ENGRG Introduction to GIS

Size: px
Start display at page:

Download "ENGRG Introduction to GIS"

Transcription

1 ENGRG Introduction to GIS Michael Piasecki April 3, 2014 Lecture 11: Raster Analysis GIS Related? 4/3/2014 ENGRG Intro to GIS 2 1

2 Why we use Raster GIS In our previous discussion of data models, we indicated that Raster GIS is often used because: Raster is better suited for spatially continuous data like elevations Raster is better for creating visualizations and modeling environmental phenomena Other continuous data may include: air pressure, temperature, salinity, etc.. Raster data is a simplified realization of the world, and allows for fast and efficient processing A raster GIS performs geoprocessing tasks on a grid based realization of the world 4/3/2014 ENGRG Intro to GIS 3 Outline Today Map Algebra Concept Typical Local Operation Typical Neighbor Operation Moving Window (size, shape and margin erosion) Common operations Typical Global Operation Cost Distance Operations in ArcGIS Spatial Analysis Environmental Setting Toolbox 4/3/2014 ENGRG Intro to GIS 4 2

3 Map Algebra Map algebra and raster GIS is quite simple to visualize in a spread sheet. An example of multiplication and addition The use of arrays make map algebra and raster GIS very computationally efficient But, be careful of: Layers that are not coincident Different cell sizes 4/3/2014 ENGRG Intro to GIS 5 Map Algebra Map algebra is a cell by cell combination of raster layers using mathematical operations Basic Mathematical Operations Addition, subtraction, division, max, min, virtually any mathematical operation you would find in an Excel spreadsheet Strong analytical functions Some Map Algebra Commands in ARC/INFO Outgrid = grid1 + grid2 Outgrid = grid1 * 2 Outgrid = sin(grid1) Outgrid = costallocation(sourcegrid, costgrid, accumgrid, backgrid) Outgrid = con(>5 (ingrid1),0,ingrid1) Outgrid = select(grid1, VALUE = 10 ) 4/3/2014 ENGRG Intro to GIS 6 3

4 Map Algebra It is a simple syntax similar to any algebra Spatial Analysis language Developed by C. Dana Tomlin (1990) Implemented in many grid analysis packages, including ArcGIS, Idrisi, ArcView Spatial Analyst; The implementation in ArcGIS is Raster Calculator Four classes of operations: Local, Focal, Zonal and Global 4/3/2014 ENGRG Intro to GIS 7 Raster Calculator 4/3/2014 ENGRG Intro to GIS 8 4

5 Raster Operations 4/3/2014 ENGRG Intro to GIS 9 Local Operations Work on single cells, one after another, value assigned to a cell depends on this cell only Examples: arithmetic operations with a constant, or with another grid also logical operations, comparisons (min, max, majority, minority, variety, etc.) same location but different layers Reclassification 4/3/2014 ENGRG Intro to GIS 10 5

6 Local Operations 4/3/2014 ENGRG Intro to GIS 11 Focal Operations Assign data value to a cell based on its neighborhood (variously defined) Neighborhood: a set of locations each of which bears a specified distance and/or directional relationship to a particular location called the neighborhood focus (D. Tomlin) distance and directional neighbors immediate and extended neighbors metric and topological neighbors neighbors of points, lines, areas

7 Define Neighborhoods: Shapes /3/2014 ENGRG Intro to GIS 13 Neighborhood Statistics in Spatial Analyst shape of neighborhood: Circle Rectangle Doughnut Wedge Star size of neighborhood: radius (circle), inner and outer radius (doughnut), radius, start and end angles (wedge), width and height (rectangle) Operation: Minimum Maximum Mean Median Sum Range Standard Dev. Majority Minority Variety 4/3/2014 ENGRG Intro to GIS 14 7

8 Define Neighborhood: Moving Window Moving Window: A window : cells used to specify the input values for an operation. 4/3/2014 ENGRG Intro to GIS 15 Focal Operations 4/3/2014 ENGRG Intro to GIS 16 8

9 GIS Solution to Margin Erosion Example of mean kernel 4/3/2014 ENGRG Intro to GIS 17 Neighborhood Operations 4/3/2014 ENGRG Intro to GIS 18 9

10 Neighborhood Operations smoothing moving averaging edge detection Grade (slope) Orient (aspect) Profile High pass filter assessing variety, etc. 4/3/2014 ENGRG Intro to GIS 19 Noise Highlight (high pass filter) 4/3/2014 ENGRG Intro to GIS 20 10

11 Noise Reduction (low pass) 4/3/2014 ENGRG Intro to GIS 21 Spatial Filtering Low and High Frequency Detail and Edges 543 Composite Result of ENVI 15x15 High Pass Filter Edge Finding High Pass filters emphasize high texture, low pass filters suppress, or minimize texture 4/3/2014 ENGRG Intro to GIS 22 11

12 Directional Edge Detection 4/3/2014 ENGRG Intro to GIS 23 Overlay in Raster Map Algebra Overlay functions in map algebra may be performed through addition and multiplication. Union operations with layer addition, clip operations through multiplication. Union by addition: Where cells don t overlap (value + no data ), new map unambiguous. With overlap, attribute values are added, so be aware of consequences. 4/3/2014 ENGRG Intro to GIS 24 12

13 Layer A values multiplied by 10 No ambiguous products (LayerA * 10) + LayerB 4/3/2014 ENGRG Intro to GIS 25 Raster Clip Make a new map of the area of interest with cell value = 1, others cell value = 0 or NODATA Multiply by existing map 4/3/2014 ENGRG Intro to GIS 26 13

14 Common Raster Command: CON Con: Condition, a command in ArcGIS If (layer1>5) then Output = 1 else Output = 0 End if Nested Con operation: Con(layer1>5, Con(Layer1>10,2,1), 0) If (layer1>5) then if (layer1>10) then output = 2 else output =1 end if Else output = 0 End if Con(layer1>5, 1, 0) /3/2014 ENGRG Intro to GIS 27 CON is used for reclassfication 4/3/2014 ENGRG Intro to GIS 28 14

15 Cost Surfaces Global Operation Contain the minimum cost of reaching cells in a layer from one or more source cells. The cost may be expressed in different units: $ money, time, or other units of merit. Cost = distance * cost per unit of distance (frication surface) The distance from a source cell is combined with a cost per unit of distance (variable or fixed) to calculate a travel cost. Think simple: Distances in cell dimension units are measured to/from cell centers and calculated using RMS formulae that keep values positive. 4/3/2014 ENGRG Intro to GIS 29 Friction Surface: Cost per unit Distance Another way to calculate travel costs Cell values of a friction surface represent the (variable) cost per unit travel distance for crossing each cell. Define cell friction on elevation, land cover, etc. (or even friction: icy slopes!) 4/3/2014 ENGRG Intro to GIS 30 15

16 Cost Surface: varied cost 4/3/2014 ENGRG Intro to GIS 31 Cost of a new power line Land Use Friction or Cost Explanation Agriculture 1 Base Cost Deciduous Forest 4 Cut trees, removed and sold Coniferous Forest 5 Cut trees, less return Urban 1200 Conversion very expensive Pavement 1 Base Cost Suburban 1000 See Urban Barren/Gravel 1 Base Cost 4/3/2014 ENGRG Intro to GIS 32 16

17 Cost Surface Existing Trunk Power line 4/3/2014 ENGRG Intro to GIS 33 Types of Raster Analysis Math Distance Surface analysis Extraction Water based analysis Change cell values Statistical Analysis Conditional Weighted overlay 4/3/2014 ENGRG Intro to GIS 34 17

18 Comparing Two Maps Map comparison is easily facilitated using the Tabulate Area function in ArcGIS (or any decent raster based GIS) Determines the cross tabulation between two grid themes on a cell by cell basis Once the tabulations are made, the data is displayed in a simple matrix Map one is the X axis and Map two is the Y axis 4/3/2014 ENGRG Intro to GIS 35 Cross Tabulation A B B B B C B A C Cross Tabulate A A B B C C A A B Cross Tabulated Grid Assume we have a 9 cell land cover map from 1990 with three categories: A, B, and C. We also have another map from AA BA BB BB BC CC BA AA CB A B C A B C You can see that the resulting cross tabulation provides a pixel by pixel comparison of the interpreted land cover types with the reference land cover. So, for the upper right hand cell, the 1990 data was B, and the 2000 data was also B. Therefore, this is a match between the two data sets. However, in the lower right cell you can see that the 1990 data indicated a value of C and the 2000 data set had a value of B We can now quantify the results into a matrix as shown below. 4/3/2014 ENGRG Intro to GIS 36 18

19 The matrix on the right shows the comparison of two hypothetical data sets. The 1990 data set represents the land use in 1990, while the 2000 data set represents the land use in 2000 As an example, geographic features that were A in 2000, and were A in 1990, represent the upper left hand matrix with the value 2 (there were two pixels that met this criteria). This means that 2 units in the overall map that was A in 1990, was also A in Similarly, the same exists for B and C. The diagonal represents areas that have not changed. But, there may have been times where in 1990 the value was A but in 2000, the value was B. In this case, the 2 represented in the top row of the matrix says that there are 2 units of something we said was A in 1990 but is B in 2000 We can begin to add these number up, by adding an additional row and column. But what do these numbers tell us? 2000 Data 2000 Data 1990 Data A B C A B C A B C 1990 Data A B C /3/2014 ENGRG Intro to GIS 37 The bottom row tells us that there were two cells that were A in both 1990 and 2000, five cells that were B, and two cells that were C. The rightmost column tells us that there were four cells that were A in 2000, three cells as B, and 2 cells as C. Adding up the Diagonal cells says there were 5 cells where we actually got it right A B C 1990 A B C So, the similarities is really a function of: Total cells on the diagonal / total number of cells. ( ) / ( ) = 5/9 =.55% agreement The change is 45%. We can also dig deeper and look at A. In 1990 there were 2 A s. But, by the time 2000 came around there were 4 A s. The A s doubled. But, at what cost: Well, A grew by replacing 2 B s. Therefore, we can see that B lost some ground to A. Imagine a real world example of being able to say that as Developed land grew, it actually grew by replacing Forested land: that s the power of evaluating a cross tabulation. 4/3/2014 ENGRG Intro to GIS 38 19

20 Spatial Analysis Extent Define Extent in ArcGIS Default is the intersection of your input data Could be the union of input data x, y coordinates for the bottom left and the top right corners. Could use bookmark or data frame extent 4/3/2014 ENGRG Intro to GIS 39 Define Analysis Extent in ArcGIS 4/3/2014 ENGRG Intro to GIS 40 20

21 Incompatible Cell Sizes Solution: Resample one map (or both?), so layers have same cell size and are aligned 4/3/2014 ENGRG Intro to GIS 41 Analysis Mask You can specify a processing mask (either a raster or vector layer) to identify cells that will be set to NoData in the output. Input Raster Analysis Mask Output Raster 4/3/2014 ENGRG Intro to GIS 42 21

22 A tour of raster functions in ArcGIS 4/3/2014 ENGRG Intro to GIS 43 ArcGIS Spatial Analyst Extension Raster processing extension to ArcGIS It has tools for performing a broad variety of spatial analyses, and is especially well suited to surface analysis. Used to Create Data Identify Spatial Relationships Locate Suitable Sites Execute sophisticated Path finding Comprehensive modeling and raster analysis capabilities Requires separate license from ESRI than ArcGIS 4/3/2014 ENGRG Intro to GIS 44 22

23 Spatial Analyst capabilities Convert vector features (point, line, or polygon) to grids Calculate distance from every cell to objects of interest (similar to buffers) Generate density maps from point features Create continuous surfaces from scattered point features Derive contour, slope, aspect maps, and hillshades for these features Perform cell based map and discrete cell by cell analyses Simultaneously execute Boolean queries and algebraic calculations on multiple raster layers Perform neighborhood and zone analysis Perform raster classification and display Use data from different image formats 4/3/2014 ENGRG Intro to GIS 45 Spatial Analyst Toolbar 4/3/2014 ENGRG Intro to GIS 46 23

24 Quick Check Spatial Analyst ArcGIS Desktop Help (local computer) ArcGIS Desktop Resource Center (ESRI website) 4/3/2014 ENGRG Intro to GIS 47 Remember Next week NO lecture > Spring Break Keep working on your Project! After Spring Break no more Assigned Labs! > instead, work even harder on your project 4/3/2014 ENGRG Intro to GIS 48 24

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University Raster Analysis Overview Neighborhood Analysis Overlay Cost Surfaces Exam results Mean: 74% STDEV: 15% High: 92 Breakdown: A: 1 B: 2 C: 2 D: 1 F: 2 We will review the exam next Tuesday. Start thinking

More information

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University

Raster Analysis. Overview Neighborhood Analysis Overlay Cost Surfaces. Arthur J. Lembo, Jr. Salisbury University Raster Analysis Overview Neighborhood Analysis Overlay Cost Surfaces Why we use Raster GIS In our previous discussion of data models, we indicated that Raster GIS is often used because: Raster is better

More information

Module 7 Raster operations

Module 7 Raster operations Introduction Geo-Information Science Practical Manual Module 7 Raster operations 7. INTRODUCTION 7-1 LOCAL OPERATIONS 7-2 Mathematical functions and operators 7-5 Raster overlay 7-7 FOCAL OPERATIONS 7-8

More information

Cell based GIS. Introduction to rasters

Cell based GIS. Introduction to rasters Week 9 Cell based GIS Introduction to rasters topics of the week Spatial Problems Modeling Raster basics Application functions Analysis environment, the mask Application functions Spatial Analyst in ArcGIS

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS HOUSEKEEPING Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS CONTOURS! Self-Paced Lab Due Friday! WEEK SIX Lecture RASTER ANALYSES Joe Wheaton YOUR EXCERCISE Integer Elevations Rounded up

More information

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O

RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O RASTER ANALYSIS S H A W N L. P E N M A N E A R T H D A T A A N A LY S I S C E N T E R U N I V E R S I T Y O F N E W M E X I C O TOPICS COVERED Spatial Analyst basics Raster / Vector conversion Raster data

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons attributes linked to feature ID explicit location every point has coordinates 2 Fields

More information

Working with Map Algebra

Working with Map Algebra Working with Map Algebra While you can accomplish much with the Spatial Analyst user interface, you can do even more with Map Algebra, the analysis language of Spatial Analyst. Map Algebra expressions

More information

RASTER ANALYSIS GIS Analysis Fall 2013

RASTER ANALYSIS GIS Analysis Fall 2013 RASTER ANALYSIS GIS Analysis Fall 2013 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information. What

More information

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater.

Soil texture: based on percentage of sand in the soil, partially determines the rate of percolation of water into the groundwater. Overview: In this week's lab you will identify areas within Webster Township that are most vulnerable to surface and groundwater contamination by conducting a risk analysis with raster data. You will create

More information

Raster Analysis and Functions. David Tenenbaum EEOS 465 / 627 UMass Boston

Raster Analysis and Functions. David Tenenbaum EEOS 465 / 627 UMass Boston Raster Analysis and Functions Local Functions By-cell operations Operated on by individual operators or by coregistered grid cells from other themes Begin with each target cell, manipulate through available

More information

How does Map Algebra work?

How does Map Algebra work? Map Algebra How does Map Algebra work? Map Algebra uses math-like expressions containing operators and functions with raster data. Map Algebra operators, which are relational, Boolean, logical, combinatorial,

More information

RASTER ANALYSIS GIS Analysis Winter 2016

RASTER ANALYSIS GIS Analysis Winter 2016 RASTER ANALYSIS GIS Analysis Winter 2016 Raster Data The Basics Raster Data Format Matrix of cells (pixels) organized into rows and columns (grid); each cell contains a value representing information.

More information

Raster Data. James Frew ESM 263 Winter

Raster Data. James Frew ESM 263 Winter Raster Data 1 Vector Data Review discrete objects geometry = points by themselves connected lines closed polygons agributes linked to feature ID explicit localon every point has coordinates 2 Fields in

More information

Mapping Distance and Density

Mapping Distance and Density Mapping Distance and Density Distance functions allow you to determine the nearest location of something or the least-cost path to a particular destination. Density functions, on the other hand, allow

More information

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University

Lecture 6: GIS Spatial Analysis. GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University Lecture 6: GIS Spatial Analysis GE 118: INTRODUCTION TO GIS Engr. Meriam M. Santillan Caraga State University 1 Spatial Data It can be most simply defined as information that describes the distribution

More information

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations,

Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, Welcome to NR402 GIS Applications in Natural Resources. This course consists of 9 lessons, including Power point presentations, demonstrations, readings, and hands on GIS lab exercises. Following the last

More information

Raster GIS applications

Raster GIS applications Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface DEM: cell value = elevation (also slope/aspect/hillshade/curvature) Thematic layer: cell value = category or measured

More information

Raster GIS applications Columns

Raster GIS applications Columns Raster GIS applications Columns Rows Image: cell value = amount of reflection from surface Thematic layer: cell value = category or measured value - In both cases, there is only one value per cell (in

More information

Data handling 3: Alter Process

Data handling 3: Alter Process Introduction Geo information Science (GRS 10306) Data handling 3: Alter Process 2009/2010 CGI GIRS 2 Alter / process / analysis / operations definition Query a data handling class of operators which doesn

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Spatial Analyst Overview Over 100 geoprocessing tools plus raster functions Raster and vector analysis Construct workflows with ModelBuilder,

More information

Notes: Notes: Notes: Notes:

Notes: Notes: Notes: Notes: NR406 GIS Applications in Fire Ecology & Management Lesson 2 - Overlay Analysis in GIS Gathering Information from Multiple Data Layers One of the many strengths of a GIS is that you can stack several data

More information

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst

Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri. [10] Spring 2018 GIS Dr. Mohammad N. Almasri Spatial Analyst Geographic Information Systems (GIS) Spatial Analyst [10] Dr. Mohammad N. Almasri 1 Preface POINTS, LINES, and POLYGONS are good at representing geographic objects with distinct shapes They are less good

More information

Raster Data Model & Analysis

Raster Data Model & Analysis Topics: 1. Understanding Raster Data 2. Adding and displaying raster data in ArcMap 3. Converting between floating-point raster and integer raster 4. Converting Vector data to Raster 5. Querying Raster

More information

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham

Getting Started with Spatial Analyst. Steve Kopp Elizabeth Graham Getting Started with Spatial Analyst Steve Kopp Elizabeth Graham Workshop Overview Fundamentals of using Spatial Analyst What analysis capabilities exist and where to find them How to build a simple site

More information

Masking Lidar Cliff-Edge Artifacts

Masking Lidar Cliff-Edge Artifacts Masking Lidar Cliff-Edge Artifacts Methods 6/12/2014 Authors: Abigail Schaaf is a Remote Sensing Specialist at RedCastle Resources, Inc., working on site at the Remote Sensing Applications Center in Salt

More information

Steps for Modeling a Proposed New Reservoir in GIS

Steps for Modeling a Proposed New Reservoir in GIS Steps for Modeling a Proposed New Reservoir in GIS Requirements: ArcGIS ArcMap, ArcScene, Spatial Analyst, and 3D Analyst There s a new reservoir proposed for Right Hand Fork in Logan Canyon. I wanted

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Videos that show how to copy/paste data

More information

Spatial Analysis with Raster Datasets

Spatial Analysis with Raster Datasets Spatial Analysis with Raster Datasets Francisco Olivera, Ph.D., P.E. Srikanth Koka Lauren Walker Aishwarya Vijaykumar Keri Clary Department of Civil Engineering April 21, 2014 Contents Brief Overview of

More information

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. CHAPTER 12 RASTER DATA ANALYSIS 12.1 Data Analysis Environment Box 12.1 How to Make an Analysis Mask 12.2 Local Operations 12.2.1 Local Operations with a Single Raster 12.2.2 Reclassification 12.2.3 Local

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault

+ = Spatial Analysis of Raster Data. 2 =Fault in shale 3 = Fault in limestone 4 = no Fault, shale 5 = no Fault, limestone. 2 = fault 4 = no fault Spatial Analysis of Raster Data 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 1 2 4 4 4 2 4 5 5 4 2 4 4 4 2 5 5 4 4 2 4 5 4 3 5 4 4 4 2 5 5 5 3 + = 0 = shale 1 = limestone 2 = fault 4 = no fault 2 =Fault in shale 3 =

More information

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Lecture 9. Raster Data Analysis. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Lecture 9 Raster Data Analysis Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University Raster Data Model The GIS raster data model represents datasets in which square

More information

Stream network delineation and scaling issues with high resolution data

Stream network delineation and scaling issues with high resolution data Stream network delineation and scaling issues with high resolution data Roman DiBiase, Arizona State University, May 1, 2008 Abstract: In this tutorial, we will go through the process of extracting a stream

More information

GIS: Raster Analysis

GIS: Raster Analysis GIS: Raster Analysis Ts (K) High : 311 Low : 299 500 Meters Albedo G / Rn High : 0.35 High : 0.50 Low : 0.03 Low : 0.10 1 Raster analysis: Outline Raster analysis applications Map algebra Local functions

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued

GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued GEOGRAPHIC INFORMATION SYSTEMS Lecture 24: Spatial Analyst Continued Spatial Analyst - Spatial Analyst is an ArcGIS extension designed to work with raster data - in lecture I went through a series of demonstrations

More information

Map Analysis of Raster Data I 3/8/2018

Map Analysis of Raster Data I 3/8/2018 Map Analysis of Raster Data I /8/8 Spatial Analysis of Raster Data What is Spatial Analysis? = shale = limestone 4 4 4 4 5 5 4 4 4 4 5 5 4 4 4 5 4 5 4 4 4 5 5 5 + = = fault =Fault in shale 4 = no fault

More information

GIS OPERATION MANUAL

GIS OPERATION MANUAL GIS OPERATION MANUAL 1. Computer System Description Hardware Make Compaq Presario 5004 CPU AMD Athlon 1.1 Ghz Main Memory 640MB CD-ROM 52 X CD-RW 8 X HD 57GB Monitor 19 inch Video Adapter 16 Mb Nvidia

More information

Lecture 20 - Chapter 8 (Raster Analysis, part1)

Lecture 20 - Chapter 8 (Raster Analysis, part1) GEOL 452/552 - GIS for Geoscientists I Lecture 20 - Chapter 8 (Raster Analysis, part) 4 lectures on rasters - but won t cover everything (Raster GIS course: Geol 588: GIS II (Spring 20) Today: Raster data,

More information

Suitability Modeling with GIS

Suitability Modeling with GIS Developed and Presented by Juniper GIS 1/33 Course Objectives What is Suitability Modeling? The Suitability Modeling Process Cartographic Modeling GIS Tools for Suitability Modeling Demonstrations of Models

More information

GIS in the Social and Natural Sciences. Last Lecture. Today s Outline 5/14/2017. GEOG 4110/5100 Special Topics in Geography

GIS in the Social and Natural Sciences. Last Lecture. Today s Outline 5/14/2017. GEOG 4110/5100 Special Topics in Geography GEOG 4110/5100 Special Topics in Geography GIS in the Social and Natural Sciences Working with Vector Data in a GIS Last Lecture We talked about the main types of vector data models (CDS, TDS, TIN, Networks)

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst

GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst GEOGRAPHIC INFORMATION SYSTEMS Lecture 25: 3D Analyst 3D Analyst - 3D Analyst is an ArcGIS extension designed to work with TIN data (triangulated irregular network) - many of the tools in 3D Analyst also

More information

Lesson 4A overview. Introduction to Map Algebra (4A) Map Algebra functions (4B)

Lesson 4A overview. Introduction to Map Algebra (4A) Map Algebra functions (4B) Map Algebra Lesson 4A overview Introduction to Map Algebra (4A) Language components Syntax and rules Objects Operators Commands Exercise 5A Map Algebra functions (4B) Function syntax Local functions Focal

More information

Layer Variables for RSF-type Modelling Applications

Layer Variables for RSF-type Modelling Applications Layer Variables for RSF-type Modelling Applications These instructions for ArcGIS 9.x enable you to create expressions for use in Spatial Analyst s Raster Calculator that result in output grids of continuous

More information

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS WATS 4930/6920 WHERE WE RE GOING WATS 6915 welcome to tag along for any, all or none WEEK FIVE Lecture VECTOR ANALYSES Joe Wheaton HOUSEKEEPING

More information

Remote Sensing and GIS. GIS Spatial Overlay Analysis

Remote Sensing and GIS. GIS Spatial Overlay Analysis Subject Paper No and Title Module No and Title Module Tag Geology Remote Sensing and GIS GIS Spatial Overlay Analysis RS & GIS XXXI Principal Investigator Co-Principal Investigator Co-Principal Investigator

More information

Understanding Geospatial Data Models

Understanding Geospatial Data Models Understanding Geospatial Data Models 1 A geospatial data model is a formal means of representing spatially referenced information. It is a simplified view of physical entities and a conceptualization of

More information

Lecture 22 - Chapter 8 (Raster Analysis, part 3)

Lecture 22 - Chapter 8 (Raster Analysis, part 3) GEOL 452/552 - GIS for Geoscientists I Lecture 22 - Chapter 8 (Raster Analysis, part 3) Today: Zonal Analysis (statistics) for polygons, lines, points, interpolation (IDW), Effects Toolbar, analysis masks

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models

GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models GEOGRAPHIC INFORMATION SYSTEMS Lecture 02: Feature Types and Data Models Feature Types and Data Models How Does a GIS Work? - a GIS operates on the premise that all of the features in the real world can

More information

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston

Geographic Surfaces. David Tenenbaum EEOS 383 UMass Boston Geographic Surfaces Up to this point, we have talked about spatial data models that operate in two dimensions How about the rd dimension? Surface the continuous variation in space of a third dimension

More information

Neighbourhood Operations Specific Theory

Neighbourhood Operations Specific Theory Neighbourhood Operations Specific Theory Neighbourhood operations are a method of analysing data in a GIS environment. They are especially important when a situation requires the analysis of relationships

More information

Agenda. Spreadsheet Applications. Spreadsheet Terminology A workbook consists of multiple worksheets. By default, a workbook has 3 worksheets.

Agenda. Spreadsheet Applications. Spreadsheet Terminology A workbook consists of multiple worksheets. By default, a workbook has 3 worksheets. Agenda Unit 1 Assessment Review Progress Reports Intro to Excel Learn parts of an Excel spreadsheet How to Plan a spreadsheet Create a spreadsheet Analyze data Create an embedded chart in spreadsheet In

More information

Geoprocessing and georeferencing raster data

Geoprocessing and georeferencing raster data Geoprocessing and georeferencing raster data Raster conversion tools Geoprocessing tools ArcCatalog tools ESRI Grid GDB Raster Raster Dataset Raster Catalog Erdas IMAGINE TIFF ArcMap - raster projection

More information

INTRODUCTION TO GIS WORKSHOP EXERCISE

INTRODUCTION TO GIS WORKSHOP EXERCISE 111 Mulford Hall, College of Natural Resources, UC Berkeley (510) 643-4539 INTRODUCTION TO GIS WORKSHOP EXERCISE This exercise is a survey of some GIS and spatial analysis tools for ecological and natural

More information

Building Vector Layers

Building Vector Layers Building Vector Layers in QGIS Introduction: Spatially referenced data can be separated into two categories, raster and vector data. This week, we focus on the building of vector features. Vector shapefiles

More information

Announcements. Data Sources a list of data files and their sources, an example of what I am looking for:

Announcements. Data Sources a list of data files and their sources, an example of what I am looking for: Data Announcements Data Sources a list of data files and their sources, an example of what I am looking for: Source Map of Bangor MEGIS NG911 road file for Bangor MEGIS Tax maps for Bangor City Hall, may

More information

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations.

Introduction to Geographic Information Science. Some Updates. Last Lecture 4/6/2017. Geography 4103 / Raster Data and Tesselations. Geography 43 / 3 Introduction to Geographic Information Science Raster Data and Tesselations Schedule Some Updates Last Lecture We finished DBMS and learned about storage of data in complex databases Relational

More information

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling

GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling Spatial Analysis in GIS (cont d) GEOGRAPHIC INFORMATION SYSTEMS Lecture 18: Spatial Modeling - the basic types of analysis that can be accomplished with a GIS are outlined in The Esri Guide to GIS Analysis

More information

Chapter 8: How to Pick a GIS

Chapter 8: How to Pick a GIS Chapter 8: How to Pick a GIS 8. The Evolution of GIS Software 8.2 GIS and Operating Systems 8.3 GIS Software Capabilities 8.4 GIS Software and Data Structures 8.5 Choosing the Best GIS David Tenenbaum

More information

Module 10 Data-action models

Module 10 Data-action models Introduction Geo-Information Science Practical Manual Module 10 Data-action models 10. INTRODUCTION 10-1 DESIGNING A DATA-ACTION MODEL 10-2 REPETITION EXERCISES 10-6 10. Introduction Until now you have

More information

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4

Data Assembly, Part II. GIS Cyberinfrastructure Module Day 4 Data Assembly, Part II GIS Cyberinfrastructure Module Day 4 Objectives Continuation of effective troubleshooting Create shapefiles for analysis with buffers, union, and dissolve functions Calculate polygon

More information

Decimals should be spoken digit by digit eg 0.34 is Zero (or nought) point three four (NOT thirty four).

Decimals should be spoken digit by digit eg 0.34 is Zero (or nought) point three four (NOT thirty four). Numeracy Essentials Section 1 Number Skills Reading and writing numbers All numbers should be written correctly. Most pupils are able to read, write and say numbers up to a thousand, but often have difficulty

More information

Watershed Sciences 4930 & 6920 ADVANCED GIS

Watershed Sciences 4930 & 6920 ADVANCED GIS Slides by Wheaton et al. (2009-2014) are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License Watershed Sciences 4930 & 6920 ADVANCED GIS VECTOR ANALYSES Joe Wheaton

More information

Beyond The Vector Data Model - Part Two

Beyond The Vector Data Model - Part Two Beyond The Vector Data Model - Part Two Introduction Spatial Analyst Extension (Spatial Analysis) What is your question? Selecting a method of analysis Map Algebra Who is the audience? What is Spatial

More information

Vector-Based GIS Data Processing. Chapter 6

Vector-Based GIS Data Processing. Chapter 6 Vector-Based GIS Data Processing Chapter 6 Vector Data Model Feature Classes points lines polygons Layers limited to one class of data Figure p. 186 Vector Data Model Shapefiles ArcView non-topological

More information

Introduction to the Image Analyst Extension. Mike Muller, Vinay Viswambharan

Introduction to the Image Analyst Extension. Mike Muller, Vinay Viswambharan Introduction to the Image Analyst Extension Mike Muller, Vinay Viswambharan What is the Image Analyst Extension? The Image Analyst Extension (IA) is an application extension which extends ArcGIS Pro with

More information

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities

Spatial Data Models. Raster uses individual cells in a matrix, or grid, format to represent real world entities Spatial Data Models Raster uses individual cells in a matrix, or grid, format to represent real world entities Vector uses coordinates to store the shape of spatial data objects David Tenenbaum GEOG 7

More information

Graphic Display of Vector Object

Graphic Display of Vector Object What is GIS? GIS stands for Geographic Information Systems, although the term Geographic Information Science is gaining popularity. A GIS is a software platform for storing, organizing, viewing, querying,

More information

Topic 5: Raster and Vector Data Models

Topic 5: Raster and Vector Data Models Geography 38/42:286 GIS 1 Topic 5: Raster and Vector Data Models Chapters 3 & 4: Chang (Chapter 4: DeMers) 1 The Nature of Geographic Data Most features or phenomena occur as either: discrete entities

More information

Your Prioritized List. Priority 1 Faulted gridding and contouring. Priority 2 Geoprocessing. Priority 3 Raster format

Your Prioritized List. Priority 1 Faulted gridding and contouring. Priority 2 Geoprocessing. Priority 3 Raster format Your Prioritized List Priority 1 Faulted gridding and contouring Priority 2 Geoprocessing Priority 3 Raster format Priority 4 Raster Catalogs and SDE Priority 5 Expanded 3D Functionality Priority 1 Faulted

More information

Part 6b: The effect of scale on raster calculations mean local relief and slope

Part 6b: The effect of scale on raster calculations mean local relief and slope Part 6b: The effect of scale on raster calculations mean local relief and slope Due: Be done with this section by class on Monday 10 Oct. Tasks: Calculate slope for three rasters and produce a decent looking

More information

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal.

Geol 588. GIS for Geoscientists II. Zonal functions. Feb 22, Zonal statistics. Interpolation. Zonal statistics Sp. Analyst Tools - Zonal. Zonal functions Geol 588 GIS for Geoscientists II Feb 22, 2011 Zonal statistics Interpolation Zonal statistics Sp. Analyst Tools - Zonal Choose correct attribute for zones (usually: must be unique ID for

More information

Digging Into Autodesk Map 3D 2007 Level 1 Training Rick Ellis Michael Carris Russell Martin

Digging Into Autodesk Map 3D 2007 Level 1 Training Rick Ellis Michael Carris Russell Martin Digging Into Autodesk Map 3D 2007 Level 1 Training Rick Ellis Michael Carris Russell Martin PO Box 344 Canby Oregon 97013 www.cadapult-software.com training@cadapult-software.com (503) 829-8929 Table of

More information

By Colin Childs, ESRI Education Services. Catalog

By Colin Childs, ESRI Education Services. Catalog s resolve many traditional raster management issues By Colin Childs, ESRI Education Services Source images ArcGIS 10 introduces Catalog Mosaicked images Sources, mosaic methods, and functions are used

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Image Enhancement Frequency Domain Processing

More information

Ex. 4: Locational Editing of The BARC

Ex. 4: Locational Editing of The BARC Ex. 4: Locational Editing of The BARC Using the BARC for BAER Support Document Updated: April 2010 These exercises are written for ArcGIS 9.x. Some steps may vary slightly if you are working in ArcGIS

More information

Lecture 21 - Chapter 8 (Raster Analysis, part2)

Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Today: Digital Elevation Models (DEMs), Topographic functions (surface analysis): slope, aspect hillshade, viewshed,

More information

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool

Creating raster DEMs and DSMs from large lidar point collections. Summary. Coming up with a plan. Using the Point To Raster geoprocessing tool Page 1 of 5 Creating raster DEMs and DSMs from large lidar point collections ArcGIS 10 Summary Raster, or gridded, elevation models are one of the most common GIS data types. They can be used in many ways

More information

Using GIS to Site Minimal Excavation Helicopter Landings

Using GIS to Site Minimal Excavation Helicopter Landings Using GIS to Site Minimal Excavation Helicopter Landings The objective of this analysis is to develop a suitability map for aid in locating helicopter landings in mountainous terrain. The tutorial uses

More information

Lab 12: Sampling and Interpolation

Lab 12: Sampling and Interpolation Lab 12: Sampling and Interpolation What You ll Learn: -Systematic and random sampling -Majority filtering -Stratified sampling -A few basic interpolation methods Data for the exercise are in the L12 subdirectory.

More information

Spatial Analysis (Vector) II

Spatial Analysis (Vector) II Spatial Analysis (Vector) II GEOG 300, Lecture 9 Dr. Anthony Jjumba 1 A Spatial Network is a set of geographic locations interconnected in a system by a number of routes is a system of linear features

More information

Lab 10: Raster Analyses

Lab 10: Raster Analyses Lab 10: Raster Analyses What You ll Learn: Spatial analysis and modeling with raster data. You will estimate the access costs for all points on a landscape, based on slope and distance to roads. You ll

More information

Raster: The Other GIS Data

Raster: The Other GIS Data Raster_The_Other_GIS_Data.Docx Page 1 of 11 Raster: The Other GIS Data Objectives Understand the raster format and how it is used to model continuous geographic phenomena. Understand how projections &

More information

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map.

Attribute Accuracy. Quantitative accuracy refers to the level of bias in estimating the values assigned such as estimated values of ph in a soil map. Attribute Accuracy Objectives (Entry) This basic concept of attribute accuracy has been introduced in the unit of quality and coverage. This unit will teach a basic technique to quantify the attribute

More information

In this section you will learn some simple data entry, editing, formatting techniques and some simple formulae. Contents

In this section you will learn some simple data entry, editing, formatting techniques and some simple formulae. Contents In this section you will learn some simple data entry, editing, formatting techniques and some simple formulae. Contents Section Topic Sub-topic Pages Section 2 Spreadsheets Layout and Design S2: 2 3 Formulae

More information

Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas

Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas Using GIS To Estimate Changes in Runoff and Urban Surface Cover In Part of the Waller Creek Watershed Austin, Texas Jordan Thomas 12-6-2009 Introduction The goal of this project is to understand runoff

More information

Introducing ArcScan for ArcGIS

Introducing ArcScan for ArcGIS Introducing ArcScan for ArcGIS An ESRI White Paper August 2003 ESRI 380 New York St., Redlands, CA 92373-8100, USA TEL 909-793-2853 FAX 909-793-5953 E-MAIL info@esri.com WEB www.esri.com Copyright 2003

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

Spatial Analysis Exercise GIS in Water Resources Fall 2011

Spatial Analysis Exercise GIS in Water Resources Fall 2011 Spatial Analysis Exercise GIS in Water Resources Fall 2011 Prepared by David G. Tarboton and David R. Maidment Goal The goal of this exercise is to serve as an introduction to Spatial Analysis with ArcGIS.

More information

ArcGIS Enterprise Building Raster Analytics Workflows. Mike Muller, Jie Zhang

ArcGIS Enterprise Building Raster Analytics Workflows. Mike Muller, Jie Zhang ArcGIS Enterprise Building Raster Analytics Workflows Mike Muller, Jie Zhang Introduction and Context Raster Analytics What is Raster Analytics? The ArcGIS way to create and execute spatial analysis models

More information

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I

Final project: Lecture 21 - Chapter 8 (Raster Analysis, part2) GEOL 452/552 - GIS for Geoscientists I GEOL 452/552 - GIS for Geoscientists I Lecture 21 - Chapter 8 (Raster Analysis, part2) Talk about class project (copy follow_along_data\ch8a_class_ex into U:\ArcGIS\ if needed) Catch up with lecture 20

More information

FOURTH GRADE Mathematics Standards for the Archdiocese of Detroit

FOURTH GRADE Mathematics Standards for the Archdiocese of Detroit FOURTH GRADE Mathematics Standards for the Archdiocese of Detroit *Provide 3 dates for each standard Initial Date(s) Operations and Algebraic Thinking. Use the four operations with whole numbers to solve

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis

Exercise 5. Height above Nearest Drainage Flood Inundation Analysis Exercise 5. Height above Nearest Drainage Flood Inundation Analysis GIS in Water Resources, Fall 2018 Prepared by David G Tarboton Purpose The purpose of this exercise is to learn how to calculation the

More information

Startup. Why are you here? What are your experiences? What are your major working/research topics? What do you want to learn?

Startup. Why are you here? What are your experiences? What are your major working/research topics? What do you want to learn? Startup Why are you here? What are your experiences? What are your major working/research topics? What do you want to learn? Introduction to Geographic information systems Description of a GIS GIS is a

More information

Model Design and Evaluation

Model Design and Evaluation Model Design and Evaluation The General Modeling Process YES Define Goals Compartments Systematize Add Spatial Dimension Complete? NO Formulate & Flowchart Return Return NO Complete? Deliver Implement

More information

Introduction to Excel

Introduction to Excel Office Button, Tabs and Ribbons Office Button The File menu selection located in the upper left corner in previous versions of Excel has been replaced with the Office Button in Excel 2007. Clicking on

More information

I can solve simultaneous equations algebraically and graphically. I can solve inequalities algebraically and graphically.

I can solve simultaneous equations algebraically and graphically. I can solve inequalities algebraically and graphically. B I can factorise and expand complex expressions. I can factorise Quadratics I can recognise the Difference of Two Squares (D.O.T.S) simultaneous equations algebraically and graphically. inequalities algebraically

More information

Spatial Analysis (Vector) I

Spatial Analysis (Vector) I Spatial Analysis (Vector) I GEOG 300, Lecture 8 Dr. Anthony Jjumba 1 Spatial Analysis In a GIS, Data are usually grouped into layers (or themes). The analysis functions of a GIS use the spatial and non-spatial

More information

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments

Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 1 Core of GIS Thematic layers Terms and definitions * keep definitions of processes and terms that may be useful for tests, assignments Lecture 2 What is GIS? Info: value added data Data to solve

More information