Freeform grinding and polishing with PROSurf

Size: px
Start display at page:

Download "Freeform grinding and polishing with PROSurf"

Transcription

1 Freeform grinding and polishing with PROSurf Franciscus Wolfs, Edward Fess, Scott DeFisher, Josh Torres, James Ross OptiPro Systems, 6368 Dean Parkway, Ontario, NY ABSTRACT Recently, the desire to use freeform optics has been increasing, including shapes such as torics and anamorphic aspheres. Freeform optics can be used to expand capabilities of optical systems. They can compensate for limitations in rotationally symmetric optics. These same traits that give freeform optics the ability to improve optical systems also makes them more challenging to manufacture. This holds true for grinding, polishing, and metrology. As freeform optics become more prevalent in the industry, tolerances will become more stringent, requiring deterministic manufacturing processes. To generate freeforms, it is crucial to have control over all aspects of the process. Controlling the surface definition is important for achieving a better surface finish during processing. Metrology will be required to adjust tool paths at various stages in manufacturing. During grinding, metrology will be used to adjust tool positions relative to the nominal tool path to compensate for repeatable machine and tooling error. For polishing, metrology will be used to deterministically adjust dwell relative to the amount of the error in different surface locations, allowing for convergence towards the desired surface at a uniform rate. OptiPro has developed PROSurf, a CAM software package for creating freeform tool paths and applying metrologybased corrections. The software can be used for both grinding and polishing freeform optics. The software has flexibility to allow for different methods of modelling the surface: mathematical equations, solid models, and point clouds. The software is designed to make it easier to manufacture and polish complex freeform optics. Keyword List: polishing, deterministic, correction, freeform, metrology, UltraForm, PROSurf, grinding, conformal 1.1 Freeform and Conformal Surfaces 1. INTRODUCTION From a manufacturer s perspective, freeform optical surfaces are shapes that are not manufactured by standard spherical or aspheric manufacturing techniques. They can include a wide range of geometries, which may include off-axis sections of rotationally symmetric shapes, rotationally symmetric non-standard shapes, shapes that conform to the platform where they reside (i.e. conformal), and complete freeforms. Complete freeform shapes have no single definition, but are frequently defined by complex mathematical equations (i.e. zernikie polynomials or others), point clouds, splines, or computer aided design (CAD) files. Due to breadth of possibilities for defining these complex optical surfaces, communication of the desired surface from the optical designer to the manufacturer can be challenging, but is extremely important. This definition may also present challenges to the manufacturer in how the surface is communicated to the CNC machine for processing. 1.2 Challenges of Manufacturing Traditional computer aided manufacturing (CAM) packages are tailored for use in metalworking, not optics. This distinction means that these packages will have difficulties meeting the specifications required for manufacturing precision optics. They also do not accept metrology feedback to figure correct surfaces. Traditional CAM packages don t have support for custom tooling used in grinding and polishing optics. For example, to use OptiPro s toric UltraWheel for polishing, it needs to be approximated as a sphere. To overcome the limitations of traditional packages, OptiPro created its own CAM package, PROSurf.

2 2. PROSURF 2.1 PROSurf Overview PROSurf is a CAM package developed by OptiPro tailored specifically toward the manufacturing of freeform optical shapes. The package can generate tool paths for grinding, UltraForm Finishing (UFF), and UltraSmooth Finishing (USF) on OptiPro Machines. The software supports a range of inputs to define the surface and a number of different metrology formats to correct the surface. There are a number of point spacing models and motion options built into PROSurf that have been developed from methods used on actual surfaces. The software contains built-in models of several OptiPro machine platforms as well the tool models that can be used for 3D simulation of the generated tool path in PROSurf. An example on an UltraWheel is shown in Figure 1 and Figure 2 shows a tool path simulation. The tool path simulation is important to detect any potential collision issues for complex 5-axis tool paths before they are run on the machine. Figure 1: PROSurf model of the UFF UltraWheel.

3 Figure 2: Sample of tool path animation in PROSurf. 2.2 Shape Definition PROSurf supports a number of input types to define the surface being processed. The first option is for the user to input a solid model of the surface. From the model, the user selects the surface that is desired for processing, as shown in Figure 3. The second option available to the user is to define the surface mathematically. To input an equation, it must be able to be written as Z = f(x, Y), as shown in Figure 4. As certain shapes become more prevalent, they will be generalized into predefined shapes in PROSurf. Currently, aspheric cylinders are a built-in shape and can be defined using the form shown in Figure 5. The final option for surface definition in PROSurf is to import a point cloud, as shown in Figure 6. With the point cloud, the quality of the processed surface will be directly affected by the density of the point cloud brought into PROSurf. Figure 3: Example of selecting the working surface from a solid model. The surface highlighted in white is the surface that will be processed.

4 Figure 4: Example of inputting an equation into PROSurf. Figure 5: Form for defining an aspheric cylinder in PROSurf. 2.3 Point Distribution Control Figure 6: Point cloud definition of a surface in PROSurf. In a traditional CAM package, the point spacing is controlled by the U and V directions in the shape definition. The user does not have very much control over the way that the points are distributed. In some cases, signatures are left from this definition and are very difficult to remove without being able to redefine the distribution points that the tool path is following.

5 In PROSurf, the user has more control over the point distribution. For equation and point cloud based shapes, the user s default option is an evenly spaced x and y grid. For a solid model, the default option is to use the built in U and V directions to follow the surface. For most surface types, there are additional options for spacing distributions. One advanced spacing option is to evenly space points along curves that lie in a given plane. For example, even spacing along XZ plane curves will change the distribution so that the linear distance between consecutive points in a given XZ plane curve is constant instead of the x-axis spacing being even. This method was developed to remove the patterns that was common on cylindrical and near-cylindrical shapes. The difference in surface finish from these two spacing distributions is shown in Figure 7. Figure 7: Surface ground with traditional CAM package (left) and with PROSurf (right). A second advanced spacing method that can be used is even arc spacing. This method defines arcs that are evenly spaced along one of the two centerlines of the surface, with the requirement that the surface is symmetric across each of the centerlines. The effect of this distribution is most noticeable on steep geometries, as shown in Figure 8. Initially, this part was ground and polished using an evenly spaced XY point distribution, shown on the right in Figure 8. This distribution left a ring-like signature on the surface, which resembled the layout of the points in the tool path. Since the signature matched the layout of the points, a different point distribution was needed to remove it. To do this, the even arc spacing method was created. A sample of the point cloud for this method is shown on the right in Figure 9. Using this point distribution to polish the surface, the signature disappeared from the surface of the part, as shown on the left in Figure 9.

6 Figure 8: Signature left in the surface (left) using an evenly spacing XY point grid (right). Figure 9: Surface finish (left) using the even arc spacing point distribution (right). 2.4 Motion The basic motion in PROSurf to generate passes across the surface uses raster motion staying in either normal or tangent contact with the surface. In order to improve the efficiency of the process time and finishes, more complex motion tool paths are also defined in PROSurf. These include rapid material removal, compensated head angle motion, and radial-in feed.

7 In order to efficiently go from a blank to the rough shape of the surface, PROSurf has a motion called rapid material removal. Before implementing this motion, roughing generating a surface with PROSurf required looping the same program over and over until the surface was fully ground. In addition to requiring the machine operator to restart the tool path each time it finished, running the entire tool path repeatedly involved a substantial amount of time wasted cutting air in the initial passes. Rapid material removal solves both of these issues. The tool path that is generated will start with a flat top of the blank and rough the entire surface out in a single program. This method also detects whether there will be any cutting between consecutive step over points. If the tool will be just cutting air between the step over points, the lines will be skipped over to reduce the amount of wasted time. In the left diagram of Figure 10, the arrows show that the path being followed by the tool will continue along the curve of the shape. As can be seen, there is a significant amount of distance to the path. The right diagram of Figure 10 shows the more efficient tool path created using rapid material remove, which picks the tool over and moves across to the next point of cutting. Figure 10: The left diagram shows the tool path profile without rapid material removal. The right diagram shows the profile using rapid material removal. In both diagrams, the arrows represent the path that the tool will follow across the area with no material. Certain part geometries and/or machine travels may make it impossible to always stay in normal contact with the surface of the part. For polishing, it is important to stay in normal contact to keep a more constant removal rate. In situations where staying normal to the part in polishing is not possible, staying close to normal is the next best option. PROSurf gives the user the ability to input a range of normal motion that the B-axis can safely carry out. When the B-angle requirements fall outside of that range, the tool will rotate to the B-angle limit allowed and then contact the surface tangentially from there. As Figure 11 shows, it is still possible to figure correct a surface using a compensated B-angle tool path.

8 Figure 11: Before (lighter) and after (darker) figure correction on a cylinder using compensated 4-axis motion. Regions where non-normal motion is used are indicated on the diagram. The head angle is capped at +/-20. Ideally, the head would go between +/-44.5 to stay normal across the surface. Currently, a motion called radial-in feed is being developed. This motion starts at the point furthest from the center of the surface. The tool path spirals in towards the center, continually rotating the C axis in the same direction, as shown by the point distribution in Figure 12. Some of the anticipated benefits of this motion include improved surface quality and reduced cycle times Y (mm) X (mm) Figure 12: Example of radial-in feed point distribution. The line connecting the points is the order that the tool path will go to the points, starting on the edge. 2.5 Figure Correction To be able to meet the tolerances on freeform surfaces, it is crucial to have the ability to figure correct the surface based on metrology taken on it. PROSurf has the ability to perform metrology-driven figure correction for both grinding and polishing processes. During grind correction, the most recently run tool path can be compensated based on the quality of the surface that tool path created. PROSurf adjusts the z-coordinates based on the vertical error left in the part on the previous run; the tool is raised in areas where too much material was removed and lowered in areas where not enough was removed. The grind correction allows for a better surface to be presented to the polishing machine, leading to reduced cycle

9 times in polishing. If a single pass does not sufficiently correct the surface, the user can feed in additional maps to perform cumulative corrections. During polishing, the surface can be corrected using a dwell based correction algorithm in PROSurf. The algorithm adjusts the dwell times at each point based on the relative magnitude of the error at the point. The tool path will spend more time in areas with higher amounts of error and less time in areas with smaller amounts of error, as shown in Figure 13. The error converges towards the ideal surface at an even rate across the surface. Figure 13: Error mapped to surface (left). Calculated dwell times to correct 50% of the error in a single run (right). The software supports multiple different inputs for error maps: dat, xyz, mod, csv, and opm. The opm extension is a custom, simple-to-use OptiPro Metrology format that allows the user to have the option of inputting error map types that are not currently available from other software. This also allows for additional offline manipulation of the data knowing that it can be brought into PROSurf if it is formatted properly. 3.1 Basic Process Flow The process for processing complex shapes is as follows; 3. METHODOLOGY 1. Input part definition into software using a CAD file, equation, or point cloud. 2. Generate a tool path for the specific surface. a. If the tool path is grinding, generate a tool path for the nominal surface with no corrections. b. If the tool path is polishing, generate tool path using even dwell times (uniform removal) and loop until the surface has cleared out. 3. Measure the surface on an interferometer, CMM, UltraSurf, profilometer, or other metrology. 4. Analyze the metrology and determine if the surface has met specifications set. 5. If the surface has not met the specifications, a corrective tool path needs to be generated and run. a. If the process is grinding, generate a new tool path that will reduce the form error based on the error map input and regrind the surface. b. If the process is polishing, ProSurf will generate a new tool path to reduce the form error by adjusting the dwell time at each point on the tool path based on the relative error at the point. 6. Repeat steps 3 through 5 until form error has reached acceptable values. 4.1 Spinel Toric 4. PROCESSING OptiPro worked on figure correcting a 150 mm by 150 mm spinel toric. The surface was defined using a CAD model imported into PROSurf. Initially, the surface started with a peak-to-valley (PV) of µm with a

10 root-mean-squared (RMS) of µm, as shown in Figure 14. After figure correction, the PV of the surface was µm with an RMS of µm. The surface was then transferred to a USF machine for smoothing and additional processing. Figure 14: Initial surface of spinel toric (left): µm PV, µm RMS; after figure correction with UFF (right): µm PV, µm RMS. 4.2 Radial-In Feed OptiPro is working on the figure correction of an anamorphic asphere, shown in Figure 15, using grind corrections. The surface started with a PV of 139 µm, with an RMS of 45 µm, as shown in the left diagram of Figure 16. After figure correction, the PV improved to a fourteenth of its original value to about 11 µm, as shown in the right diagram of Figure 16. The RMS improved by a factor of 15 to about 3 µm. Figure 15: In-process anamorphic asphere using radial-in feed grinding.

11 Figure 16: Initial surface after nominal grind using Radial-In Feed (left) and surface after a number of figure correction passes (right). 5. CONCLUSION Freeform optics have the potential to revolutionize the precision optics industry. Advancements in manufacturing technology have allowed for creation of optical shapes previously thought to be impossible. Moving forward, collaboration between optical design and manufacturing will be required to successfully implement freeform optical systems. Advances in freeform metrology will greatly drive the manufacturing of freeform shapes and push them to tighter optical tolerances. OptiPro has developed PROSurf as a solution for manufacturing freeform optical surfaces. The software will continue to adapt to meet the changing needs of customers.

Freeform polishing with UltraForm finishing

Freeform polishing with UltraForm finishing Freeform polishing with UltraForm finishing Franciscus Wolfs, Edward Fess, Scott DeFisher OptiPro Systems, 6368 Dean Parkway, Ontario, NY 14519 ABSTRACT Recently, the desire to use freeform optics has

More information

Optical Characterization of Complex Freeform Surfaces

Optical Characterization of Complex Freeform Surfaces Optical Characterization of Complex Freeform Surfaces By: Scott DeFisher, Ed Fess NASA SBIR Phase I NASA Mirror Tech Days Open Session November 19, 2014 Overview Phase I Summary Goals and Specifications

More information

Freeform metrology using subaperture stitching interferometry

Freeform metrology using subaperture stitching interferometry Freeform metrology using subaperture stitching interferometry APOMA November 10-11, 2016 Presented By: Christopher Hall QED Optics Sr. Engineer, QED Technologies Copyright QED Technologies 2016 Interferometry

More information

Freeform Monolithic Multi-Surface Telescope Manufacturing NASA Mirror Tech Days 1 November 2016

Freeform Monolithic Multi-Surface Telescope Manufacturing NASA Mirror Tech Days 1 November 2016 Freeform Monolithic Multi-Surface Telescope Manufacturing NASA Mirror Tech Days 1 November 2016 Presented By: Joey Lawson, PhD., Todd Blalock Presented By: Freeform Optics Overview Freeforms: Optics that

More information

MarShaft. MarShaft SCOPE 250 plus

MarShaft. MarShaft SCOPE 250 plus + MarShaft MarShaft SCOPE 250 plus Flexible shaft measuring machine for measuring small, rotationally symmetrical workpieces such as turned parts Use in production Fast and easy operation Maximum measuring

More information

Geometric Entities for Pilot3D. Copyright 2001 by New Wave Systems, Inc. All Rights Reserved

Geometric Entities for Pilot3D. Copyright 2001 by New Wave Systems, Inc. All Rights Reserved Geometric Entities for Pilot3D Copyright 2001 by New Wave Systems, Inc. All Rights Reserved Introduction on Geometric Entities for Pilot3D The best way to develop a good understanding of any Computer-Aided

More information

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER

AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER AUTOMATED 4 AXIS ADAYfIVE SCANNING WITH THE DIGIBOTICS LASER DIGITIZER INTRODUCTION The DIGIBOT 3D Laser Digitizer is a high performance 3D input device which combines laser ranging technology, personal

More information

Virtual Engineering: Model based Off-line Programming Method for Industrial Robot

Virtual Engineering: Model based Off-line Programming Method for Industrial Robot Virtual Engineering: Model based Off-line Programming Method for Industrial Robot Xingguo Yin, Li Tao ABB Corporate Research China No. 31 Fu Te Dong Dan Rd., Waigaoqiao Free Trade Zone, 200131 Shanghai,

More information

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction.

Lesson 1: Creating T- Spline Forms. In Samples section of your Data Panel, browse to: Fusion 101 Training > 03 Sculpt > 03_Sculpting_Introduction. 3.1: Sculpting Sculpting in Fusion 360 allows for the intuitive freeform creation of organic solid bodies and surfaces by leveraging the T- Splines technology. In the Sculpt Workspace, you can rapidly

More information

Machining of Freeform Optical Surfaces by Slow Slide Servo Method

Machining of Freeform Optical Surfaces by Slow Slide Servo Method Machining of Freeform Optical Surfaces by Slow Slide Servo Method Yazid E. Tohme and Jeff A. Lowe Moore Nanotechnology Systems LLC 426A Winchester St. Keene, NH Motivation Provide Provide a simple cost

More information

SWING ARM OPTICAL CMM

SWING ARM OPTICAL CMM SWING ARM OPTICAL CMM Peng Su, Chang Jin Oh, Robert E. Parks, James H. Burge College of Optical Sciences University of Arizona, Tucson, AZ 85721 OVERVIEW The swing arm profilometer described in reference

More information

Strategy. Using Strategy 1

Strategy. Using Strategy 1 Strategy Using Strategy 1 Scan Path / Strategy It is important to visualize the scan path you want for a feature before you begin taking points on your part. You want to try to place your points in a way

More information

Version 2011 R1 - Router

Version 2011 R1 - Router GENERAL NC File Output List NC Code Post Processor Selection Printer/Plotter Output Insert Existing Drawing File Input NC Code as Geometry or Tool Paths Input Raster Image Files Convert Raster to Vector

More information

CHAPTER 1. EZ-MILL PRO / 3D MACHINING WIZARD TUTORIAL 1-2

CHAPTER 1. EZ-MILL PRO / 3D MACHINING WIZARD TUTORIAL 1-2 1. TABLE OF CONTENTS 1. TABLE OF CONTENTS 1 CHAPTER 1. EZ-MILL PRO / 3D MACHINING WIZARD TUTORIAL 1-2 Overview... 1-2 Cavity Machining... 1-2 Basic Programming Steps... 1-3 The Part... 1-4 Setting the

More information

Flank Millable Surface Design with Conical and Barrel Tools

Flank Millable Surface Design with Conical and Barrel Tools 461 Computer-Aided Design and Applications 2008 CAD Solutions, LLC http://www.cadanda.com Flank Millable Surface Design with Conical and Barrel Tools Chenggang Li 1, Sanjeev Bedi 2 and Stephen Mann 3 1

More information

ARCHITECTURE & GAMES. A is for Architect Simple Mass Modeling FORM & SPACE. Industry Careers Framework. Applied. Getting Started.

ARCHITECTURE & GAMES. A is for Architect Simple Mass Modeling FORM & SPACE. Industry Careers Framework. Applied. Getting Started. A is for Architect Simple Mass Modeling One of the first introductions to form and space usually comes at a very early age. As an infant, you might have played with building blocks to help hone your motor

More information

FreeStyle Shaper & Optimizer

FreeStyle Shaper & Optimizer FreeStyle Shaper & Optimizer Preface What's New Getting Started Basic Tasks Advanced Tasks Workbench Description Customizing Glossary Index Dassault Systèmes 1994-99. All rights reserved. Preface CATIA

More information

Fabrication of Freeform Optics

Fabrication of Freeform Optics Fabrication of Freeform Optics Todd Blalock, Kate Medicus, Jessica DeGroote Nelson Optimax Systems, Inc., 6367 Dean Parkway, Ontario, NY 14519 ABSTRACT Freeform surfaces on optical components have become

More information

Engineered Diffusers Intensity vs Irradiance

Engineered Diffusers Intensity vs Irradiance Engineered Diffusers Intensity vs Irradiance Engineered Diffusers are specified by their divergence angle and intensity profile. The divergence angle usually is given as the width of the intensity distribution

More information

GDL Toolbox 2 Reference Manual

GDL Toolbox 2 Reference Manual Reference Manual Archi-data Ltd. Copyright 2002. New Features Reference Manual New Save GDL command Selected GDL Toolbox elements can be exported into simple GDL scripts. During the export process, the

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index

Piping Design. Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Piping Design Site Map Preface Getting Started Basic Tasks Advanced Tasks Customizing Workbench Description Index Dassault Systèmes 1994-2001. All rights reserved. Site Map Piping Design member member

More information

Two-Dimensional Contact Angle and Surface Tension Mapping (As Presented at Pittcon 96)

Two-Dimensional Contact Angle and Surface Tension Mapping (As Presented at Pittcon 96) Two-Dimensional Contact Angle and Surface Tension Mapping (As Presented at Pittcon 96) by Roger P. Woodward, Ph.D. First Ten Ångstroms, 465 Dinwiddie Street, Portsmouth, VA 23704 Tel: 757.393.1584 Toll-free:

More information

Lecture 4, 5/27/2017, Rhino Interface an overview

Lecture 4, 5/27/2017, Rhino Interface an overview 數字建築與城市设计 Spring 2017 Lecture 4, 5/27/2017, Rhino Interface an overview Copyright 2017, Chiu-Shui Chan. All Rights Reserved. This lecture concentrates on the use of tools, 3D solid modeling and editing

More information

Simulation of mid-spatials from the grinding process

Simulation of mid-spatials from the grinding process J. Eur. Opt. Soc.-Rapid 11, 16010 (2016) www.jeos.org Simulation of mid-spatials from the grinding process M. Pohl mario.pohl@htw-aalen.de Aalen University, Centre for optical technologies, Aalen, 73430,

More information

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept.

Introduction to Solid Modeling Parametric Modeling. Mechanical Engineering Dept. Introduction to Solid Modeling Parametric Modeling 1 Why draw 3D Models? 3D models are easier to interpret. Simulation under real-life conditions. Less expensive than building a physical model. 3D models

More information

Exercise Guide. Published: August MecSoft Corpotation

Exercise Guide. Published: August MecSoft Corpotation VisualCAD Exercise Guide Published: August 2018 MecSoft Corpotation Copyright 1998-2018 VisualCAD 2018 Exercise Guide by Mecsoft Corporation User Notes: Contents 2 Table of Contents About this Guide 4

More information

BobCAD CAM V25 4 Axis Standard Posted by Al /09/20 22:03

BobCAD CAM V25 4 Axis Standard Posted by Al /09/20 22:03 BobCAD CAM V25 4 Axis Standard Posted by Al - 2012/09/20 22:03 Many BobCAD CAM clients that run a 4 axis have requested to work directly with Solids or STL files. In the past we only offered 4 axis indexing

More information

3 AXIS STANDARD CAD. BobCAD-CAM Version 28 Training Workbook 3 Axis Standard CAD

3 AXIS STANDARD CAD. BobCAD-CAM Version 28 Training Workbook 3 Axis Standard CAD 3 AXIS STANDARD CAD This tutorial explains how to create the CAD model for the Mill 3 Axis Standard demonstration file. The design process includes using the Shape Library and other wireframe functions

More information

Solved with COMSOL Multiphysics 4.3a

Solved with COMSOL Multiphysics 4.3a Magnetic Lens Introduction Scanning electron microscopes image samples by scanning with a high-energy beam of electrons. The subsequent electron interactions produce signals such as secondary and back-scattered

More information

SOLIDWORKS 2016: A Power Guide for Beginners and Intermediate Users

SOLIDWORKS 2016: A Power Guide for Beginners and Intermediate Users SOLIDWORKS 2016: A Power Guide for Beginners and Intermediate Users The premium provider of learning products and solutions www.cadartifex.com Table of Contents Dedication... 3 Preface... 15 Part 1. Introducing

More information

Images from 3D Creative Magazine. 3D Modelling Systems

Images from 3D Creative Magazine. 3D Modelling Systems Images from 3D Creative Magazine 3D Modelling Systems Contents Reference & Accuracy 3D Primitives Transforms Move (Translate) Rotate Scale Mirror Align 3D Booleans Deforms Bend Taper Skew Twist Squash

More information

VisualMILL Getting Started Guide

VisualMILL Getting Started Guide VisualMILL Getting Started Guide Welcome to VisualMILL Getting Started Guide... 4 About this Guide... 4 Where to go for more help... 4 Tutorial 1: Machining a Gasket... 5 Introduction... 6 Preparing the

More information

Jenoptik twist measuring systems - Twist measurement in practice

Jenoptik twist measuring systems - Twist measurement in practice Jenoptik twist measuring systems - Twist measurement in practice Twist measurement Twist measurement with Jenoptik Dynamically stressed seals place high demands on the surface texture of a shaft at the

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Module 1: Basics of Solids Modeling with SolidWorks

Module 1: Basics of Solids Modeling with SolidWorks Module 1: Basics of Solids Modeling with SolidWorks Introduction SolidWorks is the state of the art in computer-aided design (CAD). SolidWorks represents an object in a virtual environment just as it exists

More information

GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Genio SPAI SOFTWARE

GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Genio SPAI SOFTWARE GENIO CAD/CAM software powered by Autodesk technology for parametric programming of boring, routing and edge-banding work centers Overview is a powerful CAD/CAM system powered by Autodesk 3D environment

More information

What's New in CAMWorks 2016

What's New in CAMWorks 2016 Contents (Click a link below or use the bookmarks on the left) About this Version (CAMWorks 2016 SP3)... 2 Supported Platforms 2 Resolved CPR s document 2 About this Version (CAMWorks 2016 SP2.2) 3 Supported

More information

ZW3D 2011 New Features

ZW3D 2011 New Features ZW3D 2011 New Features Table of Contents Introduction to ZW3D 2011... 1 1. Modeling Innovations... 2 1.1 SmoothFlow Direct Edit... 2 1.2 Dynamic Dimensions... 2 1.3 QuickEdit... 3 1.4 SmartPick... 4 1.5

More information

Proizvodnja podržana računalom Autor: Tomislav Pavlic, mag.ing.mech.

Proizvodnja podržana računalom Autor: Tomislav Pavlic, mag.ing.mech. Radni materijali za kolegij Proizvodnja podržana računalom Autor: Tomislav Pavlic, mag.ing.mech. SOLIDCAM - THE LEADERS IN INTEGRATED CAM The complete integrated Manufacturing Solution inside SolidWorks

More information

Job Title: Apply and Edit Modifiers. Objective:

Job Title: Apply and Edit Modifiers. Objective: Job No: 06 Duration: 16H Job Title: Apply and Edit Modifiers Objective: To understand that a modifier can be applied to a 2D shape to turn it into a 3D object, and that the modifier s parameters can be

More information

MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING

MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING International Journal of Modern Manufacturing Technologies ISSN 067 3604, Vol. VIII, No. / 016 MACHINING OF ARCHIMEDEAN SPIRAL BY PARAMETRIC PROGRAMMING Vratraj Joshi 1, Keyur Desai, Harit Raval 3 1 Department

More information

AN OVERVIEW OF FREEFORM OPTICS PRODUCTION Nelson E. Claytor, Donald M. Combs, Oscar M. Lechuga, John J. Mader, Jay Udayasankaran

AN OVERVIEW OF FREEFORM OPTICS PRODUCTION Nelson E. Claytor, Donald M. Combs, Oscar M. Lechuga, John J. Mader, Jay Udayasankaran AN OVERVIEW OF FREEFORM OPTICS PRODUCTION Nelson E. Claytor, Donald M. Combs, Oscar M. Lechuga, John J. Mader, Jay Udayasankaran Fresnel Technologies, Inc., 101 W. Morningside Drive, Fort Worth, TX 76110

More information

TOOLPATHS TRAINING GUIDE. Sample. Distribution. not for MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR

TOOLPATHS TRAINING GUIDE. Sample. Distribution. not for MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR TOOLPATHS TRAINING GUIDE MILL-LESSON-4-TOOLPATHS DRILL AND CONTOUR Mill-Lesson-4 Objectives You will generate a toolpath to machine the part on a CNC vertical milling machine. This lesson covers the following

More information

Tangents. In this tutorial we are going to take a look at how tangents can affect an animation.

Tangents. In this tutorial we are going to take a look at how tangents can affect an animation. Tangents In this tutorial we are going to take a look at how tangents can affect an animation. One of the 12 Principles of Animation is called Slow In and Slow Out. This refers to the spacing of the in

More information

EXPERIENCE THE POWER. THE NEW BobCAD-CAM V31. We have upgraded the entire customer experience to be more intuitive, modern and efficient.

EXPERIENCE THE POWER. THE NEW BobCAD-CAM V31. We have upgraded the entire customer experience to be more intuitive, modern and efficient. 01 EXPERIENCE THE POWER V31 Whether you re a leading manufacturer or just starting out, BobCAD-CAM has the features, training & support you need to machine better parts FASTER and EASIER, for LESS. THE

More information

Specific Objectives Students will understand that that the family of equation corresponds with the shape of the graph. Students will be able to create a graph of an equation by plotting points. In lesson

More information

Interactive Virtual Hands-on Manufacturing

Interactive Virtual Hands-on Manufacturing Interactive Virtual Hands-on Manufacturing Martin Jun 1 and Patrick Lee 2 1 Associate Professor, Purdue University, West Lafayette, IN 2 Assistant Professor, University of Vermont, Burlington, VM Current

More information

Geometric Modeling. Introduction

Geometric Modeling. Introduction Geometric Modeling Introduction Geometric modeling is as important to CAD as governing equilibrium equations to classical engineering fields as mechanics and thermal fluids. intelligent decision on the

More information

Licom Systems Ltd., Training Course Notes. 3D Surface Creation

Licom Systems Ltd., Training Course Notes. 3D Surface Creation , Training Course Notes Work Volume and Work Planes...........................1 Overview..........................................1 Work Volume....................................1 Work Plane......................................1

More information

Chapter 2 Parametric Modeling Fundamentals

Chapter 2 Parametric Modeling Fundamentals 2-1 Chapter 2 Parametric Modeling Fundamentals Create Simple Extruded Solid Models Understand the Basic Parametric Modeling Procedure Create 2-D Sketches Understand the "Shape before Size" Approach Use

More information

Bonnet Polishing and Fluid Jet Polishing

Bonnet Polishing and Fluid Jet Polishing Bonnet Polishing and Fluid Jet Polishing Zeeko., Ltd. Richard Freeman 1. Introduction 1.1 The need for free-form surfaces The capability of producing free-form surfaces surfaces not limited to regular

More information

Machining and metrology systems for free-form laser printer mirrors

Machining and metrology systems for free-form laser printer mirrors Sādhan ā Vol. 28, Part 5, October 2003, pp. 925 932. Printed in India Machining and metrology systems for free-form laser printer mirrors DWDAVIS 1, M WALTER 1, M TAKAHASHI 2 and T MASAKI 2 1 Precitech

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

Autodesk Fusion 360: Introduction. Overview

Autodesk Fusion 360: Introduction. Overview Overview Fusion 360 is a cloud-based CAD/CAM tool for collaborative product development. The tools in Fusion enable exploration and iteration on product ideas and collaboration within a product development

More information

BobCAD-CAM FAQ #50: How do I use a rotary 4th axis on a mill?

BobCAD-CAM FAQ #50: How do I use a rotary 4th axis on a mill? BobCAD-CAM FAQ #50: How do I use a rotary 4th axis on a mill? Q: I ve read FAQ #46 on how to set up my milling machine. How do I enable 4th axis to actually use it? A: Enabling 4th axis in the machine

More information

First results on free-form polishing using the Precessions process

First results on free-form polishing using the Precessions process First results on free-form polishing using the Precessions process David Walker 1,2, Anthony Beaucamp 1, Christina Dunn 2, Richard Freeman 1, Andreas Marek 1, Gerry McCavana 1, Roger Morton 1, David Riley

More information

Getting Started. What is SAS/SPECTRAVIEW Software? CHAPTER 1

Getting Started. What is SAS/SPECTRAVIEW Software? CHAPTER 1 3 CHAPTER 1 Getting Started What is SAS/SPECTRAVIEW Software? 3 Using SAS/SPECTRAVIEW Software 5 Data Set Requirements 5 How the Software Displays Data 6 Spatial Data 6 Non-Spatial Data 7 Summary of Software

More information

CS 465 Program 4: Modeller

CS 465 Program 4: Modeller CS 465 Program 4: Modeller out: 30 October 2004 due: 16 November 2004 1 Introduction In this assignment you will work on a simple 3D modelling system that uses simple primitives and curved surfaces organized

More information

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D

COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 HAND OUT 1 : INTRODUCTION TO 3D COMPUTER AIDED ARCHITECTURAL GRAPHICS FFD 201/Fall 2013 INSTRUCTORS E-MAIL ADDRESS OFFICE HOURS Özgür Genca ozgurgenca@gmail.com part time Tuba Doğu tubadogu@gmail.com part time Şebnem Yanç Demirkan sebnem.demirkan@gmail.com

More information

COMPARISON OF TWO INSTRUMENT DESIGNS FOR NON-CONTACT MEASUREMENT OF GOSSAMER MIRRORS

COMPARISON OF TWO INSTRUMENT DESIGNS FOR NON-CONTACT MEASUREMENT OF GOSSAMER MIRRORS COMPARISON OF TWO INSTRUMENT DESIGNS FOR NON-CONTACT MEASUREMENT OF GOSSAMER MIRRORS Phil Smith and R. Ryan Vallance Precision Systems Laboratory, University of Kentucky * Abstract Lightweight, large format

More information

MACHINING SURFACE FINISH QUALITY USING 3D PROFILOMETRY

MACHINING SURFACE FINISH QUALITY USING 3D PROFILOMETRY MACHINING SURFACE FINISH QUALITY USING 3D PROFILOMETRY Prepared by Duanjie Li, PhD Morgan, Ste1, Irvine CA 91 P: 99.1.99 F: 99.1.93 nanovea.com Today's standard for tomorrow's materials. 1 NANOVEA INTRODUCTION

More information

MFG12197 FeatureCAM Hands On Milling, turning and mill turn with Feature Based Machining

MFG12197 FeatureCAM Hands On Milling, turning and mill turn with Feature Based Machining MFG12197 FeatureCAM Hands On Milling, turning and mill turn with Feature Based Machining Jeremy Malan Delcam Learning Objectives Learn how to instantly machine parts once their features are defined Learn

More information

Protruding divide creates optimized tool paths along a tooling shape.

Protruding divide creates optimized tool paths along a tooling shape. Protruding divide creates optimized tool paths along a tooling shape. New powerful function, protruding divide which avoids interferences with defined tooling has been added. Roughing tool path creates

More information

Lesson 1 Parametric Modeling Fundamentals

Lesson 1 Parametric Modeling Fundamentals 1-1 Lesson 1 Parametric Modeling Fundamentals Create Simple Parametric Models. Understand the Basic Parametric Modeling Process. Create and Profile Rough Sketches. Understand the "Shape before size" approach.

More information

MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY

MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY Proceedings of the 11 th International Conference on Manufacturing Research (ICMR2013) MULTIPLE-SENSOR INTEGRATION FOR EFFICIENT REVERSE ENGINEERING OF GEOMETRY Feng Li, Andrew Longstaff, Simon Fletcher,

More information

FULLY AUTOMATIC ROUGHNESS MEASUREMENT "IN MINIATURE"

FULLY AUTOMATIC ROUGHNESS MEASUREMENT IN MINIATURE FULLY AUTOMATIC ROUGHNESS MEASUREMENT "IN MINIATURE" Klingelnberg now has a new roughness probe that is capable of measuring gear teeth with a module as small as 0.9 mm for carrying out surface measurements

More information

Convergent Modeling and Reverse Engineering

Convergent Modeling and Reverse Engineering Convergent Modeling and Reverse Engineering 25 October 2017 Realize innovation. Tod Parrella NX Design Product Management Product Engineering Solutions tod.parrella@siemens.com Realize innovation. Siemens

More information

Micro Cutting Tool Measurement by Focus-Variation

Micro Cutting Tool Measurement by Focus-Variation Micro Cutting Tool Measurement by Focus-Variation Stefan Scherer 1, Reinhard Danzl 2, and Franz Helmli 3 1 CEO Alicona*; e-mail: stefan.scherer@alicona.com 2 Alicona Research*; e-mail: reinhard.danzl@alicona.com

More information

Maya Lesson 3 Temple Base & Columns

Maya Lesson 3 Temple Base & Columns Maya Lesson 3 Temple Base & Columns Make a new Folder inside your Computer Animation Folder and name it: Temple Save using Save As, and select Incremental Save, with 5 Saves. Name: Lesson3Temple YourName.ma

More information

Up to 4-axis plus closed-loop spindle Conversational and G-Code programming in one control Systems for knee mills, bed mills and VMC s USB interface

Up to 4-axis plus closed-loop spindle Conversational and G-Code programming in one control Systems for knee mills, bed mills and VMC s USB interface Up to 4-axis plus closed-loop spindle Conversational and G-Code programming in one control Systems for knee mills, bed mills and VMC s USB interface Acu-Rite 3500i boosts efficiency, versatility, touch

More information

H Precitech, Inc. Microfinish ϑ 300 CNC ASPHERIC LENS POLISHING MACHINE MACHINE SPECIFICATION REVISION 6. Page 1 of 5

H Precitech, Inc. Microfinish ϑ 300 CNC ASPHERIC LENS POLISHING MACHINE MACHINE SPECIFICATION REVISION 6. Page 1 of 5 H05941 Microfinish ϑ 300 CNC ASPHERIC LENS POLISHING MACHINE MACHINE SPECIFICATION REVISION 6 Page 1 of 5 1 MACHINE DESCRIPTION The Microfinish 300 is a CNC machine designed for the rapid polishing and

More information

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies

Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Autodesk Inventor Design Exercise 2: F1 Team Challenge Car Developed by Tim Varner Synergis Technologies Tim Varner - 2004 The Inventor User Interface Command Panel Lists the commands that are currently

More information

Cylinders in Vs An optomechanical methodology Yuming Shen Tutorial for Opti521 November, 2006

Cylinders in Vs An optomechanical methodology Yuming Shen Tutorial for Opti521 November, 2006 Cylinders in Vs An optomechanical methodology Yuming Shen Tutorial for Opti521 November, 2006 Introduction For rotationally symmetric optical components, a convenient optomechanical approach which is usually

More information

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction

Metafor FE Software. 2. Operator split. 4. Rezoning methods 5. Contact with friction ALE simulations ua sus using Metafor eao 1. Introduction 2. Operator split 3. Convection schemes 4. Rezoning methods 5. Contact with friction 1 Introduction EULERIAN FORMALISM Undistorted mesh Ideal for

More information

Smart Strategies for Steep/Shallow Milling

Smart Strategies for Steep/Shallow Milling Smart Strategies for Steep/Shallow Milling A Technical Overview contents Smoothing the Ups and Downs of Surface Machining..... 2 Traditional Finishing Strategies....... 2 Planar Toolpath.... 2 Z-Level

More information

501, , 1052, , 1602, 1604 EXCEL EXCEL 1602UC EXCEL 1052UC EXCEL 501HC. Micro-Vu Corporation. Precision Measurement Systems

501, , 1052, , 1602, 1604 EXCEL EXCEL 1602UC EXCEL 1052UC EXCEL 501HC. Micro-Vu Corporation. Precision Measurement Systems 501, 502 1051, 1052, 1054 1601, 1602, 1604 1602UC 1052UC 501HC Precision Measurement Systems 501, 502 1051, 1052, 1054 1601, 1602, 1604 Excel 501 HM/HC Excel 502 HM/HC Excel 501 Excel 502 Scale Resolution

More information

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius. NAME DATE PER. REVIEW #18: SPHERES, COMPOSITE FIGURES, & CHANGING DIMENSIONS PART 1: SURFACE AREA & VOLUME OF SPHERES Find the measure(s) indicated. Answers to even numbered problems should be rounded

More information

INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES

INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES INSPECTION OF THE TURBINE BLADES USING SCANNING TECHNIQUES H. Nieciag, M. Traczynski and Z. Chuchro Department of Geometrical Quanities Metrology The Institute of Metal Cutting, 30-011 Cracow, Poland Abstract:

More information

Virtual DMIS Elevating Metrology to a Higher Level

Virtual DMIS Elevating Metrology to a Higher Level Virtual DMIS Elevating Metrology to a Higher Level Active Matrix Repurpose CAD data independent of CMM software Runs as a standalone application Direct Import of CATIA V4 and V5, ProE, Unigraphics, Parasolids,

More information

Using the CMA Warp Editor

Using the CMA Warp Editor Using the CMA Warp Editor Overview The Warp Editor feature lets you adjust Axon HD, Axon HD Pro, DLHD or MMS100 output to match complex projection surfaces. These forms allow the projection to match irregular

More information

Introduction to the Mathematical Concepts of CATIA V5

Introduction to the Mathematical Concepts of CATIA V5 CATIA V5 Training Foils Introduction to the Mathematical Concepts of CATIA V5 Version 5 Release 19 January 2009 EDU_CAT_EN_MTH_FI_V5R19 1 About this course Objectives of the course Upon completion of this

More information

Autodesk Inventor : From Concept to Digital Prototype

Autodesk Inventor : From Concept to Digital Prototype Autodesk Inventor : From Concept to Digital Prototype Bryan Fields Advanced Solutions, Inc. MA305-5 Using the tools available in Autodesk Inventor, this session will look at the progression from concept

More information

UNIT IV - Laser and advances in Metrology 2 MARKS

UNIT IV - Laser and advances in Metrology 2 MARKS UNIT IV - Laser and advances in Metrology 2 MARKS 81. What is interferometer? Interferometer is optical instruments used for measuring flatness and determining the lengths of slip gauges by direct reference

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing

CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing CNC Milling Machines Advanced Cutting Strategies for Forging Die Manufacturing Bansuwada Prashanth Reddy (AMS ) Department of Mechanical Engineering, Malla Reddy Engineering College-Autonomous, Maisammaguda,

More information

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS

IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS IND62 TIM CALIBRATION OF FREE-FORM STANDARD AND THEIR APPLICATIONS FOR IN-PROCESS MEASUREMENT ON MACHINE TOOLS VÍT ZELENÝ, IVANA LINKEOVÁ, PAVEL SKALNÍK (LENGTH MEASUREMENT DEPARTMENT) 5th November 2014

More information

1.1: Introduction to Fusion 360

1.1: Introduction to Fusion 360 .: Introduction to Fusion 360 Fusion 360 is a cloud- based CAD/CAM tool for collaborative product development. The tools in Fusion enable exploration and iteration on product ideas and collaboration within

More information

Computer Aided Design (CAD)

Computer Aided Design (CAD) CAD/CAM Dr. Ibrahim Al-Naimi Chapter two Computer Aided Design (CAD) The information-processing cycle in a typical manufacturing firm. PRODUCT DESIGN AND CAD Product design is a critical function in the

More information

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING 2015 WJTA-IMCA Conference and Expo November 2-4 New Orleans, Louisiana Paper COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING J. Schneider StoneAge, Inc. Durango, Colorado, U.S.A.

More information

Accurate Trajectory Control for Five-Axis Tool-Path Planning

Accurate Trajectory Control for Five-Axis Tool-Path Planning Accurate Trajectory Control for Five-Axis Tool-Path Planning Rong-Shine Lin* and Cheng-Bing Ye Abstract Computer-Aided Manufacturing technology has been widely used for three-axis CNC machining in industry

More information

Publication Number spse01695

Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 XpresRoute (tubing) Publication Number spse01695 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens

More information

Vectric Cut 3D (Frogmill)

Vectric Cut 3D (Frogmill) II. Subtractive Rapid Prototyping / VECTRIC CUT 3D (Frogmill) SUBTRACTIVE RAPID PROTOTYPING Vectric Cut 3D (Frogmill) INTERFACE: VECTRIC CUT 3D Model: Frogmill Size: W3050 x D1828 X H419 Material: EPS

More information

Creating T-Spline Forms

Creating T-Spline Forms 1 / 28 Goals 1. Create a T-Spline Primitive Form 2. Create a T-Spline Revolve Form 3. Create a T-Spline Sweep Form 4. Create a T-Spline Loft Form 2 / 28 Instructions Step 1: Go to the Sculpt workspace

More information

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control

5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 5-Axis Flex Track Drilling Systems on Complex Contours: Solutions for Position Control 2013-01-2224 Published 09/17/2013 Joseph R. Malcomb Electroimpact Inc. Copyright 2013 SAE International doi:10.4271/2013-01-2224

More information

DXF, IGES WMF, EMF STL, VDA, Parasolid, Rhino, ACIS

DXF, IGES WMF, EMF STL, VDA, Parasolid, Rhino, ACIS General NC File Output List NC Code Post Processor Selection Printer/Plotter Output Insert Existing Drawing File Input NC Code as Geometry or Tool Paths Input Raster Image Files Report Creator and Designer

More information

arxiv: v1 [physics.ins-det] 21 Aug 2009

arxiv: v1 [physics.ins-det] 21 Aug 2009 NOTE arxiv:0908.3209v1 [physics.ins-det] 21 Aug 2009 Practical Way to Measure Large-Scale 2D Surfaces Using Repositioning on Coordinate-Measuring Machines Sergey Kosarevsky Saint-Petersburg Institute of

More information

Learning. Modeling, Assembly and Analysis SOLIDWORKS Randy H. Shih SDC. Better Textbooks. Lower Prices.

Learning. Modeling, Assembly and Analysis SOLIDWORKS Randy H. Shih SDC. Better Textbooks. Lower Prices. Learning SOLIDWORKS 2016 Modeling, Assembly and Analysis Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SIEMENS. Modeling assemblies. Self-Paced Training. spse01540

SIEMENS. Modeling assemblies. Self-Paced Training. spse01540 SIEMENS Modeling assemblies Self-Paced Training spse01540 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens Product Lifecycle Management Software

More information

This lesson introduces Blender, covering the tools and concepts necessary to set up a minimal scene in virtual 3D space.

This lesson introduces Blender, covering the tools and concepts necessary to set up a minimal scene in virtual 3D space. 3D Modeling with Blender: 01. Blender Basics Overview This lesson introduces Blender, covering the tools and concepts necessary to set up a minimal scene in virtual 3D space. Concepts Covered Blender s

More information