CSCI-4972/6963 Advanced Computer Graphics

Size: px
Start display at page:

Download "CSCI-4972/6963 Advanced Computer Graphics"

Transcription

1 Luo Jr. CSCI-497/696 Advaned Computer Graphis Professor Barb Cutler MRC 9A Piar Animation Studios, 986 Topis for the Semester Mesh Simplifiation Meshes representation simplifiation subdivision surfaes generation volumetri modeling Simulation partile sstems rigid bod, deformation, loth, wind/water flows ollision detetion weathering Rendering ra traing appearane models shadows loal vs. global illumination radiosit, photon mapping, subsurfae sattering, et. proedural modeling teture snthesis hardware & more Hoppe Progressive Meshes SIGGRAPH Mesh Generation & Volumetri Modeling Modeling Subdivision Surfaes Hoppe et al., Pieewise Smooth Surfae Reonstrution 994 Cutler et al., Simplifiation and Improvement of Geri s Game Piar 997 Tetrahedral Models for Simulation 4 5 6

2 Partile Sstems Phsial Simulation Rigid Bod Dnamis f ( t ) Collision Detetion Frature b Deformation p ( t ( ) ) t f ( t ) p b ( t ) v ( t ) p b ( t ) Müller et al., Stable Real-Time Deformations Star Trek: The Wrath of Khan f ( t ) Fluid Dnamis Ra Casting For ever piel onstrut a ra from the ee For ever objet in the sene Find intersetion with the ra Keep the losest Foster & Mataas, 996 Visual Simulation of Smoke Fedkiw, Stam & Jensen SIGGRAPH 9 Ra Traing Subsurfae Sattering Shade (interation of light and material) Seondar ras (shadows, refletion, refration) An Improved Illumination Model for Shaded Displa Whitted 98 Jensen et al., A Pratial Model for Subsurfae Light Transport Surfae

3 Appearane Models Sllabus & Course Website θ r θ i Wojieh Matusik Whih version should I register for? CSCI 696 units of graduate redit CSCI units of undergraduate redit same letures, assignments, quies, & grading riteria φ i φ r Other Questions? Henrik Wann Jensen 4 Introdutions Who are ou? name ear/degree graphis bakground (if an) researh/job interests wh ou are taking this lass something fun, interesting, or unusual about ourself Outline Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS) 5 6 What is a Transformation? Simple Transformations Maps points (, ) in one oordinate sstem to points (', ') in another oordinate sstem ' a + b + ' d + e + f For eample, Iterated Funtion Sstem (IFS): Can be ombined Are these operations invertible? Yes, eept sale 7 8

4 Transformations are used to: Position objets in a sene Change the shape of objets Create multiple opies of objets Projetion for virtual ameras Desribe animations Rigid-Bod / Eulidean Transforms Preserves distanes Preserves angles Rigid / Eulidean Identit 9 Similitudes / Similarit Transforms Linear Transformations Preserves angles Similitudes Rigid / Eulidean Similitudes Rigid / Eulidean Linear Identit Isotropi Saling Identit Isotropi Saling Saling Refletion Shear Linear Transformations Affine Transformations L(p + q) L(p) + L(q) L(ap) a L(p) preserves parallel lines Affine Similitudes Rigid / Eulidean Linear Similitudes Rigid / Eulidean Linear Identit Isotropi Saling Saling Refletion Shear Identit Isotropi Saling Saling Refletion Shear 4 4

5 Projetive Transformations preserves lines Projetive Affine Similitudes Linear Rigid / Eulidean Saling Identit Isotropi Saling Refletion Shear General (Free-Form) Transformation Does not preserve lines Not as pervasive, omputationall more involved Perspetive 5 Sederberg and Parr, Siggraph Outline Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS) How are Transforms Represented? ' ' ' a + b + ' d + e + f a b d e + f p' M p + t 7 8 Homogeneous Coordinates Add an etra dimension in D, we use matries In D, we use 4 4 matries Eah point has an etra value, w ' ' ' w' p' a e i m b f j n g k o M p d h l p w 9 in homogeneous oordinates ' ' Affine formulation a b d e ' a + b + ' d + e + f + f p' M p + t Homogeneous formulation ' ' p' a b d e f M p 5

6 Homogeneous Coordinates Most of the time w, and we an ignore it ' ' ' a e i b f j g k d h l Homogeneous Visualiation Divide b w to normalie (homogenie) W? Point at infinit (diretion) If we multipl a homogeneous oordinate b an affine matri, w is unhanged (,, ) (,, ) (7,, ) (4,, ) (4, 5, ) (8,, ) w w Translate (t, t, t) Translate(,,) Sale (s, s, s) Sale(s,s,s) p' Wh bother with the etra dimension? Beause now translations an be enoded in the matri! p p' Isotropi (uniform) saling: s s s p q q' ' ' ' t t t ' ' ' s s s 4 About ais ZRotate(θ) p' θ p About (k, k, k), a unit vetor on an arbitrar ais (Rodrigues Formula) Rotate(k, θ) θ k ' ' ' os θ sin θ -sin θ os θ ' ' ' kk(-)+ kk(-)+ks kk(-)-ks kk(-)-ks kk(-)+ kk(-)-ks kk(-)+ks kk(-)-ks kk(-)+ where os θ & s sin θ 5 6 6

7 Storage Often, w is not stored (alwas ) Needs areful handling of diretion vs. point Mathematiall, the simplest is to enode diretions with w In terms of storage, using a -omponent arra for both diretion and points is more effiient Whih requires to have speial operation routines for points vs. diretions Outline Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS) 7 8 How are transforms ombined? Sale then Translate Non-ommutative Composition Sale then Translate: p' T ( S p ) TS p (,) (,) Sale(,) (,) (,) Translate(,) (,) (5,) (,) (,) Sale(,) (,) (,) Translate(,) (,) (5,) Use matri multipliation: p' T ( S p ) TS p TS Caution: matri multipliation is NOT ommutative! 9 Translate then Sale: p' S ( T p ) ST p Translate(,) (4,) Sale(,) (,) (6,) (,) (,) (8,4) 4 Non-ommutative Composition Sale then Translate: p' T ( S p ) TS p TS Translate then Sale: p' S ( T p ) ST p ST 6 Outline Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS) 4 4 7

8 Orthographi vs. Perspetive Orthographi Simple Orthographi Projetion Projet all points along the ais to the plane Perspetive 4 44 Simple Perspetive Projetion Projet all points along the ais to the d plane, eepoint at the origin: Alternate Perspetive Projetion Projet all points along the ais to the plane, eepoint at the (,,-d): homogenie homogenie * d / * d / d / d /d 45 * d / ( + d) * d / ( + d) ( + d)/ d /d 46 In the limit, as d Outline this perspetive projetion matri... /d...is simpl an orthographi projetion Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS)

9 Iterated Funtion Sstems (IFS) Capture self-similarit Contration (redue distanes) An attrator is a fied point A U fi (A) Eample: Sierpinski Triangle Desribed b a set of n affine transformations In this ase, n translate & sale b Eample: Sierpinski Triangle Another IFS: The Dragon for lots of random input points (, ) for j to num_iters randoml pik one of the transformations ( k+, k+ ) f i ( k, k ) displa ( k, k ) Inreasing the number of iterations 5 5 D IFS in OpenGL GL_POINTS GL_QUADS Assignment : OpenGL Warmup Get familiar with: C++ environment OpenGL Transformations simple Vetor & Matri lasses Have Fun! 5 Will not be graded (but ou should still do it and submit it!) 54 9

10 Outline Orthographi & Perspetive Projetions Eample: Iterated Funtion Sstems (IFS) OpenGL Basis: GL_POINTS gldisable(gl_lighting); glbegin(gl_points); glcolorf(.,.,.); glvertef( ); glend(); lighting should be disabled OpenGL Basis: GL_QUADS glenable(gl_lighting); glbegin(gl_quads); glnormalf( ); glcolorf(.,.,.); glvertef( ); glvertef( ); glvertef( ); glvertef( ); glend(); lighting should be enabled... an appropriate normal should be speified OpenGL Basis: Transformations Useful ommands: glmatrimode(gl_modelview); glpushmatri(); glpopmatri(); glmultmatrif( ); From OpenGL Referene Manual Questions? For Net Time: Read Hugues Hoppe Progressive Meshes SIGGRAPH 996 Post a omment or question on the ourse WebCT/LMS disussion b am on Frida /5 Image b Henrik Wann Jensen 59 6

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-45/65 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s9/ Barb Cutler cutler@cs.rpi.edu MRC 9A Piar Animation Studios, 986 Topics for the Semester Mesh Simplification

More information

CSCI-4530/6530 Advanced Computer Graphics

CSCI-4530/6530 Advanced Computer Graphics Luo Jr. CSCI-453/653 Advanced Computer Graphics http://www.cs.rpi.edu/~cutler/classes/advancedgraphics/s7/ Barb Cutler cutler@cs.rpi.edu MRC 33A Piar Animation Studios, 986 Topics for the Semester Meshes

More information

CSCI-6962 Advanced Computer Graphics

CSCI-6962 Advanced Computer Graphics Luxo Jr. CSCI-6962 Advanced Computer Graphics Pixar Animation Studios, 1986 Director: John Lasseter CSCI-6962 Advanced Computer Graphics Cutler 2 Plan Introduction Overview of the Semester Administrivia

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions?

Today. The Graphics Pipeline: Projective Transformations. Last Week: Schedule. XForms Forms Library. Questions? Toda The Graphics Pipeline: Projectie Reiew & Schedule Ra Casting / Tracing s. The Graphics Pipeline Projectie Last Week: Animation & Quaternions Finite Element Simulations collisions, fracture, & deformation

More information

1/29/13. Computer Graphics. Transformations. Simple Transformations

1/29/13. Computer Graphics. Transformations. Simple Transformations /29/3 Computer Graphics Transformations Simple Transformations /29/3 Contet 3D Coordinate Sstems Right hand (or counterclockwise) coordinate sstem Left hand coordinate sstem Not used in this class and

More information

The 3-D Graphics Rendering Pipeline

The 3-D Graphics Rendering Pipeline The 3-D Graphics Rendering Pipeline Modeling Trival Rejection Illumination Viewing Clipping Projection Almost ever discussion of 3-D graphics begins here Seldom are an two versions drawn the same wa Seldom

More information

Introduction to Seismology Spring 2008

Introduction to Seismology Spring 2008 MIT OpenCourseWare http://ow.mit.edu 1.510 Introdution to Seismology Spring 008 For information about iting these materials or our Terms of Use, visit: http://ow.mit.edu/terms. 1.510 Leture Notes 3.3.007

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Overview Ra-Tracing so far Modeling transformations Ra Tracing Image RaTrace(Camera camera, Scene scene, int width, int heigh,

More information

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h

Image warping. image filtering: change range of image. image warping: change domain of image g(x) = f(h(x)) h(y)=0.5y+0.5. h([x,y])=[x,y/2] f h Image warping Image warping image filtering: change range of image g() () = h(f()) h(f()) f h g h()=0.5+0.5 image warping: change domain of image g() = f(h()) f h g h([,])=[,/2] Parametric (global) warping

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

Viewing/Projection IV. Week 4, Fri Jan 29

Viewing/Projection IV. Week 4, Fri Jan 29 Universit of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munner Viewing/Projection IV Week 4, Fri Jan 29 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 News etra TA office hours in lab

More information

An Effective Hardware Architecture for Bump Mapping Using Angular Operation

An Effective Hardware Architecture for Bump Mapping Using Angular Operation Graphis Hardware (2003) M. Doggett W. Heidrih W. Mark. Shilling (Editors) n Effetive Hardware rhiteture for Bump Mapping Using ngular peration S. G. Lee W. C. Park W. J. Lee T. D. Han and S. B. Yang Department

More information

Recall: Function Calls to Create Transform Matrices

Recall: Function Calls to Create Transform Matrices Reall: Fntion Calls to Create Transform Matries Previosl made fntion alls to generate 44 matries for identit, translate, sale, rotate transforms Pt transform matri into CTM Eample mat4 m = Identit(; CTM

More information

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates

(x, y) (ρ, θ) ρ θ. Polar Coordinates. Cartesian Coordinates Coordinate Sstems Point Representation in two dimensions Cartesian Coordinates: (; ) Polar Coordinates: (; ) (, ) ρ θ (ρ, θ) Cartesian Coordinates Polar Coordinates p = CPS1, 9: Computer Graphics D Geometric

More information

Viewing/Projections III. Week 4, Wed Jan 31

Viewing/Projections III. Week 4, Wed Jan 31 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munner Viewing/Projections III Week 4, Wed Jan 3 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 News etra TA coverage in lab to answer

More information

Projections. Let us start with projections in 2D, because there are easier to visualize.

Projections. Let us start with projections in 2D, because there are easier to visualize. Projetions Let us start ith projetions in D, beause there are easier to visualie. Projetion parallel to the -ais: Ever point in the -plane ith oordinates (, ) ill be transformed into the point ith oordinates

More information

p[4] p[3] p[2] p[1] p[0]

p[4] p[3] p[2] p[1] p[0] CMSC 425 : Sring 208 Dave Mount and Roger Eastman Homework Due: Wed, Marh 28, :00m. Submit through ELMS as a df file. It an either be distilled from a tyeset doument or handwritten, sanned, and enhaned

More information

Orientation of the coordinate system

Orientation of the coordinate system Orientation of the oordinate system Right-handed oordinate system: -axis by a positive, around the -axis. The -axis is mapped to the i.e., antilokwise, rotation of The -axis is mapped to the -axis by a

More information

What and Why Transformations?

What and Why Transformations? 2D transformations What and Wh Transformations? What? : The geometrical changes of an object from a current state to modified state. Changing an object s position (translation), orientation (rotation)

More information

Modeling Transformations Revisited

Modeling Transformations Revisited Modeling Transformations Revisited Basic 3D Transformations Translation Scale Shear Rotation 3D Transformations Same idea as 2D transformations o Homogeneous coordinates: (,,z,w) o 44 transformation matrices

More information

3-Dimensional Viewing

3-Dimensional Viewing CHAPTER 6 3-Dimensional Vieing Vieing and projection Objects in orld coordinates are projected on to the vie plane, hich is defined perpendicular to the vieing direction along the v -ais. The to main tpes

More information

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll

Image Warping. Computational Photography Derek Hoiem, University of Illinois 09/28/17. Photo by Sean Carroll Image Warping 9/28/7 Man slides from Alosha Efros + Steve Seitz Computational Photograph Derek Hoiem, Universit of Illinois Photo b Sean Carroll Reminder: Proj 2 due monda Much more difficult than project

More information

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz

Image Warping : Computational Photography Alexei Efros, CMU, Fall Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 2 Image Transformations image filtering: change range of image g() T(f())

More information

Modeling Transformations

Modeling Transformations Modeling Transformations Michael Kazhdan (601.457/657) HB Ch. 5 FvDFH Ch. 5 Announcement Assignment 2 has been posted: Due: 10/24 ASAP: Download the code and make sure it compiles» On windows: just build

More information

Notes. University of British Columbia

Notes. University of British Columbia Notes Drop-bo is no. 14 You can hand in our assignments Assignment 0 due Fri. 4pm Assignment 1 is out Office hours toda 16:00 17:00, in lab or in reading room Uniersit of Uniersit of Chapter 4 - Reminder

More information

A radiometric analysis of projected sinusoidal illumination for opaque surfaces

A radiometric analysis of projected sinusoidal illumination for opaque surfaces University of Virginia tehnial report CS-21-7 aompanying A Coaxial Optial Sanner for Synhronous Aquisition of 3D Geometry and Surfae Refletane A radiometri analysis of projeted sinusoidal illumination

More information

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University

Computer Graphics. P04 Transformations. Aleksandra Pizurica Ghent University Computer Graphics P4 Transformations Aleksandra Pizurica Ghent Universit Telecommunications and Information Processing Image Processing and Interpretation Group Transformations in computer graphics Goal:

More information

CS559: Computer Graphics

CS559: Computer Graphics CS559: Computer Graphics Lecture 8: 3D Transforms Li Zhang Spring 28 Most Slides from Stephen Chenne Finish Color space Toda 3D Transforms and Coordinate sstem Reading: Shirle ch 6 RGB and HSV Green(,,)

More information

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is.

Interactive Computer Graphics. Warping and morphing. Warping and Morphing. Warping and Morphing. Lecture 14+15: Warping and Morphing. What is. Interactive Computer Graphics Warping and morphing Lecture 14+15: Warping and Morphing Lecture 14: Warping and Morphing: Slide 1 Lecture 14: Warping and Morphing: Slide 2 Warping and Morphing What is Warping

More information

Coordinate Transformations & Homogeneous Coordinates

Coordinate Transformations & Homogeneous Coordinates CS-C31 (Introduction to) Computer Graphics Jaakko Lehtinen Coordinate Transformations & Homogeneous Coordinates Lots of slides from Frédo Durand CS-C31 Fall 216 Lehtinen Outline Intro to Transformations

More information

Machine Vision. Laboratory Exercise Name: Student ID: S

Machine Vision. Laboratory Exercise Name: Student ID: S Mahine Vision 521466S Laoratory Eerise 2011 Name: Student D: General nformation To pass these laoratory works, you should answer all questions (Q.y) with an understandale handwriting either in English

More information

Image Warping CSE399b, Spring 07 Computer Vision

Image Warping CSE399b, Spring 07 Computer Vision Image Warping CSE399b, Spring 7 Computer Vision http://maps.a9.com http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html Autostiching on A9.com

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

6. Modelview Transformations

6. Modelview Transformations 6. Modelview Transformations Transformation Basics Transformations map coordinates from one frame of reference to another through matri multiplications Basic transformation operations include: - translation

More information

NOISE REMOVAL FOR OBJECT TRACKING BASED ON HSV COLOR SPACE PARAMETER USING CAMSHIFT

NOISE REMOVAL FOR OBJECT TRACKING BASED ON HSV COLOR SPACE PARAMETER USING CAMSHIFT International Journal of Computational Intelligene & Teleommuniation Sstems () 0 pp. 39-45 NOISE REOVAL FOR OBJECT TRACKING BASED ON HSV COLOR SPACE PARAETER USING CASHIFT P. Raavel G. Appasami and R.

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Fall 26 Image Warping image filtering: change range of image g() T(f()) f T f image

More information

Homogeneous Coordinates

Homogeneous Coordinates COMS W4172 3D Math 2 Steven Feiner Department of Computer Science Columbia Universit New York, NY 127 www.cs.columbia.edu/graphics/courses/csw4172 Februar 1, 218 1 Homogeneous Coordinates w X W Y X W Y

More information

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1

Today s class. Geometric objects and transformations. Informationsteknologi. Wednesday, November 7, 2007 Computer Graphics - Class 5 1 Toda s class Geometric objects and transformations Wednesda, November 7, 27 Computer Graphics - Class 5 Vector operations Review of vector operations needed for working in computer graphics adding two

More information

Transformations II. Week 2, Wed Jan 17

Transformations II. Week 2, Wed Jan 17 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 27 Tamara Munzner Transformations II Week 2, Wed Jan 7 http://www.ugrad.cs.ubc.ca/~cs34/vjan27 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

特集 Road Border Recognition Using FIR Images and LIDAR Signal Processing

特集 Road Border Recognition Using FIR Images and LIDAR Signal Processing デンソーテクニカルレビュー Vol. 15 2010 特集 Road Border Reognition Using FIR Images and LIDAR Signal Proessing 高木聖和 バーゼル ファルディ Kiyokazu TAKAGI Basel Fardi ヘンドリック ヴァイゲル Hendrik Weigel ゲルド ヴァニーリック Gerd Wanielik This paper

More information

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision

Image Warping, mesh, and triangulation CSE399b, Spring 07 Computer Vision http://grail.cs.washington.edu/projects/rotoscoping/ Image Warping, mesh, and triangulation CSE399b, Spring 7 Computer Vision Man of the slides from A. Efros. Parametric (global) warping Eamples of parametric

More information

Warping, Morphing and Mosaics

Warping, Morphing and Mosaics Computational Photograph and Video: Warping, Morphing and Mosaics Prof. Marc Pollefes Dr. Gabriel Brostow Toda s schedule Last week s recap Warping Morphing Mosaics Toda s schedule Last week s recap Warping

More information

Image Warping. Some slides from Steve Seitz

Image Warping.   Some slides from Steve Seitz Image Warping http://www.jeffre-martin.com Some slides from Steve Seitz 5-463: Computational Photograph Aleei Efros, CMU, Spring 2 Image Transformations image filtering: change range of image g() = T(f())

More information

Prof. Feng Liu. Winter /05/2019

Prof. Feng Liu. Winter /05/2019 Prof. Feng Liu Winter 2019 http://www.cs.pd.edu/~fliu/courses/cs410/ 02/05/2019 Last Time Image alignment 2 Toda Image warping The slides for this topic are used from Prof. Yung-Yu Chuang, which use materials

More information

Simultaneous image orientation in GRASS

Simultaneous image orientation in GRASS Simultaneous image orientation in GRASS Alessandro BERGAMINI, Alfonso VITTI, Paolo ATELLI Dipartimento di Ingegneria Civile e Ambientale, Università degli Studi di Trento, via Mesiano 77, 38 Trento, tel.

More information

Scene Graphs & Modeling Transformations COS 426

Scene Graphs & Modeling Transformations COS 426 Scene Graphs & Modeling Transformations COS 426 3D Object Representations Points Range image Point cloud Surfaces Polgonal mesh Subdivision Parametric Implicit Solids Voels BSP tree CSG Sweep High-level

More information

Two Dimensional Viewing

Two Dimensional Viewing Two Dimensional Viewing Dr. S.M. Malaek Assistant: M. Younesi Two Dimensional Viewing Basic Interactive Programming Basic Interactive Programming User controls contents, structure, and appearance of objects

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

What does OpenGL do?

What does OpenGL do? Theor behind Geometrical Transform What does OpenGL do? So the user specifies a lot of information Ee Center Up Near, far, UP EE Left, right top, bottom, etc. f b CENTER left right top bottom What does

More information

We P9 16 Eigenray Tracing in 3D Heterogeneous Media

We P9 16 Eigenray Tracing in 3D Heterogeneous Media We P9 Eigenray Traing in 3D Heterogeneous Media Z. Koren* (Emerson), I. Ravve (Emerson) Summary Conventional two-point ray traing in a general 3D heterogeneous medium is normally performed by a shooting

More information

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013)

To Do. Assignment Overview. Outline. Mesh Viewer (3.1) Mesh Connectivity (3.2) Advanced Computer Graphics (Spring 2013) daned Computer Graphis (Spring 23) CS 283, Leture 5: Mesh Simplifiation Rai Ramamoorthi http://inst.ees.berkeley.edu/~s283/sp3 To Do ssignment, Due Feb 22 Start reading and working on it now. This leture

More information

Transformations III. Week 2, Fri Jan 19

Transformations III. Week 2, Fri Jan 19 Universit of British Columbia CPSC 34 Computer Graphics Jan-Apr 2007 Tamara Munzner Transformations III Week 2, Fri Jan 9 http://www.ugrad.cs.ubc.ca/~cs34/vjan2007 Readings for Jan 5-22 FCG Chap 6 Transformation

More information

Image warping/morphing

Image warping/morphing Image warping/morphing Digital Visual Effects, Spring 2007 Yung-Yu Chuang 2007/3/20 with slides b Richard Szeliski, Steve Seitz, Tom Funkhouser and Aleei Efros Image warping Image formation B A Sampling

More information

3D Geometry and Camera Calibration

3D Geometry and Camera Calibration 3D Geometr and Camera Calibration 3D Coordinate Sstems Right-handed vs. left-handed 2D Coordinate Sstems ais up vs. ais down Origin at center vs. corner Will often write (u, v) for image coordinates v

More information

Luxo Jr. Plan. Team. Movies. Why Computer Graphics? Introduction to Computer Graphics. Pixar Animation Studios, 1986 Director: John Lasseter

Luxo Jr. Plan. Team. Movies. Why Computer Graphics? Introduction to Computer Graphics. Pixar Animation Studios, 1986 Director: John Lasseter Luxo Jr 6.837 Introduction to Computer Graphics Pixar Animation Studios, 1986 Director: John Lasseter 2 Plan Introduction of the semester Administrivia Iterated Function Systems (fractals) 3 Team Lecturers

More information

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis

Fitting a transformation: Feature-based alignment April 30 th, Yong Jae Lee UC Davis Fitting a transformation: Feature-based alignment April 3 th, 25 Yong Jae Lee UC Davis Announcements PS2 out toda; due 5/5 Frida at :59 pm Color quantization with k-means Circle detection with the Hough

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

5.8.3 Oblique Projections

5.8.3 Oblique Projections 278 Chapter 5 Viewing y (, y, ) ( p, y p, p ) Figure 537 Oblique projection P = 2 left right 0 0 left+right left right 0 2 top bottom 0 top+bottom top bottom far+near far near 0 0 far near 2 0 0 0 1 Because

More information

Transformations. Examples of transformations: shear. scaling

Transformations. Examples of transformations: shear. scaling Transformations Eamples of transformations: translation rotation scaling shear Transformations More eamples: reflection with respect to the y-ais reflection with respect to the origin Transformations Linear

More information

The Mathematics of Simple Ultrasonic 2-Dimensional Sensing

The Mathematics of Simple Ultrasonic 2-Dimensional Sensing The Mathematis of Simple Ultrasoni -Dimensional Sensing President, Bitstream Tehnology The Mathematis of Simple Ultrasoni -Dimensional Sensing Introdution Our ompany, Bitstream Tehnology, has been developing

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 29-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 29 lecture 2 Toda s GPU eample: moldabilit feedback Two-part mold [The Complete Sculptor

More information

Ray Tracing. Quiz Discussion. Announcements: Final Projects. Last Time? Durer s Ray Casting Machine. Today

Ray Tracing. Quiz Discussion. Announcements: Final Projects. Last Time? Durer s Ray Casting Machine. Today Qui Discussion a Tracing Announcements: Final Projects Last Time? Everone should post one or more ideas for a final project on the discussion forum (it was our assignment over Spring Break) Connect with

More information

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors

Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors Eurographis Symposium on Geometry Proessing (003) L. Kobbelt, P. Shröder, H. Hoppe (Editors) Rotation Invariant Spherial Harmoni Representation of 3D Shape Desriptors Mihael Kazhdan, Thomas Funkhouser,

More information

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection

News. Projections and Picking. Transforming View Volumes. Projections recap. Basic Perspective Projection. Basic Perspective Projection Universit of British Columbia CPSC 44 Computer Graphics Projections and Picking Wed 4 Sep 3 project solution demo recap: projections projections 3 picking News Project solution eecutable available idea

More information

CS770/870 Spring 2017 Transformations

CS770/870 Spring 2017 Transformations CS770/870 Spring 2017 Transformations Coordinate sstems 2D Transformations Homogeneous coordinates Matrices, vectors, points Coordinate Sstems Coordinate sstems used in graphics Screen coordinates: the

More information

High Dimensional Rendering in OpenGL

High Dimensional Rendering in OpenGL High Dimensional Rendering in OpenGL Josh McCo December, 2003 Description of Project Adding high dimensional rendering capabilit to the OpenGL graphics programming environment is the goal of this project

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017

Computer Graphics. Si Lu. Fall er_graphics.htm 10/11/2017 Computer Graphics Si Lu Fall 27 http://www.cs.pd.edu/~lusi/cs447/cs447_547_comput er_graphics.htm //27 Last time Filtering Resampling 2 Toda Compositing NPR 3D Graphics Toolkits Transformations 3 Demo

More information

Ray Tracing. Announcements: Quiz. Last Time? Today. Durer s Ray Casting Machine. Ray Casting

Ray Tracing. Announcements: Quiz. Last Time? Today. Durer s Ray Casting Machine. Ray Casting nnouncements: Qui a Tracing On Frida (3/4), in class One 8.511 sheet of notes allowed Sample qui (from last ear) is posted online Focus on reading comprehension and material for Homeworks 0, 1, & 2 Last

More information

CS F-07 Objects in 2D 1

CS F-07 Objects in 2D 1 CS420-2010F-07 Objects in 2D 1 07-0: Representing Polgons We want to represent a simple polgon Triangle, rectangle, square, etc Assume for the moment our game onl uses these simple shapes No curves for

More information

Pre-Critical incidence

Pre-Critical incidence Seismi methods: Refration I Refration reading: Sharma p58-86 Pre-Critial inidene Refletion and refration Snell s Law: sin i sin R sin r P P P P P P where p is the ray parameter and is onstant along eah

More information

Lecture 02 Image Formation

Lecture 02 Image Formation Institute of Informatis Institute of Neuroinformatis Leture 2 Image Formation Davide Saramuzza Outline of this leture Image Formation Other amera parameters Digital amera Perspetive amera model Lens distortion

More information

FUZZY WATERSHED FOR IMAGE SEGMENTATION

FUZZY WATERSHED FOR IMAGE SEGMENTATION FUZZY WATERSHED FOR IMAGE SEGMENTATION Ramón Moreno, Manuel Graña Computational Intelligene Group, Universidad del País Vaso, Spain http://www.ehu.es/winto; {ramon.moreno,manuel.grana}@ehu.es Abstrat The

More information

2D Transformations. 7 February 2017 Week 5-2D Transformations 1

2D Transformations. 7 February 2017 Week 5-2D Transformations 1 2D Transformations 7 Februar 27 Week 5-2D Transformations Matri math Is there a difference between possible representations? a c b e d f ae bf ce df a c b d e f ae cf be df a b c d e f ae bf ce df 7 Februar

More information

MATH STUDENT BOOK. 12th Grade Unit 6

MATH STUDENT BOOK. 12th Grade Unit 6 MATH STUDENT BOOK 12th Grade Unit 6 Unit 6 TRIGONOMETRIC APPLICATIONS MATH 1206 TRIGONOMETRIC APPLICATIONS INTRODUCTION 3 1. TRIGONOMETRY OF OBLIQUE TRIANGLES 5 LAW OF SINES 5 AMBIGUITY AND AREA OF A TRIANGLE

More information

CS Computer Graphics: Transformations & The Synthetic Camera

CS Computer Graphics: Transformations & The Synthetic Camera CS 543 - Computer Graphics: Transformations The Snthetic Camera b Robert W. Lindeman gogo@wpi.edu (with help from Emmanuel Agu ;-) Introduction to Transformations A transformation changes an objects Size

More information

Special Relativistic (Flight-)Simulator

Special Relativistic (Flight-)Simulator Speial Relativisti (Flight-)Simulator Anton Tsoulos and Wolfgang Knopki Abstrat With speial relativisti visualisation it is possible to experiene and simulate relativisti effets whih our when traveling

More information

Name: [20 points] Consider the following OpenGL commands:

Name: [20 points] Consider the following OpenGL commands: Name: 2 1. [20 points] Consider the following OpenGL commands: glmatrimode(gl MODELVIEW); glloadidentit(); glrotatef( 90.0, 0.0, 1.0, 0.0 ); gltranslatef( 2.0, 0.0, 0.0 ); glscalef( 2.0, 1.0, 1.0 ); What

More information

Data we are discussing in the class. Scalar/vector/tensor. Heterogeneous. Scientific data. 3D+time (n<4) Information data

Data we are discussing in the class. Scalar/vector/tensor. Heterogeneous. Scientific data. 3D+time (n<4) Information data Data we are disussing in the lass Soure: VIS, Universit of Stuttgart Sientifi data 3D+time (n3 Heterogeneous Salar Data Analsis Salar Fields The approimation

More information

Computer Graphics. Transformation

Computer Graphics. Transformation (SBE 36) Dr. Aman Eldeib Spring 2 SBE 36 i a fundamental corner tone of computer graphic and i a central to OpenGL a well a mot other graphic tem.(2d and 3D ) Given an object, tranformation i to change

More information

timestamp, if silhouette(x, y) 0 0 if silhouette(x, y) = 0, mhi(x, y) = and mhi(x, y) < timestamp - duration mhi(x, y), else

timestamp, if silhouette(x, y) 0 0 if silhouette(x, y) = 0, mhi(x, y) = and mhi(x, y) < timestamp - duration mhi(x, y), else 3rd International Conferene on Multimedia Tehnolog(ICMT 013) An Effiient Moving Target Traking Strateg Based on OpenCV and CAMShift Theor Dongu Li 1 Abstrat Image movement involved bakground movement and

More information

Viewing and Projection

Viewing and Projection Viewing and Projection Sheelagh Carpendale Camera metaphor. choose camera position 2. set up and organie objects 3. choose a lens 4. take the picture View Volumes what gets into the scene perspective view

More information

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship?

Transformations II. Arbitrary 3D Rotation. What is its inverse? What is its transpose? Can we constructively elucidate this relationship? Utah School of Computing Fall 25 Transformations II CS46 Computer Graphics From Rich Riesenfeld Fall 25 Arbitrar 3D Rotation What is its inverse? What is its transpose? Can we constructivel elucidate this

More information

3-D IMAGE MODELS AND COMPRESSION - SYNTHETIC HYBRID OR NATURAL FIT?

3-D IMAGE MODELS AND COMPRESSION - SYNTHETIC HYBRID OR NATURAL FIT? 3-D IMAGE MODELS AND COMPRESSION - SYNTHETIC HYBRID OR NATURAL FIT? Bernd Girod, Peter Eisert, Marus Magnor, Ekehard Steinbah, Thomas Wiegand Te {girod eommuniations Laboratory, University of Erlangen-Nuremberg

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 8: Geometric transformations Szeliski: Chapter 3.6 Reading Announcements Project 2 out today, due Oct. 4 (demo at end of class today) Image alignment Why don

More information

Cell Projection of Convex Polyhedra

Cell Projection of Convex Polyhedra Volume Graphis (2003) I. Fujishiro, K. Mueller, A. Kaufman (Editors) Cell Projetion of Convex Polyhedra Stefan Roettger and Thomas Ertl Visualization and Interative Systems Group University of Stuttgart

More information

Rapid, accurate particle tracking by calculation of radial symmetry centers

Rapid, accurate particle tracking by calculation of radial symmetry centers Rapid, aurate partile traing by alulation of radial symmetry enters Raghuveer Parthasarathy Supplementary Text and Figures Supplementary Figures Supplementary Figure 1 Supplementary Figure Supplementary

More information

GPU-Accelerated Iterated Function Systems. Simon Green, NVIDIA Corporation

GPU-Accelerated Iterated Function Systems. Simon Green, NVIDIA Corporation GPU-Accelerated Iterated Function Sstems Simon Green NVIDIA Corporation Iterated Function Sstems Fractal Conceived b John Hutchinson 1981 Popularized b Michael Barnsle Fractals Everwhere 1998 Consists

More information

AUTOMATIC TRACKING OF MOVING OBJECT WITH EYE-IN- HAND ROBOT MANIPULATOR

AUTOMATIC TRACKING OF MOVING OBJECT WITH EYE-IN- HAND ROBOT MANIPULATOR AUTOATIC TRACKING OF OVING OBJECT WITH EYE-IN- HAND ROBOT ANIPULATOR 1 JIN-SIANG SHAW, WEN-LIN CHI Institute of ehatroni Engineering, Taipei Teh, Taipei, Taiwan Email: 1 jshaw@ntut.edu.tw, ton455448@gmail.om

More information

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner

GLOBAL EDITION. Interactive Computer Graphics. A Top-Down Approach with WebGL SEVENTH EDITION. Edward Angel Dave Shreiner GLOBAL EDITION Interactive Computer Graphics A Top-Down Approach with WebGL SEVENTH EDITION Edward Angel Dave Shreiner This page is intentionall left blank. 4.10 Concatenation of Transformations 219 in

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theor, Algorithms, and Applications Hong Qin State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794--44 Tel: (63)632-845; Fa: (63)632-8334 qin@cs.sunsb.edu

More information

Image Warping (Szeliski Sec 2.1.2)

Image Warping (Szeliski Sec 2.1.2) Image Warping (Szeliski Sec 2..2) http://www.jeffre-martin.com CS94: Image Manipulation & Computational Photograph Aleei Efros, UC Berkele, Fall 7 Some slides from Steve Seitz Image Transformations image

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices

Uses of Transformations. 2D transformations Homogeneous coordinates. Transformations. Transformations. Transformations. Transformations and matrices Uses of Transformations 2D transformations Homogeneous coordinates odeling: position and resie parts of a comple model; Viewing: define and position the virtual camera Animation: define how objects move/change

More information

Chromaticity-matched Superimposition of Foreground Objects in Different Environments

Chromaticity-matched Superimposition of Foreground Objects in Different Environments FCV216, the 22nd Korea-Japan Joint Workshop on Frontiers of Computer Vision Chromatiity-mathed Superimposition of Foreground Objets in Different Environments Yohei Ogura Graduate Shool of Siene and Tehnology

More information

A Unified Subdivision Scheme for Polygonal Modeling

A Unified Subdivision Scheme for Polygonal Modeling EUROGRAPHICS 2 / A. Chalmers and T.-M. Rhyne (Guest Editors) Volume 2 (2), Number 3 A Unified Subdivision Sheme for Polygonal Modeling Jérôme Maillot Jos Stam Alias Wavefront Alias Wavefront 2 King St.

More information

Trajectory Tracking Control for A Wheeled Mobile Robot Using Fuzzy Logic Controller

Trajectory Tracking Control for A Wheeled Mobile Robot Using Fuzzy Logic Controller Trajetory Traking Control for A Wheeled Mobile Robot Using Fuzzy Logi Controller K N FARESS 1 M T EL HAGRY 1 A A EL KOSY 2 1 Eletronis researh institute, Cairo, Egypt 2 Faulty of Engineering, Cairo University,

More information

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract

Learning Convention Propagation in BeerAdvocate Reviews from a etwork Perspective. Abstract CS 9 Projet Final Report: Learning Convention Propagation in BeerAdvoate Reviews from a etwork Perspetive Abstrat We look at the way onventions propagate between reviews on the BeerAdvoate dataset, and

More information

Modeling Transformations

Modeling Transformations Transformations Transformations Specif transformations for objects o Allos definitions of objects in on coordinate sstems o Allos use of object definition multiple times in a scene Adam Finkelstein Princeton

More information