ;, B ; Now, unlike the Egenhofer and Sharma [] approach, we have no problems in translating ideas in RR []tothezz domain. The reason for this is that boundaries in RR correspond to visual boundaries in ZZ which alsohave no thickness. So, essentially at the expense of slight accuracy loss (boundary conversion is bounded by an error of 0 pixel []), we have removed the neighborhood problems of going from continuous to discrete. Note that both vector and raster representations can be subsumed under the point set topological basis. We now dene the following intersection matrix, R(A B), which will be used to dene the topological \ \ B \ B ; A 0 A 0 \ B 0 A 0 \ B ; A ; A ; \ B 0 A ; \ B ; We will now dene the various operators in terms of these matrices. 1. disjoint. overlap. meet. inside. equal 6. contains 7. covers 8. covered by Note that our areal object is like shown in Figure 1. Also note that we obtain 9 cases unlike 16 cases obtained in []. The reduced number of cases is due to the DRVDS representation which reduces ambiguity due to zero-thickness boundaries in the raster domain. Moreover, unlike [], we do not assume connectedness conditions to prevent special cases arising out of degeneracy. All these factors make the implementation a lot more ecient.

3 . Lineal-Lineal Object Operators Till now, we have considered operations only on -D point sets (areal objects). However, the real world consist of 0-D (point objects) and 1-D (lineal objects) point sets as well. While many of the earlier operators can be extended for the point and lineal objects, some operations are unique for for the point/lineal objects. We now detail such operations. Again we assume a point set representation. An areal object A has an interior A 0, a and an exterior A ;. A lineal object L has only a and an exterior L ;. A point object P also has only a and an exterior P ;. We dene the intersection matrix for two lineal objects L 1 and L R(L 1 L ) \ 1 \ L ; L ; 1 L ; 1 \ L; This has ve possibilities (out of the total possible 16) 1. on. equal R(L 1 L ) = R(L 1 L ) =. Lineal-Areal Object Operators We dene the intersection matrix for these \ \ A \ A ; L ; L ; \ A 0 L ; \ A ; There are four possibilities here (out of the 6 total possible) 1. disjoint. touches. goes thru. within. disjoint R(L 1 L ) =. covered by. overlap. covers R(L 1 L ) = R(L 1 L ) =. Point-Point Object Operators We dene the intersection matrix for these objects R(P 1 P ) \ 1 \ P ; P ; 1 P ; 1 \ P ; This has two possibilities (out of the total possible 16) 1. equal. disjoint R(P 1 P ) = R(P 1 P ) =. Point-Lineal Object Operators We dene the intersection matrix for these \ \ L ; P ; P ; \ L ; This has two possibilities (out of the total possible 16) 1. on. disjoint.6 Point-Areal Object Operators We dene the intersection matrix for these \ \ A \ A ; P ; P ; \ A 0 P ; \ A ; This has three possibilities (out of the total possible 6 )

4 1. within. on. outside We havedeveloped in detail the composition of the various topological operators []. However, due to space constraints we cannot present themin this paper. Metric Operators In this section, we will concentrate on the spatial operations which depend on the metric properties of the underlying domain. Hence they are not invariant under topological transformations. 1. Near All metric operations have to depend on the underlying metric space. Certain operations also depend on context. For example, to dene the `near' operator. acontext has to be provided to dene the concept of nearness. This can vary from person to person. Hence it is important that a user-denable context be allowed. We assume a crisp threshold which separates the near and the non-near sets. However, this concept can easily be made more exible by employing a fuzzy settheoretic underpinning. Assume that we havetwo objects A and B { we can assume the point set model introduced earlier. Also assume that we have a context function T dened as T (x) = (x < k) which means T (x) = 1ifx < k and T (x) = 0 if x k. We denote the near operator having context k by k. Then the operator A k B (A near B), returns a boolean value of either 1 or 0 A k B = T (H(A B)) We use the Hausdor distance to compute the k operator. Given two nite point sets A and B A = fa 1 a a m g B = fb 1 b b n g Then the Hausdor distance is dened as where H(A B) = max(h(a B) h(b A)) h(a B) = max min jja ; bjj aa bb where jj jj is some norm over the metric space e.g. L (Euclidean norm). Note that this can be computed for all points on the raster boundary for eciency, in case of raster encoding. Foravector encoding, this needs to be computed only for the vertex points.. Within This is a unary operator and it also has acontext k. We denote this operator by k. For an object A, k (A) returns all objects within a distance k from A. The Hausdor metric (dened earlier) is used to compute the distance.. Above This operator is denoted by.. Below This operator is denoted by.. Left This operator is denoted by. 6. Right This operator is denoted by. For all the above four operators we assume that there are two objects A and B, with their associated isothetic minimum bounding rectangle. Suppose that the bounding rectangle of A has the following coordinates A xmin, A xmax, A ymin and A ymax and B has B xmin, B xmax, B ymin and B ymax. Then we dene A B (A ymax > B ymax ) ^ (A ymin > B ymin ) A B (A ymax < B ymax ) ^ (A ymin < B ymin ) A B (A xmin < B xmin ) ^ (A xmax < B xmax ) A B (A xmin > B xmin ) ^ (A xmin > B xmin ) Note that like in the case of topological operators, we can have compositions of the metric operators [] but we do not present them here. Morphological Operators In this section we describe a set of morphological operators useful for a spatial information system { some of these operators are standard and some are new. 1. dilation For an object A and a structuring element B, the dilation of A by B is dened as A B = fcjc = a + b for some aa and bbg. erosion For an object A and a structuring element B, the dilation of A by B is dened as A B = fxj(x + b)a for every bbg. opening The opening of an object A by a structuring element K, is dened as A B = (A K) K

5 . closing The closing of an object A by a structuring element K, is dened as A B = (A K) K Boundary Interior. non-uniform dilation This operator is a new operator with a context dened. Suppose that there is a real-valued function F dened over the pointset constituting the domain. This function is assumed to be dened over all the points. For example, this function could be a population density function or the income distribution function or perhaps the disposable income distribution function over a spatial domain. Then suppose there exists a context function G i.e. (a) a vector format region (b) a raster format region Figure 1 A spatial region in vector and raster form region b region a G(x) = (x > k) which means that G returns a boolean value i.e. G(x) = 1 if x >= k and G(x) = 0 if x < k. Then we dene the non-uniform dilation of an object A by a structuring element B as A ^B = fcj(c = a + b for some aa and bb) ^ (G(F (c) = 1))g This operator non-uniformly dilates A based on the density function F and the context function G. 6. non-uniform erosion Assume a real-valued function F and a context function G. The nonuniform erosion of A by a structuring element B is dened as A ^ B = fxj((x + b)a for every bb) 6 Conclusions ^(G(F (c) =1))g We have presented a comprehensive spatial algebra which consists of topological, metric and morphological operators. The operators can be composed to deduce relations between objects. This algebra is easy to implement, is ecient and does not suer from the neighborhood problems when applied in the raster domain. This can be used for spatial reasoning for content-based retrieval. References [1] S.K. Chang, Q.Y. Shi and C.W. Yan, \Iconic Indexing by -D Strings", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 6, pp. 1-8, [] M.J. Egenhofer and R. Franzosa, \Point-Set Topological Spatial Relations", International Journal of Geographic Information Systems, Vol., No., pp , Boundary Interior of region a Interior of region b Common boundary Figure One-unit-wide common boundary [] M.J. Egenhofer and J. Sharma, \Topological relations Between Regions in R and Z ", Proc. rd International Symposium on Large Spatial Databases, LNCS Vol. 69, pp. 16-6, 199. [] M.S. Kankanhalli and X. Jiang, \A Spatial Algebra for Flexible Content-based Retrieval", RWC Technical Report (under preparation), 199. [] M.G. Luby, \Grid Geometries Which Preserve Properties of Euclidean Geometry A Study of Graphics Line Drawing Algorithms", Theoretical Foundations of Computer Graphics and CAD, NATO ASI Series, Vol. F0, Springer-Verlag, pp. 97-, [6] J.K. Wu, \The Dual Raster-Vector Data Structure", Unpublished Technical Report, 199. region a region b visual boundary Figure The visual boundary between two raster regions

DERIVING TOPOLOGICAL RELATIONSHIPS BETWEEN SIMPLE REGIONS WITH HOLES

DERIVING TOPOLOGICAL RELATIONSHIPS BETWEEN SIMPLE REGIONS WITH HOLES DERIVING TOPOLOGICAL RELATIONSHIPS BETWEEN SIMPLE REGIONS WITH HOLES Mark McKenney, Reasey Praing, and Markus Schneider Department of Computer and Information Science & Engineering, University of Florida

More information

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter

University of Groningen. Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter University of Groningen Morphological design of Discrete-Time Cellular Neural Networks Brugge, Mark Harm ter IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you

More information

Tilings of the Euclidean plane

Tilings of the Euclidean plane Tilings of the Euclidean plane Yan Der, Robin, Cécile January 9, 2017 Abstract This document gives a quick overview of a eld of mathematics which lies in the intersection of geometry and algebra : tilings.

More information

Section 1.6. Inverse Functions

Section 1.6. Inverse Functions Section 1.6 Inverse Functions Important Vocabulary Inverse function: Let f and g be two functions. If f(g(x)) = x in the domain of g and g(f(x) = x for every x in the domain of f, then g is the inverse

More information

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4

CSG obj. oper3. obj1 obj2 obj3. obj5. obj4 Solid Modeling Solid: Boundary + Interior Volume occupied by geometry Solid representation schemes Constructive Solid Geometry (CSG) Boundary representations (B-reps) Space-partition representations Operations

More information

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to

2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to 2.8. Connectedness A topological space X is said to be disconnected if X is the disjoint union of two non-empty open subsets. The space X is said to be connected if it is not disconnected. A subset of

More information

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set

γ 2 γ 3 γ 1 R 2 (b) a bounded Yin set (a) an unbounded Yin set γ 1 γ 3 γ γ 3 γ γ 1 R (a) an unbounded Yin set (b) a bounded Yin set Fig..1: Jordan curve representation of a connected Yin set M R. A shaded region represents M and the dashed curves its boundary M that

More information

TOWARDS A 3D SPATIAL QUERY LANGUAGE FOR BUILDING INFORMATION MODELS

TOWARDS A 3D SPATIAL QUERY LANGUAGE FOR BUILDING INFORMATION MODELS TOWARDS A D SPATIAL QUERY LANGUAGE FOR BUILDING INFORMATION MODELS André Borrmann 1, Christoph van Treeck 1, and Ernst Rank 1 ABSTRACT The paper introduces the concept of a spatial query language for building

More information

layers in a raster model

layers in a raster model layers in a raster model Layer 1 Layer 2 layers in an vector-based model (1) Layer 2 Layer 1 layers in an vector-based model (2) raster versus vector data model Raster model Vector model Simple data structure

More information

Topological structure of images

Topological structure of images Topological structure of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione delle immagini (Image processing I) academic year 2011 2012 Use of simple relationships

More information

L1-Spatial Concepts L1 - Spatial Concepts

L1-Spatial Concepts L1 - Spatial Concepts L1 - Spatial Concepts NGEN06(TEK230) Algorithms in Geographical Information Systems Aim Understand the relationship between spatial queries and mathematical concepts. Know how topological relationships

More information

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements.

M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. M3P1/M4P1 (2005) Dr M Ruzhansky Metric and Topological Spaces Summary of the course: definitions, examples, statements. Chapter 1: Metric spaces and convergence. (1.1) Recall the standard distance function

More information

Topological structure of images

Topological structure of images Topological structure of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 27 28 Use of simple relationships between pixels The

More information

FINITE RESOLUTION CRISP AND FUZZY SPATIAL OBJECTS

FINITE RESOLUTION CRISP AND FUZZY SPATIAL OBJECTS FINITE RESOLUTION CRISP AND FUZZY SPATIAL OBJECTS Markus Schneider FernUniversität Hagen, Praktische Informatik IV 58084 Hagen, Germany markus.schneider@fernuni-hagen.de ABSTRACT Uncertainty management

More information

Introduction. Computer Vision & Digital Image Processing. Preview. Basic Concepts from Set Theory

Introduction. Computer Vision & Digital Image Processing. Preview. Basic Concepts from Set Theory Introduction Computer Vision & Digital Image Processing Morphological Image Processing I Morphology a branch of biology concerned with the form and structure of plants and animals Mathematical morphology

More information

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS

CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS CLASSIFICATION OF BOUNDARY AND REGION SHAPES USING HU-MOMENT INVARIANTS B.Vanajakshi Department of Electronics & Communications Engg. Assoc.prof. Sri Viveka Institute of Technology Vijayawada, India E-mail:

More information

EECS490: Digital Image Processing. Lecture #17

EECS490: Digital Image Processing. Lecture #17 Lecture #17 Morphology & set operations on images Structuring elements Erosion and dilation Opening and closing Morphological image processing, boundary extraction, region filling Connectivity: convex

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

High Expressive Spatio-temporal Relations

High Expressive Spatio-temporal Relations From: FLAIRS-02 Proceedings. Copyright 2002, AAAI (www.aaai.org). All rights reserved. High Expressive Spatio-temporal Relations R. CHBEIR, Y. AMGHAR, A. FLORY LISI INSA de Lyon 20, Avenue A. Einstein

More information

DEVELOPING A THREE-DIMENSIONAL TOPOLOGICAL DATA MODEL

DEVELOPING A THREE-DIMENSIONAL TOPOLOGICAL DATA MODEL DEVELOPING A THREE-DIMENSIONAL TOPOLOGICAL DATA MODEL Saadi MESGARI International Institute for Aerospace Survey and Earth Sciences (ITC) The Netherlands Mesgari@itc.nl Working Group IC/16 KEY WORDS: Data

More information

Fuzzy Soft Mathematical Morphology

Fuzzy Soft Mathematical Morphology Fuzzy Soft Mathematical Morphology. Gasteratos, I. ndreadis and Ph. Tsalides Laboratory of Electronics Section of Electronics and Information Systems Technology Department of Electrical and Computer Engineering

More information

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010

A Flavor of Topology. Shireen Elhabian and Aly A. Farag University of Louisville January 2010 A Flavor of Topology Shireen Elhabian and Aly A. Farag University of Louisville January 2010 In 1670 s I believe that we need another analysis properly geometric or linear, which treats place directly

More information

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1

Notes on Topology. Andrew Forrester January 28, Notation 1. 2 The Big Picture 1 Notes on Topology Andrew Forrester January 28, 2009 Contents 1 Notation 1 2 The Big Picture 1 3 Fundamental Concepts 2 4 Topological Spaces and Topologies 2 4.1 Topological Spaces.........................................

More information

An Introduction to Spatial Databases

An Introduction to Spatial Databases An Introduction to Spatial Databases R. H. Guting VLDB Journal v3, n4, October 1994 Speaker: Giovanni Conforti Outline: a rather old (but quite complete) survey on Spatial DBMS Introduction & definition

More information

Engineering Drawings Recognition Using a Case-based Approach

Engineering Drawings Recognition Using a Case-based Approach Engineering Drawings Recognition Using a Case-based Approach Luo Yan Department of Computer Science City University of Hong Kong luoyan@cs.cityu.edu.hk Liu Wenyin Department of Computer Science City University

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Morphology Identification, analysis, and description of the structure of the smallest unit of words Theory and technique for the analysis and processing of geometric structures

More information

Chapter 12 Solid Modeling. Disadvantages of wireframe representations

Chapter 12 Solid Modeling. Disadvantages of wireframe representations Chapter 12 Solid Modeling Wireframe, surface, solid modeling Solid modeling gives a complete and unambiguous definition of an object, describing not only the shape of the boundaries but also the object

More information

Lecturer 2: Spatial Concepts and Data Models

Lecturer 2: Spatial Concepts and Data Models Lecturer 2: Spatial Concepts and Data Models 2.1 Introduction 2.2 Models of Spatial Information 2.3 Three-Step Database Design 2.4 Extending ER with Spatial Concepts 2.5 Summary Learning Objectives Learning

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons attributes linked to feature ID explicit location every point has coordinates 2 Fields

More information

SOME 024: Computer Aided Design. E. Rozos

SOME 024: Computer Aided Design. E. Rozos SOME 024: Computer Aided Design E. Rozos Introduction to CAD theory part 2 Lesson structure Why Solid modelling Solid modelling methods Representation based Manufacturing based Solid modelling storage

More information

Topic 6 Representation and Description

Topic 6 Representation and Description Topic 6 Representation and Description Background Segmentation divides the image into regions Each region should be represented and described in a form suitable for further processing/decision-making Representation

More information

Geometric Representations. Stelian Coros

Geometric Representations. Stelian Coros Geometric Representations Stelian Coros Geometric Representations Languages for describing shape Boundary representations Polygonal meshes Subdivision surfaces Implicit surfaces Volumetric models Parametric

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Binary image processing In binary images, we conventionally take background as black (0) and foreground objects as white (1 or 255) Morphology Figure 4.1 objects on a conveyor

More information

Songklanakarin Journal of Science and Technology SJST R1 Ghareeb SPATIAL OBJECT MODELING IN SOFT TOPOLOGY

Songklanakarin Journal of Science and Technology SJST R1 Ghareeb SPATIAL OBJECT MODELING IN SOFT TOPOLOGY Songklanakarin Journal of Science and Technology SJST-0-00.R Ghareeb SPATIAL OBJECT MODELING IN SOFT TOPOLOGY Journal: Songklanakarin Journal of Science and Technology Manuscript ID: SJST-0-00.R Manuscript

More information

An explicit feature control approach in structural topology optimization

An explicit feature control approach in structural topology optimization th World Congress on Structural and Multidisciplinary Optimisation 07 th -2 th, June 205, Sydney Australia An explicit feature control approach in structural topology optimization Weisheng Zhang, Xu Guo

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

Computing the Topological Relationship of Complex Regions

Computing the Topological Relationship of Complex Regions Computing the Topological Relationship of Complex Regions Markus Schneider University of Florida epartment of Computer & Information Science & Engineering Gainesville, FL 32611, USA mschneid@cise.ufl.edu

More information

On Fuzzy Topological Spaces Involving Boolean Algebraic Structures

On Fuzzy Topological Spaces Involving Boolean Algebraic Structures Journal of mathematics and computer Science 15 (2015) 252-260 On Fuzzy Topological Spaces Involving Boolean Algebraic Structures P.K. Sharma Post Graduate Department of Mathematics, D.A.V. College, Jalandhar

More information

M. Andrea Rodríguez-Tastets. I Semester 2008

M. Andrea Rodríguez-Tastets. I Semester 2008 M. -Tastets Universidad de Concepción,Chile andrea@udec.cl I Semester 2008 Outline refers to data with a location on the Earth s surface. Examples Census data Administrative boundaries of a country, state

More information

Determining Differences between Two Sets of Polygons

Determining Differences between Two Sets of Polygons Determining Differences between Two Sets of Polygons MATEJ GOMBOŠI, BORUT ŽALIK Institute for Computer Science Faculty of Electrical Engineering and Computer Science, University of Maribor Smetanova 7,

More information

Morphological Image Processing

Morphological Image Processing Morphological Image Processing Ranga Rodrigo October 9, 29 Outline Contents Preliminaries 2 Dilation and Erosion 3 2. Dilation.............................................. 3 2.2 Erosion..............................................

More information

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University

Ray Tracing III. Wen-Chieh (Steve) Lin National Chiao-Tung University Ray Tracing III Wen-Chieh (Steve) Lin National Chiao-Tung University Shirley, Fundamentals of Computer Graphics, Chap 10 Doug James CG slides, I-Chen Lin s CG slides Ray-tracing Review For each pixel,

More information

CONNECTED SPACES AND HOW TO USE THEM

CONNECTED SPACES AND HOW TO USE THEM CONNECTED SPACES AND HOW TO USE THEM 1. How to prove X is connected Checking that a space X is NOT connected is typically easy: you just have to find two disjoint, non-empty subsets A and B in X, such

More information

morphology on binary images

morphology on binary images morphology on binary images Ole-Johan Skrede 10.05.2017 INF2310 - Digital Image Processing Department of Informatics The Faculty of Mathematics and Natural Sciences University of Oslo After original slides

More information

Chapter 11. Topological Spaces: General Properties

Chapter 11. Topological Spaces: General Properties 11.1. Open Sets, Closed Sets, Bases, and Subbases 1 Chapter 11. Topological Spaces: General Properties Section 11.1. Open Sets, Closed Sets, Bases, and Subbases Note. In this section, we define a topological

More information

Clipping and Scan Conversion

Clipping and Scan Conversion 15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank

More information

Topological Relationships between Complex Spatial Objects

Topological Relationships between Complex Spatial Objects Topological Relationships between Complex Spatial Objects Markus Schneider University of Florida Department of Computer & Information Science & Engineering Gainesville, FL 32611, USA mschneid@cise.ufl.edu

More information

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO Solid Modelling Graphics Systems / Computer Graphics and Interfaces 1 Solid Modelling In 2D, one set 2D line segments or curves does not necessarily form a closed area. In 3D, a collection of surfaces

More information

A Genus Bound for Digital Image Boundaries

A Genus Bound for Digital Image Boundaries A Genus Bound for Digital Image Boundaries Lowell Abrams and Donniell E. Fishkind March 9, 2005 Abstract Shattuck and Leahy [4] conjectured and Abrams, Fishkind, and Priebe [1],[2] proved that the boundary

More information

Introduction to Spatial Database Systems. Outline

Introduction to Spatial Database Systems. Outline Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 1 Outline Introduction & definition Modeling Querying Data structures and algorithms

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision A/Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 02 Binary Image Analysis Objectives Revision of image formation

More information

ENGRG Introduction to GIS

ENGRG Introduction to GIS ENGRG 59910 Introduction to GIS Michael Piasecki April 3, 2014 Lecture 11: Raster Analysis GIS Related? 4/3/2014 ENGRG 59910 Intro to GIS 2 1 Why we use Raster GIS In our previous discussion of data models,

More information

DERIVING SPATIOTEMPORAL RELATIONS FROM SIMPLE DATA STRUCTURE

DERIVING SPATIOTEMPORAL RELATIONS FROM SIMPLE DATA STRUCTURE DERIVING SPATIOTEMPORAL RELATIONS FROM SIMPLE DATA STRUCTURE Ale Raza ESRI 380 New York Street, Redlands, California 9373-800, USA Tel.: +-909-793-853 (extension 009) Fax: +-909-307-3067 araza@esri.com

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

Finite-Resolution Simplicial Complexes

Finite-Resolution Simplicial Complexes 1 Finite-Resolution Simplicial Complexes Werner Hölbling, Werner Kuhn, Andrew U. Frank Department of Geoinformation Technical University Vienna Gusshausstrasse 27-29, A-1040 Vienna (Austria) frank@geoinfo.tuwien.ac.at

More information

A Formal Approach to Qualitative Reasoning on Topological Properties of Networks

A Formal Approach to Qualitative Reasoning on Topological Properties of Networks A Formal Approach to Qualitative Reasoning on Topological Properties of Networks Andrea Rodríguez 1,3 and Claudio Gutierrez 2,3 1 Department of Computer Science, Universidad de Concepción andrea@udec.cl

More information

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University CS443: Digital Imaging and Multimedia Binary Image Analysis Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University Outlines A Simple Machine Vision System Image segmentation by thresholding

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

Implementing Topological Predicates for Complex Regions Introduction

Implementing Topological Predicates for Complex Regions Introduction Implementing Topological Predicates for Complex Regions Markus Schneider University of Florida Department of Computer and Information Science and Engineering Gainesville, FL 326, USA mschneid@cise.ufl.edu

More information

Manifolds. Chapter X. 44. Locally Euclidean Spaces

Manifolds. Chapter X. 44. Locally Euclidean Spaces Chapter X Manifolds 44. Locally Euclidean Spaces 44 1. Definition of Locally Euclidean Space Let n be a non-negative integer. A topological space X is called a locally Euclidean space of dimension n if

More information

Multidimensional Data and Modelling - DBMS

Multidimensional Data and Modelling - DBMS Multidimensional Data and Modelling - DBMS 1 DBMS-centric approach Summary: l Spatial data is considered as another type of data beside conventional data in a DBMS. l Enabling advantages of DBMS (data

More information

Math 6510 Homework 3

Math 6510 Homework 3 Notational Note: In any presentation of a group G, I will explicitly set the relation equal to e as opposed to simply writing a presentation like G = a, b, c, d abcd 1. This is a bit untraditional, but

More information

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) OpenGL Stages After projection, several stages before objects drawn

More information

POINT SET TOPOLOGY. Introduction

POINT SET TOPOLOGY. Introduction POINT SET TOPOLOGY Introduction In order to establish a foundation for topological evolution, an introduction to topological ideas and definitions is presented in terms of point set methods for which the

More information

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra

[8] that this cannot happen on the projective plane (cf. also [2]) and the results of Robertson, Seymour, and Thomas [5] on linkless embeddings of gra Apex graphs with embeddings of face-width three Bojan Mohar Department of Mathematics University of Ljubljana Jadranska 19, 61111 Ljubljana Slovenia bojan.mohar@uni-lj.si Abstract Aa apex graph is a graph

More information

Topology Homework 3. Section Section 3.3. Samuel Otten

Topology Homework 3. Section Section 3.3. Samuel Otten Topology Homework 3 Section 3.1 - Section 3.3 Samuel Otten 3.1 (1) Proposition. The intersection of finitely many open sets is open and the union of finitely many closed sets is closed. Proof. Note that

More information

EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS)

EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS) EAT 233/3 GEOGRAPHIC INFORMATION SYSTEM (GIS) CO3: Ability to produce detail mapping using geographic information systems (GIS) BY : AYU WAZIRA AZHARI SPATIAL DATA & THE MODELLING Spatial Data in GIS Spatial

More information

Manifolds (Relates to text Sec. 36)

Manifolds (Relates to text Sec. 36) 22M:132 Fall 07 J. Simon Manifolds (Relates to text Sec. 36) Introduction. Manifolds are one of the most important classes of topological spaces (the other is function spaces). Much of your work in subsequent

More information

Tilings. Mark McClure. July 16, Self-similarity is a concept often associated with fractal geometry. There

Tilings. Mark McClure. July 16, Self-similarity is a concept often associated with fractal geometry. There Digraph Self-Similar Sets and Aperiodic Tilings Mark McClure July 16, 2001 1 Introduction Self-similarity is a concept often associated with fractal geometry. There are many interesting self-similar sets

More information

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY

A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY A GRAPH FROM THE VIEWPOINT OF ALGEBRAIC TOPOLOGY KARL L. STRATOS Abstract. The conventional method of describing a graph as a pair (V, E), where V and E repectively denote the sets of vertices and edges,

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur.

Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur. (Refer Slide Time: 00:28) Computer Aided Engineering Design Prof. Anupam Saxena Department of Mechanical Engineering Indian Institute of Technology, Kanpur Lecture - 6 Hello, this is lecture number 6 of

More information

Revised version, February 1991, appeared in Information Processing Letters 38 (1991), 123{127 COMPUTING THE MINIMUM HAUSDORFF DISTANCE BETWEEN

Revised version, February 1991, appeared in Information Processing Letters 38 (1991), 123{127 COMPUTING THE MINIMUM HAUSDORFF DISTANCE BETWEEN Revised version, February 1991, appeared in Information Processing Letters 38 (1991), 123{127 COMPUTING THE MINIMUM HAUSDORFF DISTANCE BETWEEN TWO POINT SETS ON A LINE UNDER TRANSLATION Gunter Rote Technische

More information

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp )

Proceedings of the 5th WSEAS International Conference on Telecommunications and Informatics, Istanbul, Turkey, May 27-29, 2006 (pp ) A Rapid Algorithm for Topology Construction from a Set of Line Segments SEBASTIAN KRIVOGRAD, MLADEN TRLEP, BORUT ŽALIK Faculty of Electrical Engineering and Computer Science University of Maribor Smetanova

More information

Solids as point set. Solid models. Solid representation schemes (cont d) Solid representation schemes. Solid representation schemes (cont d)

Solids as point set. Solid models. Solid representation schemes (cont d) Solid representation schemes. Solid representation schemes (cont d) Solid models Solid models developed to address limitations of wireframe modeling. Attempt was to create systems which create only complete representations. Modelers would support direct creation of 3D

More information

1 Introduction and Review

1 Introduction and Review Figure 1: The torus. 1 Introduction and Review 1.1 Group Actions, Orbit Spaces and What Lies in Between Our story begins with the torus, which we will think of initially as the identification space pictured

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Two Image-Template Operations for Binary Image Processing. Hongchi Shi. Department of Computer Engineering and Computer Science

Two Image-Template Operations for Binary Image Processing. Hongchi Shi. Department of Computer Engineering and Computer Science Two Image-Template Operations for Binary Image Processing Hongchi Shi Department of Computer Engineering and Computer Science Engineering Building West, Room 331 University of Missouri - Columbia Columbia,

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

On Soft Topological Linear Spaces

On Soft Topological Linear Spaces Republic of Iraq Ministry of Higher Education and Scientific Research University of AL-Qadisiyah College of Computer Science and Formation Technology Department of Mathematics On Soft Topological Linear

More information

Orientation of manifolds - definition*

Orientation of manifolds - definition* Bulletin of the Manifold Atlas - definition (2013) Orientation of manifolds - definition* MATTHIAS KRECK 1. Zero dimensional manifolds For zero dimensional manifolds an orientation is a map from the manifold

More information

A Bintree Representation of Generalized Binary. Digital Images

A Bintree Representation of Generalized Binary. Digital Images A intree Representation of Generalized inary Digital mages Hanspeter ieri gor Metz 1 inary Digital mages and Hyperimages A d-dimensional binary digital image can most easily be modelled by a d-dimensional

More information

INTRODUCTION TO TOPOLOGY

INTRODUCTION TO TOPOLOGY INTRODUCTION TO TOPOLOGY MARTINA ROVELLI These notes are an outline of the topics covered in class, and are not substitutive of the lectures, where (most) proofs are provided and examples are discussed

More information

Advanced geometry tools for CEM

Advanced geometry tools for CEM Advanced geometry tools for CEM Introduction Modern aircraft designs are extremely complex CAD models. For example, a BAE Systems aircraft assembly consists of over 30,000 individual components. Since

More information

Homework Set #2 Math 440 Topology Topology by J. Munkres

Homework Set #2 Math 440 Topology Topology by J. Munkres Homework Set #2 Math 440 Topology Topology by J. Munkres Clayton J. Lungstrum October 26, 2012 Exercise 1. Prove that a topological space X is Hausdorff if and only if the diagonal = {(x, x) : x X} is

More information

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006

2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 2386 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 52, NO. 6, JUNE 2006 The Encoding Complexity of Network Coding Michael Langberg, Member, IEEE, Alexander Sprintson, Member, IEEE, and Jehoshua Bruck,

More information

ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS

ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2005 International Press Vol. 5, No. 3, pp. 341-366, 2005 004 ON CONSISTENCY CHECKING OF SPATIAL RELATIONSHIPS IN CONTENT-BASED IMAGE DATABASE SYSTEMS QING-LONG

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

HFCT: A Hybrid Fuzzy Clustering Method for Collaborative Tagging

HFCT: A Hybrid Fuzzy Clustering Method for Collaborative Tagging 007 International Conference on Convergence Information Technology HFCT: A Hybrid Fuzzy Clustering Method for Collaborative Tagging Lixin Han,, Guihai Chen Department of Computer Science and Engineering,

More information

2D Graphics Primitives II. Additional issues in scan converting lines. 1)Endpoint order. Want algorithms to draw the same pixels for each line

2D Graphics Primitives II. Additional issues in scan converting lines. 1)Endpoint order. Want algorithms to draw the same pixels for each line walters@buffalo.edu CSE 480/580 Lecture 8 Slide 1 2D Graphics Primitives II Additional issues in scan converting lines 1)Endpoint order Want algorithms to draw the same pixels for each line How handle?

More information

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary)

09/11/2017. Morphological image processing. Morphological image processing. Morphological image processing. Morphological image processing (binary) Towards image analysis Goal: Describe the contents of an image, distinguishing meaningful information from irrelevant one. Perform suitable transformations of images so as to make explicit particular shape

More information

Chapter 9 Morphological Image Processing

Chapter 9 Morphological Image Processing Morphological Image Processing Question What is Mathematical Morphology? An (imprecise) Mathematical Answer A mathematical tool for investigating geometric structure in binary and grayscale images. Shape

More information

A Graph Theoretic Approach to Image Database Retrieval

A Graph Theoretic Approach to Image Database Retrieval A Graph Theoretic Approach to Image Database Retrieval Selim Aksoy and Robert M. Haralick Intelligent Systems Laboratory Department of Electrical Engineering University of Washington, Seattle, WA 98195-2500

More information

The Cyclic Cycle Complex of a Surface

The Cyclic Cycle Complex of a Surface The Cyclic Cycle Complex of a Surface Allen Hatcher A recent paper [BBM] by Bestvina, Bux, and Margalit contains a construction of a cell complex that gives a combinatorial model for the collection of

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Computer Graphics Geometry and Transform

Computer Graphics Geometry and Transform ! Computer Graphics 2014! 5. Geometry and Transform Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-10-11! Today outline Triangle rasterization Basic vector algebra ~ geometry! Antialiasing

More information

Figure 1: An Area Voronoi Diagram of a typical GIS Scene generated from the ISPRS Working group III/3 Avenches data set. 2 ARRANGEMENTS 2.1 Voronoi Di

Figure 1: An Area Voronoi Diagram of a typical GIS Scene generated from the ISPRS Working group III/3 Avenches data set. 2 ARRANGEMENTS 2.1 Voronoi Di Qualitative Spatial Relations using Arrangements for Complex Images M. Burge and W. Burger Johannes Kepler University, Department of Systems Science Computer Vision Laboratory, A-4040 Linz, Austria burge@cast.uni-linz.ac.at

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information