An In-Situ Visualization Approach for the K computer using Mesa 3D and KVS

Size: px
Start display at page:

Download "An In-Situ Visualization Approach for the K computer using Mesa 3D and KVS"

Transcription

1 An In-Situ Visualization Approach for the K computer using Mesa 3D and KVS Kengo Hayashi 1,2, Naohisa Sakamoto 1,2 Jorji Nonaka 2, Motohiko Mastuda 2, Fumiyoshi Shoji 1 Kobe Univesity, 2 RIKEN Center for Computational Science ISC WORKSHOP ON IN SITU VISUALIZATION 2018 ( WOIV 2018 )

2 Background K Computer A Japanese leading-edge supercomputer built in 2011 SPARC64fx CPU architecture The use of a two-staged parallel file system ( GFS and LFS ) # Racks 864 # Nodes 82,944 Node (CPU) SPARC64fx Login Node SPARC64fx CPU Network Peak Perf. TOFU PF Stage-In File System Storage FEFS 30 PB GFS Stage-Out LFS 2

3 In-situ Visualization Mesa 3D Graphics Library Graphics driver Swrast Softpipe LLVMpipe OpenSWR Legacy software rasterizer Gallium software driver Gallium LLVM driver highly optimized for the Intel x86 CPUs and Accelerators HPC using Mesa driver ANL Mira (IBM Blue Gene/Q) swrast driver ORNL Titan (Cray XK7) softpipe driver 3

4 Existing visualization framework ParaView and VisIt OSS for general purpose high performance visualization Based on the Visualization Tool Kit ( VTK ) Utilizes the OpenGL for the graphics For In-situ Visualization ParaView Catalyst VisIt-Libsim Mesa3D graphics driver 4

5 Visualization Framework for K Computer Fujitsu Visualization Library Official Visualization Tool Particle-based volume rendering APIs for C/C++ and Fortran codes [A.Ogasa et al., 2012] SURFACE [M.Fujita et al., 2014] Scalable and Ubiquitous Rendering Framework for Advanced Computing Environment Highly scalable ray tracer LSGL graphics library optimized with SIMD vectorization functionalities for K computer Visualization result of seismic wave Earthquake Research Institute, Univ. of Tokyo 5

6 Large-scale unstructured volume rendering Particle-based volume rendering (PBVR) Volume data is represented as particles Visibility ordering is not required Interactive rendering with GPUs Supported cell types: tet, tet2, hex, hex2, pyramid, prism [N.Sakamoto et al, 2007] log(1 α ) ρ = πr 2 Δt Particle density Opacity (Num. of particles within a unit volume) 26M tet2 cells 71M hex cells 18M prism cells x 20 time steps 282k tet cells on 40LCDs 6

7 Objective Mesa 3D (OSMesa) on K computer K computer is only capable of compiling the initial version of Mesa 3D library with legacy graphics driver (swrast) which implements only the fixed graphics pipeline OpenGL-based KVS library KVS is a multiple platform OpenGL-based general purpose visualization library developed at Kyoto University and Kobe University Parallel particle-based volume rendering for In-situ visualization of large-scale unstructured volume on K computer 7

8 Overview of our approach In-situ visualization with particle-based volume rendering on K computer Implementation of Mesa3D with llvmpipe for SPARC64fx Parallelization of PBVR based on KVS Simulation Run KVS rendering method Pointer to the data Render Render... Render Gather and Merge Image File Render SPARC64fx CPU Memory KVS based rendering code libosmesa swrast softpipe llvmpipe Mesa Compiler LLVM JIT Compiler OpenGL API Fixed-function graphics pipeline Programmable graphics pipeline GLSL Shader Codes Vertex Shader Code Geometry Shader Code fragment Shader Code Parallelized PBVR Mesa3D on K computer 8

9 In-Situ Visualization for the K computer Fujitsu Library We tried Visualization Application Visualization Library PBVR Non-OpenGL Visualization Application (SURFACE etc) Visualization Application Graphics Library (OpenGL) 9

10 Mesa 3D on SPARC64fx Swrast ( Legacy software rasterizer ) - Fixed graphics pipeline - Fujitsu compiler( official compiler and support GCC 4.4.7) Softpipe ( Gallium software driver ) - Programmable graphics pipeline - GCC 6 ( C++ 11 ) Llvmpipe ( Gallium LLVM driver ) - Programmable graphics pipeline - GCC 6 ( C++ 11 ) - LLVM JIT No support for SPARC64 Performance 10

11 Mesa-llvmpipe LLVM-JIT Relocation processing lib/executionengine/runtimedyld/runtimedyldelf.cpp No support for SPARC architecture switch (Arch) { case Triple::ARCH break; default: } x86; x86_64 arm; armeb; thumb; thumbeb ppc; ppc64; ppc64le systemz bpfe1; bpfeb llvm_unreachable("unsupported CPU type!"); case Triple::sparcv9: resolvesparcv9relocation(section, Offset, Value, Type, Addend, SymOffset); break; We use Mesa , LLVM and GCC

12 KVS Kyoto Visualization System [N.Sakamoto et al, 2015] Multi-platform OpenGL-based general purpose visualization library Implemented traditional rendering method ( isosurface, slice, etc.) Providing parallel offscreen rendering APIs for both C/C++ and Fortran based simulation codes Particle-based volume rendering rendering (PBVR ) 12

13 Particle-based Volume Rendering (PBVR ) 1. Particle generation - Estimate the density of particles 2. Particle projection - Rendering for each particle set 3. Ensemble averaging generation projection averaging 13

14 Parallel PBVR Overview of parallel processing Repetition Sub-Volume 1 Generation Sub-Particle 1 Projection Sub-Image 1 Image Sub-Volume 2 Sub-Volume n Generation Generation Sub-Particle 2 Sub-Particle n Projection Projection Sub-Image 2 Sub-Image n Image Composition Averaging Final Image 14

15 el PBVR using 234Compositor Image Composition Technique or is 234Compositor a flexible parallel - A flexible parallel image siting library for massively compositing - Extended the Binary-Swap zation environments. algorithm e Binary-Swap algorithm, - Enabled the handling of arbitrary number of nodes the handling of arbitrary des. et al 2017] [J.Nonaka et[j.nonaka al,2017] 15

16 Experiment Data Magnus force acting on a rotating sphere placed in a uniform flow Specifications Number of nodes: 15,321,546 Number of cells: 18,899,767 Cell shape: prism cell Evaluation Rendering performance of PBVR Particle generation Image composition Particle projection [M.Muto et al., 2012] 16

17 Result Processing times with different number of MPI processes - Decrease Particle Generation - Increase Image Composition - Changeless Particle Projection 17

18 Result Rendering times with different number of ensemble averaging 18

19 Conclusion In-situ visualization framework which utilizes the Mesa 3D Enable the OpenGL-based visualization application using KVS to run on K computer with SPARC64fx CPUs Future work Integrate with real simulation codes and evaluate the stability, scalability, and performance 19

Johannes Günther, Senior Graphics Software Engineer. Intel Data Center Group, HPC Visualization

Johannes Günther, Senior Graphics Software Engineer. Intel Data Center Group, HPC Visualization Johannes Günther, Senior Graphics Software Engineer Intel Data Center Group, HPC Visualization Data set provided by Florida International University: Simulated fluid flow through a porous medium Large

More information

SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA

SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA SCIENTIFIC VISUALIZATION ON GPU CLUSTERS PETER MESSMER, NVIDIA Visualization Rendering Visualization Isosurfaces, Isovolumes Field Operators (Gradient, Curl,.. ) Coordinate transformations Feature extraction

More information

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT

INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT INTEL HPC DEVELOPER CONFERENCE FUEL YOUR INSIGHT UPDATE ON OPENSWR: A SCALABLE HIGH- PERFORMANCE SOFTWARE RASTERIZER FOR SCIVIS Jefferson Amstutz Intel

More information

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS HPC User Forum, 7 th September, 2016 Outline of Talk Introduction of FLAGSHIP2020 project An Overview of post K system Concluding Remarks

More information

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED

Post-K Supercomputer Overview. Copyright 2016 FUJITSU LIMITED Post-K Supercomputer Overview 1 Post-K supercomputer overview Developing Post-K as the successor to the K computer with RIKEN Developing HPC-optimized high performance CPU and system software Selected

More information

Advanced Visualization Research Team

Advanced Visualization Research Team RIKEN AICS ANNUAL REPORT FY2014 Advanced Visualization Research Team 1. Team members Kenji Ono (Team Leader) Jorji Nonaka (Researcher) Chongke Bi (Postdoctoral Researcher) Hamed Khandan (Postdoctoral Researcher)

More information

The way toward peta-flops

The way toward peta-flops The way toward peta-flops ISC-2011 Dr. Pierre Lagier Chief Technology Officer Fujitsu Systems Europe Where things started from DESIGN CONCEPTS 2 New challenges and requirements! Optimal sustained flops

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

TG-Gallium Driver Stack. Softpipe, Cell and Beyond. Keith Whitwell

TG-Gallium Driver Stack. Softpipe, Cell and Beyond. Keith Whitwell TG-Gallium Driver Stack Softpipe, Cell and Beyond DRI Driver Model drm App Mesa DRI Driver DRI Leaky interface between Mesa and driver. Drivers getting bigger, more complex. API, OS dependencies encoded

More information

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Hardware Trends. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Overview. CS 472 Concurrent & Parallel Programming University of Evansville

Overview. CS 472 Concurrent & Parallel Programming University of Evansville Overview CS 472 Concurrent & Parallel Programming University of Evansville Selection of slides from CIS 410/510 Introduction to Parallel Computing Department of Computer and Information Science, University

More information

Trends in HPC (hardware complexity and software challenges)

Trends in HPC (hardware complexity and software challenges) Trends in HPC (hardware complexity and software challenges) Mike Giles Oxford e-research Centre Mathematical Institute MIT seminar March 13th, 2013 Mike Giles (Oxford) HPC Trends March 13th, 2013 1 / 18

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Waiting for Moore s Law to save your serial code start getting bleak in 2004 Source: published SPECInt data Moore s Law is not at all

More information

Update of Post-K Development Yutaka Ishikawa RIKEN AICS

Update of Post-K Development Yutaka Ishikawa RIKEN AICS Update of Post-K Development Yutaka Ishikawa RIKEN AICS 11:20AM 11:40AM, 2 nd of November, 2017 FLAGSHIP2020 Project Missions Building the Japanese national flagship supercomputer, post K, and Developing

More information

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

Exploratory Visualization of Petascale Particle Data in Nvidia DGX-1

Exploratory Visualization of Petascale Particle Data in Nvidia DGX-1 Exploratory Visualization of Petascale Particle Data in Nvidia DGX-1 Benjamin Hernandez, PhD hernandezarb@ornl.gov Advanced Data and Workflows Group Oak Ridge Leadership Computing Facility Oak Ridge National

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Introduction of Fujitsu s next-generation supercomputer

Introduction of Fujitsu s next-generation supercomputer Introduction of Fujitsu s next-generation supercomputer MATSUMOTO Takayuki July 16, 2014 HPC Platform Solutions Fujitsu has a long history of supercomputing over 30 years Technologies and experience of

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited

Fujitsu HPC Roadmap Beyond Petascale Computing. Toshiyuki Shimizu Fujitsu Limited Fujitsu HPC Roadmap Beyond Petascale Computing Toshiyuki Shimizu Fujitsu Limited Outline Mission and HPC product portfolio K computer*, Fujitsu PRIMEHPC, and the future K computer and PRIMEHPC FX10 Post-FX10,

More information

Post-K: Building the Arm HPC Ecosystem

Post-K: Building the Arm HPC Ecosystem Post-K: Building the Arm HPC Ecosystem Toshiyuki Shimizu FUJITSU LIMITED Nov. 14th, 2017 Exhibitor Forum, SC17, Nov. 14, 2017 0 Post-K: Building up Arm HPC Ecosystem Fujitsu s approach for HPC Approach

More information

ECP Alpine: Algorithms and Infrastructure for In Situ Visualization and Analysis

ECP Alpine: Algorithms and Infrastructure for In Situ Visualization and Analysis ECP Alpine: Algorithms and Infrastructure for In Situ Visualization and Analysis Presented By: Matt Larsen LLNL-PRES-731545 This work was performed under the auspices of the U.S. Department of Energy by

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

Enabling In Situ Viz and Data Analysis with Provenance in libmesh

Enabling In Situ Viz and Data Analysis with Provenance in libmesh Enabling In Situ Viz and Data Analysis with Provenance in libmesh Vítor Silva Jose J. Camata Marta Mattoso Alvaro L. G. A. Coutinho (Federal university Of Rio de Janeiro/Brazil) Patrick Valduriez (INRIA/France)

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp

Next-Generation Graphics on Larrabee. Tim Foley Intel Corp Next-Generation Graphics on Larrabee Tim Foley Intel Corp Motivation The killer app for GPGPU is graphics We ve seen Abstract models for parallel programming How those models map efficiently to Larrabee

More information

Chris Sewell Li-Ta Lo James Ahrens Los Alamos National Laboratory

Chris Sewell Li-Ta Lo James Ahrens Los Alamos National Laboratory Portability and Performance for Visualization and Analysis Operators Using the Data-Parallel PISTON Framework Chris Sewell Li-Ta Lo James Ahrens Los Alamos National Laboratory Outline! Motivation Portability

More information

Windowing System on a 3D Pipeline. February 2005

Windowing System on a 3D Pipeline. February 2005 Windowing System on a 3D Pipeline February 2005 Agenda 1.Overview of the 3D pipeline 2.NVIDIA software overview 3.Strengths and challenges with using the 3D pipeline GeForce 6800 220M Transistors April

More information

Particle-Based Volume Rendering of Unstructured Volume Data

Particle-Based Volume Rendering of Unstructured Volume Data Particle-Based Volume Rendering of Unstructured Volume Data Takuma KAWAMURA 1)*) Jorji NONAKA 3) Naohisa SAKAMOTO 2),3) Koji KOYAMADA 2) 1) Graduate School of Engineering, Kyoto University 2) Center for

More information

NVIDIA Update and Directions on GPU Acceleration for Earth System Models

NVIDIA Update and Directions on GPU Acceleration for Earth System Models NVIDIA Update and Directions on GPU Acceleration for Earth System Models Stan Posey, HPC Program Manager, ESM and CFD, NVIDIA, Santa Clara, CA, USA Carl Ponder, PhD, Applications Software Engineer, NVIDIA,

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Intro Michael Bader Winter 2015/2016 Intro, Winter 2015/2016 1 Part I Scientific Computing and Numerical Simulation Intro, Winter 2015/2016 2 The Simulation Pipeline phenomenon,

More information

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency

The next generation supercomputer. Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency The next generation supercomputer and NWP system of JMA Masami NARITA, Keiichi KATAYAMA Numerical Prediction Division, Japan Meteorological Agency Contents JMA supercomputer systems Current system (Mar

More information

Technology for a better society. hetcomp.com

Technology for a better society. hetcomp.com Technology for a better society hetcomp.com 1 J. Seland, C. Dyken, T. R. Hagen, A. R. Brodtkorb, J. Hjelmervik,E Bjønnes GPU Computing USIT Course Week 16th November 2011 hetcomp.com 2 9:30 10:15 Introduction

More information

TEAPOT: A Toolset for Evaluating Performance, Power and Image Quality on Mobile Graphics Systems

TEAPOT: A Toolset for Evaluating Performance, Power and Image Quality on Mobile Graphics Systems International Conference on Supercomputing June 2013 TEAPOT: A Toolset for Evaluating Performance, Power and Image Quality on Mobile Graphics Systems Joan-Manuel Parcerisa Polychronis Xekalakis Computer

More information

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL

Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL International Edition Interactive Computer Graphics A TOP-DOWN APPROACH WITH SHADER-BASED OPENGL Sixth Edition Edward Angel Dave Shreiner Interactive Computer Graphics: A Top-Down Approach with Shader-Based

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels

An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels Masatomo Hashimoto Masaaki Terai Toshiyuki Maeda Kazuo Minami 26/04/2017 ICPE2017 1 Agenda Performance engineering

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline (and its implementation on GPUs) Computer Graphics CMU 15-462/15-662, Fall 2015 What you know how to do (at this point in the course) y y z x (w, h) z x Position objects

More information

Ray Casting on Programmable Graphics Hardware. Martin Kraus PURPL group, Purdue University

Ray Casting on Programmable Graphics Hardware. Martin Kraus PURPL group, Purdue University Ray Casting on Programmable Graphics Hardware Martin Kraus PURPL group, Purdue University Overview Parallel volume rendering with a single GPU Implementing ray casting for a GPU Basics Optimizations Published

More information

What s New with GPGPU?

What s New with GPGPU? What s New with GPGPU? John Owens Assistant Professor, Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Microprocessor Scaling is Slowing

More information

Christopher Sewell Katrin Heitmann Li-ta Lo Salman Habib James Ahrens

Christopher Sewell Katrin Heitmann Li-ta Lo Salman Habib James Ahrens LA-UR- 14-25437 Approved for public release; distribution is unlimited. Title: Portable Parallel Halo and Center Finders for HACC Author(s): Christopher Sewell Katrin Heitmann Li-ta Lo Salman Habib James

More information

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences

Hardware Accelerated Volume Visualization. Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences Hardware Accelerated Volume Visualization Leonid I. Dimitrov & Milos Sramek GMI Austrian Academy of Sciences A Real-Time VR System Real-Time: 25-30 frames per second 4D visualization: real time input of

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

LLVM + Gallium3D: Mixing a Compiler With a Graphics Framework. Stéphane Marchesin

LLVM + Gallium3D: Mixing a Compiler With a Graphics Framework. Stéphane Marchesin LLVM + Gallium3D: Mixing a Compiler With a Graphics Framework Stéphane Marchesin What problems are we solving? Shader optimizations are really needed All Mesa drivers are

More information

Programming shaders & GPUs Christian Miller CS Fall 2011

Programming shaders & GPUs Christian Miller CS Fall 2011 Programming shaders & GPUs Christian Miller CS 354 - Fall 2011 Fixed-function vs. programmable Up until 2001, graphics cards implemented the whole pipeline for you Fixed functionality but configurable

More information

Fujitsu s Technologies to the K Computer

Fujitsu s Technologies to the K Computer Fujitsu s Technologies to the K Computer - a journey to practical Petascale computing platform - June 21 nd, 2011 Motoi Okuda FUJITSU Ltd. Agenda The Next generation supercomputer project of Japan The

More information

Dave Shreiner, ARM March 2009

Dave Shreiner, ARM March 2009 4 th Annual Dave Shreiner, ARM March 2009 Copyright Khronos Group, 2009 - Page 1 Motivation - What s OpenGL ES, and what can it do for me? Overview - Lingo decoder - Overview of the OpenGL ES Pipeline

More information

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1

Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Copyright Khronos Group Page 1 Next Generation OpenGL Neil Trevett Khronos President NVIDIA VP Mobile Ecosystem @neilt3d Copyright Khronos Group 2015 - Page 1 Copyright Khronos Group 2015 - Page 2 Khronos Connects Software to Silicon

More information

Toward Building up Arm HPC Ecosystem --Fujitsu s Activities--

Toward Building up Arm HPC Ecosystem --Fujitsu s Activities-- Toward Building up Arm HPC Ecosystem --Fujitsu s Activities-- Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED Jun. 28 th, 2018 0 Copyright 2018 FUJITSU LIMITED Outline of

More information

VTK-m: Uniting GPU Acceleration Successes. Robert Maynard Kitware Inc.

VTK-m: Uniting GPU Acceleration Successes. Robert Maynard Kitware Inc. VTK-m: Uniting GPU Acceleration Successes Robert Maynard Kitware Inc. VTK-m Project Supercomputer Hardware Advances Everyday More and more parallelism High-Level Parallelism The Free Lunch Is Over (Herb

More information

Bridging the Gap Between High Quality and High Performance for HPC Visualization

Bridging the Gap Between High Quality and High Performance for HPC Visualization Bridging the Gap Between High Quality and High Performance for HPC Visualization Rob Sisneros National Center for Supercomputing Applications University of Illinois at Urbana Champaign Outline Why am I

More information

Octree-Based Sparse Voxelization for Real-Time Global Illumination. Cyril Crassin NVIDIA Research

Octree-Based Sparse Voxelization for Real-Time Global Illumination. Cyril Crassin NVIDIA Research Octree-Based Sparse Voxelization for Real-Time Global Illumination Cyril Crassin NVIDIA Research Voxel representations Crane et al. (NVIDIA) 2007 Allard et al. 2010 Christensen and Batali (Pixar) 2004

More information

Introduction to Scientific Visualization

Introduction to Scientific Visualization Introduction to Scientific Visualization Aaron Birkland Cornell Center for Advanced Computing Data Analysis on Ranger January 2012 A lab-intensive workshop Start off with basic concepts Data, transformations,

More information

Introduction of Oakforest-PACS

Introduction of Oakforest-PACS Introduction of Oakforest-PACS Hiroshi Nakamura Director of Information Technology Center The Univ. of Tokyo (Director of JCAHPC) Outline Supercomputer deployment plan in Japan What is JCAHPC? Oakforest-PACS

More information

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist It s a Multicore World John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist Waiting for Moore s Law to save your serial code started getting bleak in 2004 Source: published SPECInt

More information

The Graphics Pipeline

The Graphics Pipeline The Graphics Pipeline Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel Ray Tracing: Why Slow? Basic ray tracing: 1 ray/pixel But you really want shadows, reflections, global illumination, antialiasing

More information

Software-Defined In-Situ Visualization with KNL on Stampede2

Software-Defined In-Situ Visualization with KNL on Stampede2 Software-Defined In-Situ Visualization with KNL on Stampede2 ISC WORKSHOP ON IN SITU VISUALIZATION 2017 22 June 2017 PRESENTED BY: Paul A. Navrátil, Ph.D. Manager, Scalable Visualization Technologies pnav@tacc.utexas.edu

More information

Transport Simulations beyond Petascale. Jing Fu (ANL)

Transport Simulations beyond Petascale. Jing Fu (ANL) Transport Simulations beyond Petascale Jing Fu (ANL) A) Project Overview The project: Peta- and exascale algorithms and software development (petascalable codes: Nek5000, NekCEM, NekLBM) Science goals:

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

SCIENTIFIC VISUALIZATION IN HPC

SCIENTIFIC VISUALIZATION IN HPC April 4-7, 2016 Silicon Valley SCIENTIFIC VISUALIZATION IN HPC Peter Messmer, 4/4/2016 HIGH PERFORMANCE COMPUTING TODAY* "Yes," said Deep Thought, "I can do it." [Seven and a half million years later...

More information

GPU Ray Tracing at the Desktop and in the Cloud. Phillip Miller, NVIDIA Ludwig von Reiche, mental images

GPU Ray Tracing at the Desktop and in the Cloud. Phillip Miller, NVIDIA Ludwig von Reiche, mental images GPU Ray Tracing at the Desktop and in the Cloud Phillip Miller, NVIDIA Ludwig von Reiche, mental images Ray Tracing has always had an appeal Ray Tracing Prediction The future of interactive graphics is

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

GPGPU. Peter Laurens 1st-year PhD Student, NSC

GPGPU. Peter Laurens 1st-year PhD Student, NSC GPGPU Peter Laurens 1st-year PhD Student, NSC Presentation Overview 1. What is it? 2. What can it do for me? 3. How can I get it to do that? 4. What s the catch? 5. What s the future? What is it? Introducing

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Post-K Development and Introducing DLU. Copyright 2017 FUJITSU LIMITED

Post-K Development and Introducing DLU. Copyright 2017 FUJITSU LIMITED Post-K Development and Introducing DLU 0 Fujitsu s HPC Development Timeline K computer The K computer is still competitive in various fields; from advanced research to manufacturing. Deep Learning Unit

More information

ArcGIS Engine Developer Kit System Requirements

ArcGIS Engine Developer Kit System Requirements ArcGIS Engine Developer Kit 9.0.1 System Requirements This PDF contains system requirements information, including hardware requirements, best performance configurations, and limitations, for ArcGIS Engine

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Jim Jeffers Principal Engineer and Manager, HPC Visualization Intel Corporation

Jim Jeffers Principal Engineer and Manager, HPC Visualization Intel Corporation Jim Jeffers Principal Engineer and Manager, HPC Visualization 2016 Intel Corporation Software Defined Visualization Delivers Higher Visual Fidelity Of Larger DataSETS On Existing HPC Infrastructure Through

More information

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation Lecture 5 Vertex and Fragment Shaders-1 CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives The rendering pipeline and the shaders Data

More information

Toward Building up ARM HPC Ecosystem

Toward Building up ARM HPC Ecosystem Toward Building up ARM HPC Ecosystem Shinji Sumimoto, Ph.D. Next Generation Technical Computing Unit FUJITSU LIMITED Sept. 12 th, 2017 0 Outline Fujitsu s Super computer development history and Post-K

More information

Findings from real petascale computer systems with meteorological applications

Findings from real petascale computer systems with meteorological applications 15 th ECMWF Workshop Findings from real petascale computer systems with meteorological applications Toshiyuki Shimizu Next Generation Technical Computing Unit FUJITSU LIMITED October 2nd, 2012 Outline

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data. Ralf Kähler (KIPAC/SLAC)

GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data. Ralf Kähler (KIPAC/SLAC) GPU-Based Visualization of AMR and N-Body Dark Matter Simulation Data Ralf Kähler (KIPAC/SLAC) HiPACC-Meeting 03/21/2014 COMPUTER GRAPHICS Rasterization COMPUTER GRAPHICS Assumption (for now): Input object(s)

More information

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017

Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Blis: Better Language for Image Stuff Project Proposal Programming Languages and Translators, Spring 2017 Abbott, Connor (cwa2112) Pan, Wendy (wp2213) Qinami, Klint (kq2129) Vaccaro, Jason (jhv2111) [System

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Real-time Graphics 9. GPGPU

Real-time Graphics 9. GPGPU 9. GPGPU GPGPU GPU (Graphics Processing Unit) Flexible and powerful processor Programmability, precision, power Parallel processing CPU Increasing number of cores Parallel processing GPGPU general-purpose

More information

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University Part 1: General introduction Ch. Hoelbling Wuppertal University Lattice Practices 2011 Outline 1 Motivation 2 Hardware Overview History Present Capabilities 3 Programming model Past: OpenGL Present: CUDA

More information

OpenGL Based Testing Tool Architecture for Exascale Computing

OpenGL Based Testing Tool Architecture for Exascale Computing OpenGL Based Testing Tool Architecture for Exascale Computing Muhammad Usman Ashraf Faculty of Information and Computer Technology Department of Computer Science King Abdulaziz University Jeddah, 21577,

More information

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 4. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 4 Tamar Shinar Computer Science & Engineering UC Riverside Shadows Shadows for each pixel do compute viewing ray if ( ray hits an object with t in [0, inf] ) then compute

More information

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University Graphics Programming Computer Graphics, VT 2016 Lecture 2, Chapter 2 Fredrik Nysjö Centre for Image analysis Uppsala University Graphics programming Typically deals with How to define a 3D scene with a

More information

A General Discussion on! Parallelism!

A General Discussion on! Parallelism! Lecture 2! A General Discussion on! Parallelism! John Cavazos! Dept of Computer & Information Sciences! University of Delaware! www.cis.udel.edu/~cavazos/cisc879! Lecture 2: Overview Flynn s Taxonomy of

More information

An Overview of Fujitsu s Lustre Based File System

An Overview of Fujitsu s Lustre Based File System An Overview of Fujitsu s Lustre Based File System Shinji Sumimoto Fujitsu Limited Apr.12 2011 For Maximizing CPU Utilization by Minimizing File IO Overhead Outline Target System Overview Goals of Fujitsu

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

Fujitsu High Performance CPU for the Post-K Computer

Fujitsu High Performance CPU for the Post-K Computer Fujitsu High Performance CPU for the Post-K Computer August 21 st, 2018 Toshio Yoshida FUJITSU LIMITED 0 Key Message A64FX is the new Fujitsu-designed Arm processor It is used in the post-k computer A64FX

More information

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo

Overview of Supercomputer Systems. Supercomputing Division Information Technology Center The University of Tokyo Overview of Supercomputer Systems Supercomputing Division Information Technology Center The University of Tokyo Supercomputers at ITC, U. of Tokyo Oakleaf-fx (Fujitsu PRIMEHPC FX10) Total Peak performance

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

NVIDIA Case Studies:

NVIDIA Case Studies: NVIDIA Case Studies: OptiX & Image Space Photon Mapping David Luebke NVIDIA Research Beyond Programmable Shading 0 How Far Beyond? The continuum Beyond Programmable Shading Just programmable shading: DX,

More information

Voxel Cone Tracing and Sparse Voxel Octree for Real-time Global Illumination. Cyril Crassin NVIDIA Research

Voxel Cone Tracing and Sparse Voxel Octree for Real-time Global Illumination. Cyril Crassin NVIDIA Research Voxel Cone Tracing and Sparse Voxel Octree for Real-time Global Illumination Cyril Crassin NVIDIA Research Global Illumination Indirect effects Important for realistic image synthesis Direct lighting Direct+Indirect

More information

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y.

COMP 4801 Final Year Project. Ray Tracing for Computer Graphics. Final Project Report FYP Runjing Liu. Advised by. Dr. L.Y. COMP 4801 Final Year Project Ray Tracing for Computer Graphics Final Project Report FYP 15014 by Runjing Liu Advised by Dr. L.Y. Wei 1 Abstract The goal of this project was to use ray tracing in a rendering

More information

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends

Why Use the GPU? How to Exploit? New Hardware Features. Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid. Semiconductor trends Imagine stream processor; Bill Dally, Stanford Connection Machine CM; Thinking Machines Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multigrid Jeffrey Bolz Eitan Grinspun Caltech Ian Farmer

More information

Accelerating Realism with the (NVIDIA Scene Graph)

Accelerating Realism with the (NVIDIA Scene Graph) Accelerating Realism with the (NVIDIA Scene Graph) Holger Kunz Manager, Workstation Middleware Development Phillip Miller Director, Workstation Middleware Product Management NVIDIA application acceleration

More information

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation

Cloth Simulation on the GPU. Cyril Zeller NVIDIA Corporation Cloth Simulation on the GPU Cyril Zeller NVIDIA Corporation Overview A method to simulate cloth on any GPU supporting Shader Model 3 (Quadro FX 4500, 4400, 3400, 1400, 540, GeForce 6 and above) Takes advantage

More information

Data analysis with ParaView CSMP Workshop 2009 Gillian Gruen

Data analysis with ParaView CSMP Workshop 2009 Gillian Gruen Data analysis with ParaView 3.4.0 CSMP Workshop 2009 Gillian Gruen How to...... display a data set ( Contour, Glyph, Clip, Slice) be efficient in displaying similar data sets ( work with Lookmarks )...

More information

Fujitsu s new supercomputer, delivering the next step in Exascale capability

Fujitsu s new supercomputer, delivering the next step in Exascale capability Fujitsu s new supercomputer, delivering the next step in Exascale capability Toshiyuki Shimizu November 19th, 2014 0 Past, PRIMEHPC FX100, and roadmap for Exascale 2011 2012 2013 2014 2015 2016 2017 2018

More information

CIS 467/602-01: Data Visualization

CIS 467/602-01: Data Visualization CIS 467/60-01: Data Visualization Isosurfacing and Volume Rendering Dr. David Koop Fields and Grids Fields: values come from a continuous domain, infinitely many values - Sampled at certain positions to

More information

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED

Fujitsu Petascale Supercomputer PRIMEHPC FX10. 4x2 racks (768 compute nodes) configuration. Copyright 2011 FUJITSU LIMITED Fujitsu Petascale Supercomputer PRIMEHPC FX10 4x2 racks (768 compute nodes) configuration PRIMEHPC FX10 Highlights Scales up to 23.2 PFLOPS Improves Fujitsu s supercomputer technology employed in the FX1

More information