tpa, bq a b is a multiple of 5 u tp0, 0q, p0, 5q, p0, 5q,...,

Size: px
Start display at page:

Download "tpa, bq a b is a multiple of 5 u tp0, 0q, p0, 5q, p0, 5q,...,"

Transcription

1 A binar relation on a set A is a sbset of A ˆ A, hereelements pa, bq are ritten as a b. For eample, let A Z, so A ˆ A tpn, mq n, m P Z. Let be the binar relation gien b a b if and onl if a and b hae the same remainder modlo 5. In terms of sbsets, the binar relation is defined as the sbset of Z ˆ Z gien b tpa, bq a b is a mltiple of 5 tp0, 0q, p0, 5q, p0, 5q,...,...,p1, 1q, p1, 6q, p1, 4q,...,...,p 1, 1q, p 1, 4q, p 1, 6q,... A binar relations models relationships beteen elements of A. More eamples of (binar) relations: 1. For A anmbersstem,leta b if a b. R, S, T 2. For A anmbersstem,leta b if a b. R, not S, T 3. For A anmbersstem,leta b if a b. not R, not S, T 4. For A a set of people, let a b if a knos b. 5. For A a set of people, let a b if a and b speak a common langage. R, S, not T A binar relation on a set A is... (R) refleie if a a for all a P A; (S) smmetric if heneer a b, thenb a as ell; (T) transitie if heneer a b and b c, thena c as ell. An eqialence relation on a set A is a binar relation that is refleie, smmetric, and transitie. (Onl #1)

2 Define the relation on Z gien b a b if a and b hae the same remainder hen diided b 5. Is is an eqialence relation? Check: To integers a and b hae the same remainder if and onl if a b is a mltiple of 5. So a b if and onl if a b 5n for some n P Z. refleiit: smmetr: transitiit: a a 0 (a has the same remainder as itself) X If a b 5n, thenb a 5n 5p nq. X If a b 5n and b c 5m, then a c pa bq`pb cq 5n ` 5m 5pn ` mq.x Yes! This is an eqialence relation! Let A be a set. Consider the relation on PpAq b Is is an eqialence relation? S T if S Ä T. Check: This is transitie, bt not refleie or smmetric. So no, it is not an eqialence relation. Is S T if S Ñ T an eqialence relation on PpAq? Check: This is refleie and transitie, bt not smmetric. So no, it is not an eqialence relation. Is S T if S Ñ T or S Ñ T an eqialence relation on PpAq? Check: This is refleie and smmetric, bt not transitie. So still no, it is not an eqialence relation.

3 Let A ta, b, c. WhichsbsetsS of A ˆ A define eqialence relations on A? Anser Refleie: S mst contain pa, aq, pb, bq, and pc, cq (sometimes ritten a a, b b, andc c in this contet). Smmetric: If P S, thenemstalsohae (for an, Pta, b, c). Transitie: If P S and z P S, thenemstalsohae z (for an,, z Pta, b, c). Or approach: Start ith a a, b b, c c, andthenadd elements one at a time, and see hat else is forced to be in S ta a, b b, c c 2. ta a, b b, c c, a b, b a 3. ta a, b b, c c, a c, c a 4. ta a, b b, c c, b c, c b 5. ta a, b b, c c, a b,a c, b a, c a, c b, b c That s it! Let be an eqialence relation on a set A, andleta P A. The set of all elements b P A sch that a b is called the eqialence class of a, denoted b ras. Eample: We shoed that for A ta, b, c the set S ta a, b b, c c, a c, c a defines an eqialence relation on A. Then ras ta, c rcs, and rbs tb are the to eqialence classes in A (ith respect to this relation). (We sa there are to, not three, since the eqialence classes refers to the sets themseles, not to the elements that generate them.)

4 Let be an eqialence relation on a set A, andleta P A. The set of all elements b P A sch that a b is called the eqialence class of a, denoted b ras. Eample: We shoed that a b if a and b hae the same remainder hen diided b 5. is an eqialence relation on Z. Then r0s t5n n P Z r1s t5n`1 n P Z r2s t5n`2 n P Z r3s t5n ` 3 n P Z r4s t5n ` 4 n P Z r5s t5n ` 5 n P Z t5m m P Z r0s r 5s r10s r6s t5n ` 6 n P Z t5m`1 m P Z r1s r 4s r11s. In general, if Prs, thatmeans. So. So Prs. Using this reasoning, e can sho that if Prs, thenrs rs. We call an element a of a class C representatie of C (since e can rite C ras for an a P C). Let be an eqialence relation on a set A, andleta P A. The set of all elements b P A sch that a b is called the eqialence class of a, denoted b ras. In fact, the eqialence classes of A partition A into sbsets. This means that 1. the eqialence classes are sbsets of A: ras Ñ A for all a P A; 2. an to eqialence classes are either eqal or disjoint: for all a, b P A, eitherras rbs or rasxrbs H; and 3. the nion of all the eqialence classes is all of A: A aparas. For eample, in or last eample, there are eactl 5 eqialence classes: r0s, r1s, r2s, r3s, and r4s. An other seemingl di erent class is actall one of these (for eample, r5s r0s). And r0syr1syr2syr3syr4s Z.

5 A graph is a set of objects, or ertices, together ith a (mlti)set of edges that connect pairs of ertices. Eample: e 2 e 3 e 4 e 5 Here, the ertices are V t,,,,, and the edges are E t, e 2, e 3, e 4, e 5. An edge that connects a erte to itself (like e 5 )iscalledaloop. We sa a erte a is adjacent to a erte b if there is an edge connecting a and b. (Notice that for a generic graph, adjacenc is a smmetric relation, bt is not refleie nor is it transitie.) Classes of graphs: A graph is simple if there are no loops and eer pair of ertices has at most one edge beteen them. Simple! NOT simple! NOT simple!

6 Classes of graphs: A graph is simple if there are no loops and eer pair of ertices has at most one edge beteen them. A graph is a mltigraph if there are no loops, bt there cold be mltiple edges beteen to ertices. Mltigraph! Mltigraph! NOT Mltigraph! Classes of graphs: A graph is simple if there are no loops and eer pair of ertices has at most one edge beteen them. A graph is a mltigraph if there are no loops, bt there cold be mltiple edges beteen to ertices. A graph is a psedograph if there cold be loops or mltiple edges. (This is jst hat e call a graph.) So t psedographs/graphs â t mltigraphs â t simple graphs. (Note: The â smbol is sed here becase, for eample, eer simple graph is a mltigraph, bt there are mltigraphs that are not simple.)

7 Directed graphs A directed graph (also called a digraph or a qier) is a graph, together ith a choice of direction for each edge. A directed graph is simple if there are no loops and eer pair of ertices has at most one edge in each direction beteen them. Simple! NOT Simple! NOT Simple! Directed graphs A directed graph (also called a digraph or a qier) is a graph, together ith a choice of direction for each edge. A directed graph is simple if there are no loops and eer pair of ertices has at most one edge in each direction beteen them. A directed graph is a directed mltigraph if there cold be loops or mltiple edges. (This is jst hat e call a directed graph) So t directed (mlti)graphs â t directed simple graphs. The book also talks abot mied graphs, here some of the edges are directed and some aren t. We sall take care of this b modeling the non-directed edges ith to directed edges, one in each direction.

8 G e 2 e 3 e 4 e 5 Npq t, Npq t Npq t Npq t Npq t, Npt, q t,, Npt, q t,,, We sa a erte a is adjacent to a erte b if there is an edge connecting a and b. For eample, in G, is adjacent to and ; is adjacent to ; is adjacent to and. We sa that an edge is incident to a erte if the edge connects to the erte. For eample, in G, is incident to and ; e 5 is incident to. If to ertices and are adjacent, e e sa that the are neighbors, andthat is in the neighborhood Npq of (and ice-ersa). If A Ñ V,then NpAq PA Npq. G e 2 e 3 e 4 e 5 Npq t, Npq t Npq t Npq t Npq t, degpq 3 degpq 1 degpq 2 degpq 1 degpq 3 The degree degpq of a erte is the nmber of edge ends attached to. Fact: a graph is simple if and onl if degpq Npq for all P V. H e 2 e 3 Npq t, Npq t Npq t Npq t Npq t degpq 2 degpq 1 degpq 1 degpq 1 degpq 1

9 G e 2 e 3 e 4 e 5 Npq t, Npq t Npq t Npq t Npq t, degpq 3 degpq 1 degpq 2 degpq 1 degpq 3 The degree degpq of a erte is the nmber of edge ends attached to. We call a graph reglar if all the ertices hae the same degree. Theorem (The handshake theorem) In a graph G pv,eq, 2 E ÿ PV deg. Corollar In an graph, there are an een nmber of odd ertices.

Math 365 Wednesday 4/10/ & 10.2 Graphs

Math 365 Wednesday 4/10/ & 10.2 Graphs Math 365 Wednesda 4/10/19 10.1 & 10.2 Graphs Eercise 44. (Relations and digraphs) For each the relations in Eercise 43(a), dra the corresponding directed graph here V = {0, 1, 2, 3} and a! b if a b. What

More information

MTL 776: Graph Algorithms. B S Panda MZ 194

MTL 776: Graph Algorithms. B S Panda MZ 194 MTL 776: Graph Algorithms B S Panda MZ 194 bspanda@maths.iitd.ac.in bspanda1@gmail.com Lectre-1: Plan Definitions Types Terminology Sb-graphs Special types of Graphs Representations Graph Isomorphism Definitions

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners Algorithmica manscript No. (ill be inserted by the editor) 1 On Plane Constrained Bonded-Degree Spanners 2 3 Prosenjit Bose Rolf Fagerberg André an Renssen Sander Verdonschot 4 5 Receied: date / Accepted:

More information

On the complexity of Submap Isomorphism

On the complexity of Submap Isomorphism On the compleit of Sbmap Isomorphism Christine Solnon 1,2, Gillame Damiand 1,2, Colin de la Higera 3, and Jean-Christophe Janodet 4 1 INSA de Lon, LIRIS, UMR 5205 CNRS, 69621 Villerbanne, France 2 Université

More information

Fixed-Parameter Algorithms for Cluster Vertex Deletion

Fixed-Parameter Algorithms for Cluster Vertex Deletion Fixed-Parameter Algorithms for Clster Vertex Deletion Falk Hüffner Christian Komsieicz Hannes Moser Rolf Niedermeier Institt für Informatik, Friedrich-Schiller-Uniersität Jena, Ernst-Abbe-Platz 2, D-07743

More information

1-2 Geometric vectors

1-2 Geometric vectors 1-2 Geometric ectors We are going to start simple, by defining 2-dimensional ectors, the simplest ectors there are. Are these the ectors that can be defined by to numbers only? Yes, and here is a formal

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introdction (forarding and roting) Reie of qeeing theor Roting algorithms Link state, Distance Vector Roter design and operation IP: Internet Protocol IP4 (datagram format, addressing, ICMP,

More information

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti

Queries. Inf 2B: Ranking Queries on the WWW. Suppose we have an Inverted Index for a set of webpages. Disclaimer. Kyriakos Kalorkoti Qeries Inf B: Ranking Qeries on the WWW Kyriakos Kalorkoti School of Informatics Uniersity of Edinbrgh Sppose e hae an Inerted Index for a set of ebpages. Disclaimer I Not really the scenario of Lectre.

More information

On Plane Constrained Bounded-Degree Spanners

On Plane Constrained Bounded-Degree Spanners On Plane Constrained Bonded-Degree Spanners Prosenjit Bose 1, Rolf Fagerberg 2, André an Renssen 1, Sander Verdonschot 1 1 School of Compter Science, Carleton Uniersity, Ottaa, Canada. Email: jit@scs.carleton.ca,

More information

Multi-Way Search Tree ( ) (2,4) Trees. Multi-Way Inorder Traversal. Multi-Way Search Tree ( ) Multi-Way Searching. Multi-Way Searching

Multi-Way Search Tree ( ) (2,4) Trees. Multi-Way Inorder Traversal. Multi-Way Search Tree ( ) Multi-Way Searching. Multi-Way Searching Mlti-Way Search Tree ( 0..) (,) Trees 9 5 7 0 (,) Trees (,) Trees Mlti-Way Search Tree ( 0..) A mlti-ay search tree is an ordered tree sch that Each internal node has at least to children and stores d

More information

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet

An Extended Fault-Tolerant Link-State Routing Protocol in the Internet An Extended Falt-Tolerant Link-State Roting Protocol in the Internet Jie W, Xiaola Lin, Jiannong Cao z, and Weijia Jia x Department of Compter Science and Engineering Florida Atlantic Uniersit Boca Raton,

More information

Reconstructing Generalized Staircase Polygons with Uniform Step Length

Reconstructing Generalized Staircase Polygons with Uniform Step Length Jornal of Graph Algorithms and Applications http://jgaa.info/ ol. 22, no. 3, pp. 431 459 (2018) DOI: 10.7155/jgaa.00466 Reconstrcting Generalized Staircase Polygons with Uniform Step Length Nodari Sitchinaa

More information

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b)

Lemma 1 Let the components of, Suppose. Trees. A tree is a graph which is. (a) Connected and. (b) has no cycles (acyclic). (b) Trees Lemma Let the components of ppose "! be (a) $&%('*)+ - )+ / A tree is a graph which is (b) 0 %(')+ - 3)+ / 6 (a) (a) Connected and (b) has no cycles (acyclic) (b) roof Eery path 8 in which is not

More information

Rectangle-of-influence triangulations

Rectangle-of-influence triangulations CCCG 2016, Vancoer, British Colmbia, Ag 3 5, 2016 Rectangle-of-inflence trianglations Therese Biedl Anna Lbi Saeed Mehrabi Sander Verdonschot 1 Backgrond The concept of rectangle-of-inflence (RI) draings

More information

KINEMATICS OF FLUID MOTION

KINEMATICS OF FLUID MOTION KINEMATICS OF FLUID MOTION The Velocity Field The representation of properties of flid parameters as fnction of the spatial coordinates is termed a field representation of the flo. One of the most important

More information

Review Multicycle: What is Happening. Controlling The Multicycle Design

Review Multicycle: What is Happening. Controlling The Multicycle Design Review lticycle: What is Happening Reslt Zero Op SrcA SrcB Registers Reg Address emory em Data Sign etend Shift left Sorce A B Ot [-6] [5-] [-6] [5-] [5-] Instrction emory IR RegDst emtoreg IorD em em

More information

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction

Network layer. Two Key Network-Layer Functions. Datagram Forwarding table. IP datagram format. IP Addressing: introduction Netork laer transport segment sending to receiing host on sending side encapslates segments into grams on rcing side, deliers segments to transport laer laer protocols in eer host, roter roter eamines

More information

POWER-OF-2 BOUNDARIES

POWER-OF-2 BOUNDARIES Warren.3.fm Page 5 Monday, Jne 17, 5:6 PM CHAPTER 3 POWER-OF- BOUNDARIES 3 1 Ronding Up/Down to a Mltiple of a Known Power of Ronding an nsigned integer down to, for eample, the net smaller mltiple of

More information

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional

[1] Hopcroft, J., D. Joseph and S. Whitesides, Movement problems for twodimensional Acknoledgement. The athors thank Bill Lenhart for interesting discssions on the recongration of rlers. References [1] Hopcroft, J., D. Joseph and S. Whitesides, Moement problems for todimensional linkages,

More information

Triangle Contact Representations

Triangle Contact Representations Triangle Contact Representations Stean Felsner elsner@math.t-berlin.de Technische Uniersität Berlin, Institt ür Mathematik Strasse des 7. Jni 36, 0623 Berlin, Germany Abstract. It is conjectred that eery

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Net: Graph Algorithms Graphs Ch 22 Graph representations adjacenc list adjacenc matri Minimum Spanning Trees Ch 23 Traersing graphs Breadth-First Search Depth-First Search 7/16/2013 CSE 3101 1 Graphs Definition

More information

Authors. Tamilnadu, India 2.

Authors.   Tamilnadu, India 2. International Jornal of Emerging Trends in Science and Technology Impact Factor: 2.838 DOI: http://dx.doi.org/10.18535/ijetst/3i03.04 Irredndant Complete Domination Nmber of Graphs Athors A.Nellai Mrgan

More information

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES

DEFINITION OF GRAPH GRAPH THEORY GRAPHS ACCORDING TO THEIR VERTICES AND EDGES EXAMPLE GRAPHS ACCORDING TO THEIR VERTICES AND EDGES DEFINITION OF GRAPH GRAPH THEORY Prepared by Engr. JP Timola Reference: Discrete Math by Kenneth H. Rosen A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of edges. Each

More information

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding

Flooding. Routing: Outlook. Flooding Algorithms. Spanning Tree. Flooding Roting: Otlook Flooding Flooding Link-State: complete, global knoledge Distance-Vector: iteratie, distribted calclation Goal: To distribte a packet in the hole netork (i.e. to realie a netork-ide broadcast)

More information

On Bichromatic Triangle Game

On Bichromatic Triangle Game On Bichromatic Triangle Game Gordana Manić Daniel M. Martin Miloš Stojakoić Agst 16, 2012 Abstract We stdy a combinatorial game called Bichromatic Triangle Game, defined as follows. Two players R and B

More information

23 Single-Slit Diffraction

23 Single-Slit Diffraction 23 Single-Slit Diffraction Single-slit diffraction is another interference phenomenon. If, instead of creating a mask ith to slits, e create a mask ith one slit, and then illuminate it, e find, under certain

More information

The vertex set is a finite nonempty set. The edge set may be empty, but otherwise its elements are two-element subsets of the vertex set.

The vertex set is a finite nonempty set. The edge set may be empty, but otherwise its elements are two-element subsets of the vertex set. Math 3336 Section 10.2 Graph terminology and Special Types of Graphs Definition: A graph is an object consisting of two sets called its vertex set and its edge set. The vertex set is a finite nonempty

More information

Image Warping, Compositing & Morphing

Image Warping, Compositing & Morphing Image Processing Image Warping, Compositing & Morphing Adam Finkelstein Princeton Uniersit COS 426, Spring 2005 Image Processing Qantization Uniform Qantization Random dither Ordered dither Flod-Steinberg

More information

GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B

GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B GRAPH THEORY LECTURE 3 STRUCTURE AND REPRESENTATION PART B Abstract. We continue 2.3 on subgraphs. 2.4 introduces some basic graph operations. 2.5 describes some tests for graph isomorphism. Outline 2.3

More information

Image Enhancement in the Frequency Domain Periodicity and the need for Padding:

Image Enhancement in the Frequency Domain Periodicity and the need for Padding: Prepared B: Dr. Hasan Demirel PhD Image Enhancement in the Freqenc Domain Periodicit and the need for Padding: Periodicit propert of the DFT: The discrete Forier Transform and the inverse Forier transforms

More information

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v.

Section 8.2 Graph Terminology. Undirected Graphs. Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. Section 8.2 Graph Terminology Undirected Graphs Definition: Two vertices u, v in V are adjacent or neighbors if there is an edge e between u and v. The edge e connects u and v. The vertices u and v are

More information

h-vectors of PS ear-decomposable graphs

h-vectors of PS ear-decomposable graphs h-vectors of PS ear-decomposable graphs Nima Imani 2, Lee Johnson 1, Mckenzie Keeling-Garcia 1, Steven Klee 1 and Casey Pinckney 1 1 Seattle University Department of Mathematics, 901 12th Avene, Seattle,

More information

Cutting Cycles of Rods in Space: Hardness and Approximation

Cutting Cycles of Rods in Space: Hardness and Approximation Ctting Cycles of Rods in Space: Hardness and pproximation oris rono ark de erg Chris Gray Elena mford bstract We stdy the problem of ctting a set of rods (line segments in R 3 ) into fragments, sing a

More information

Name: Period: Date: Analyzing Graphs of Functions and Relations Guided Notes

Name: Period: Date: Analyzing Graphs of Functions and Relations Guided Notes Analzing Graphs of Functions and Relations Guided Notes The graph of a function f is the set of ordered pairs(, f ), in the coordinate plane, such that is the domain of f. the directed distance from the

More information

Embeddings of cubic Halin graphs: Genus distributions

Embeddings of cubic Halin graphs: Genus distributions Also aailable at http://amc.imfm.si ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 6 (2013) 37 56 Embeddings of cbic Halin graphs: Gens distribtions Jonathan

More information

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture

Assignments. Computer Networks LECTURE 7 Network Layer: Routing and Addressing. Network Layer Function. Internet Architecture ompter Netorks LETURE Netork Laer: Roting and ddressing ssignments Project : Web Pro Serer DUE OT Sandha Darkadas Department of ompter Science Uniersit of Rochester Internet rchitectre Bottom-p: phsical:

More information

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin

(5.2) 151 Math Exercises. Graph Terminology and Special Types of Graphs. Malek Zein AL-Abidin King Saud University College of Science Department of Mathematics 151 Math Exercises (5.2) Graph Terminology and Special Types of Graphs Malek Zein AL-Abidin ه Basic Terminology First, we give some terminology

More information

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski

Internet Technology. 08. Routing. Paul Krzyzanowski. Rutgers University. Spring CS Paul Krzyzanowski Internet Technolog 08. Routing Paul Kranoski Rutgers Universit Spring 06 March, 06 CS 0-06 Paul Kranoski Routing algorithm goal st hop router = source router last hop router = destination router router

More information

CS 557 Lecture IX. Drexel University Dept. of Computer Science

CS 557 Lecture IX. Drexel University Dept. of Computer Science CS 7 Lectre IX Dreel Uniersity Dept. of Compter Science Fall 00 Shortest Paths Finding the Shortest Paths in a graph arises in many different application: Transportation Problems: Finding the cheapest

More information

10.2 Solving Quadratic Equations by Completing the Square

10.2 Solving Quadratic Equations by Completing the Square . Solving Qadratic Eqations b Completing the Sqare Consider the eqation We can see clearl that the soltions are However, What if the eqation was given to s in standard form, that is 6 How wold we go abot

More information

CAPL Scripting Quickstart

CAPL Scripting Quickstart CAPL Scripting Qickstart CAPL (Commnication Access Programming Langage) For CANalyzer and CANoe V1.01 2015-12-03 Agenda Important information before getting started 3 Visal Seqencer (GUI based programming

More information

Vectors. May Mass. Velocity. Temperature. Distance. Density. Force. Acceleration. Volume

Vectors. May Mass. Velocity. Temperature. Distance. Density. Force. Acceleration. Volume Vectors May 17 15 Vectors are mathematical qantities that hae direction and magnitde, and can be pictred as arrows. This is in contrast to scalars, which are qantities that hae a nmerical ale bt no direction.

More information

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code:

Prof. Kozyrakis. 1. (10 points) Consider the following fragment of Java code: EE8 Winter 25 Homework #2 Soltions De Thrsday, Feb 2, 5 P. ( points) Consider the following fragment of Java code: for (i=; i

More information

Chapter 5 Network Layer

Chapter 5 Network Layer Chapter Network Layer Network layer Physical layer: moe bit seqence between two adjacent nodes Data link: reliable transmission between two adjacent nodes Network: gides packets from the sorce to destination,

More information

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples:

Graphs of quadratics functions are parabolas opening up if a > 0, and down if a < 0. Examples: Quadratic Functions ( ) = a + b + c Graphs o quadratics unctions are parabolas opening up i a > 0, and down i a < 0. Eamples: = = + = = 0 MATH 80 Lecture B o 5 Ronald Brent 07 All rights reserved. Notes:

More information

Math 575 Exam 3. (t). What is the chromatic number of G?

Math 575 Exam 3. (t). What is the chromatic number of G? Math 575 Exam 3 Name 1 (a) Draw the Grötsch graph See your notes (b) Suppose that G is a graph having 6 vertices and 9 edges and that the chromatic polynomial of G is given below Fill in the missing coefficients

More information

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions

Chapter 4: Network Layer. TDTS06 Computer networks. Chapter 4: Network Layer. Network layer. Two Key Network-Layer Functions Chapter : Netork Laer TDTS06 Compter s Lectre : Netork laer II Roting algorithms Jose M. Peña, jospe@ida.li.se ID/DIT, LiU 009-09- Chapter goals: nderstand principles behind laer serices: laer serice models

More information

Combinatorial and Geometric Properties of Planar Laman Graphs

Combinatorial and Geometric Properties of Planar Laman Graphs Combinatorial and Geometric Properties of Planar Laman Graphs Stephen Koboro 1, Torsten Ueckerdt 2, and Kein Verbeek 3 1 Department of Compter Science, Uniersity of Arizona 2 Department of Applied Mathematics,

More information

Universal Turing Machine Chomsky Hierarchy Decidability Reducibility Uncomputable Functions Rice s Theorem Decidability Continued

Universal Turing Machine Chomsky Hierarchy Decidability Reducibility Uncomputable Functions Rice s Theorem Decidability Continued CD5080 AUBER odels of Computation, anguages and Automata ecture 14 älardalen University Content Universal Turing achine Chomsky Hierarchy Decidability Reducibility Uncomputable Functions Rice s Decidability

More information

Week 9-10: Connectivity

Week 9-10: Connectivity Week 9-0: Connectiity October 3, 206 Vertex Connectiity Let G = (V, E) be a graph. Gien two ertices x, y V. Two (x, y)-path are said to be internally disjoint if they hae no internal ertices in common.

More information

1 Points and Distances

1 Points and Distances Ale Zorn 1 Points and Distances 1. Draw a number line, and plot and label these numbers: 0, 1, 6, 2 2. Plot the following points: (A) (3,1) (B) (2,5) (C) (-1,1) (D) (2,-4) (E) (-3,-3) (F) (0,4) (G) (-2,0)

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

CS 173 Lecture 18: Relations on a Set

CS 173 Lecture 18: Relations on a Set CS 173 Lecture 18: Relations on a Set José Meseguer University of Illinois at Urbana-Champaign 1 Relations on a Set 1.1 The Data Type RelpAq Many algorithms, in particular the so-called graph algorithms,

More information

CS 467/567: Divide and Conquer on the PRAM

CS 467/567: Divide and Conquer on the PRAM CS 467/567: Divide and Conquer on the PRAM Stefan D. Bruda Winter 2017 BINARY SEARCH Problem: Given a equence S 1..n orted in nondecreaing order and a value x, find the ubcript k uch that S i x If n proceor

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3

The Domination and Competition Graphs of a Tournament. University of Colorado at Denver, Denver, CO K. Brooks Reid 3 The omination and Competition Graphs of a Tornament avid C. Fisher, J. Richard Lndgren 1, Sarah K. Merz University of Colorado at enver, enver, CO 817 K. rooks Reid California State University, San Marcos,

More information

The extra single-cycle adders

The extra single-cycle adders lticycle Datapath As an added bons, we can eliminate some of the etra hardware from the single-cycle path. We will restrict orselves to sing each fnctional nit once per cycle, jst like before. Bt since

More information

UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS. MICHAEL D. HUTTON y AND ANNA LUBIW z

UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS. MICHAEL D. HUTTON y AND ANNA LUBIW z UPWARD PLANAR DRAWING OF SINGLE SOURCE ACYCLIC DIGRAPHS MICHAEL D. HUTTON y AND ANNA LUBIW z Abstract. An pward plane drawing of a directed acyclic graph is a plane drawing of the digraph in which each

More information

CPCS Discrete Structures 1

CPCS Discrete Structures 1 Let us switch to a new topic: Graphs CPCS 222 - Discrete Structures 1 Introduction to Graphs Definition: A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs

More information

Def.: a, b, and c are called the for the line L. x = y = z =

Def.: a, b, and c are called the for the line L. x = y = z = Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed Lines in Space Eercise : Consider the vector v = Sketch and describe the following set: t v ta, tb, tc : t a, b, c. Let P =,,. Sketch

More information

Vertex Guarding in Weak Visibility Polygons

Vertex Guarding in Weak Visibility Polygons Vertex Garding in Weak Visibility Polygons Pritam Bhattacharya, Sbir Kmar Ghosh*, Bodhayan Roy School of Technology and Compter Science Tata Institte of Fndamental Research Mmbai 400005, India arxi:1409.46212

More information

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries.

Point Location. The Slab Method. Optimal Schemes. The Slab Method. Preprocess a planar, polygonal subdivision for point location queries. Point Location The Slab Method Prerocess a lanar, olygonal sbdiision for oint location qeries. = (18, 11) raw a ertical line throgh each ertex. This decomoses the lane into slabs. In each slab, the ertical

More information

Isolates: Serializability Enforcement for Concurrent ML

Isolates: Serializability Enforcement for Concurrent ML Prde Uniersity Prde e-pbs Department of Compter Science Technical Reports Department of Compter Science 2010 Isolates: Serializability Enforcement for Concrrent ML Lkasz Ziarek Prde Uniersity, lziarek@cs.prde.ed

More information

Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual

Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual Fixed-Parameter Tractability Results for Full-Degree Spanning Tree and Its Dual Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke Institut für Informatik, Friedrich-Schiller-Uniersität Jena Ernst-Abbe-Platz

More information

Multi-Way Search Tree

Multi-Way Search Tree Presentation for se with the textbook Data Strctres and Algorithms in Jaa, 6 th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 204 (2,4) Trees 9 2 5 7 0 4 204 Goodrich, Tamassia,

More information

Coloring Eulerian triangulations of the Klein bottle

Coloring Eulerian triangulations of the Klein bottle Coloring Eulerian triangulations of the Klein bottle Daniel Král Bojan Mohar Atsuhiro Nakamoto Ondřej Pangrác Yusuke Suzuki Abstract We sho that an Eulerian triangulation of the Klein bottle has chromatic

More information

On shortest-path all-optical networks without wavelength conversion requirements

On shortest-path all-optical networks without wavelength conversion requirements Research Collection Working Paper On shortest-path all-optical networks withot waelength conersion reqirements Athor(s): Erlebach, Thomas; Stefanakos, Stamatis Pblication Date: 2002 Permanent Link: https://doi.org/10.3929/ethz-a-004446054

More information

The Strong Colors of Flowers The Structure of Graphs with chordal Squares

The Strong Colors of Flowers The Structure of Graphs with chordal Squares Fakltät für Mathematik, Informatik nd Natrissenschaften der Rheinisch-Westfälischen Technischen Hochschle Aachen arxiv:1711.03464v1 [math.co] 9 Nov 2017 Master Thesis The Strong Colors of Floers The Strctre

More information

COMPOSITION OF STABLE SET POLYHEDRA

COMPOSITION OF STABLE SET POLYHEDRA COMPOSITION OF STABLE SET POLYHEDRA Benjamin McClosky and Illya V. Hicks Department of Comptational and Applied Mathematics Rice University November 30, 2007 Abstract Barahona and Mahjob fond a defining

More information

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM

The multicycle datapath. Lecture 10 (Wed 10/15/2008) Finite-state machine for the control unit. Implementing the FSM Lectre (Wed /5/28) Lab # Hardware De Fri Oct 7 HW #2 IPS programming, de Wed Oct 22 idterm Fri Oct 2 IorD The mlticycle path SrcA Today s objectives: icroprogramming Etending the mlti-cycle path lti-cycle

More information

Non-convex Representations of Graphs

Non-convex Representations of Graphs Non-conex Representations of Graphs Giseppe Di Battista, Fabrizio Frati, and Marizio Patrignani Dip. di Informatica e Atomazione Roma Tre Uniersity Abstract. We sho that eery plane graph admits a planar

More information

Mobility Control and Its Applications in Mobile Ad Hoc Networks

Mobility Control and Its Applications in Mobile Ad Hoc Networks Mobility Control and Its Applications in Mobile Ad Hoc Netorks Jie W and Fei Dai Department of Compter Science and Engineering Florida Atlantic Uniersity Boca Raton, FL 3331 Abstract Most existing localized

More information

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory Math.3336: Discrete Mathematics Chapter 10 Graph Theory Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall

More information

The single-cycle design from last time

The single-cycle design from last time lticycle path Last time we saw a single-cycle path and control nit for or simple IPS-based instrction set. A mlticycle processor fies some shortcomings in the single-cycle CPU. Faster instrctions are not

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Institto de Matemática Pra e Aplicada, Rio de Janeiro, RJ, Brazil Introdction to Comptational Manifolds and Applications Part 1 - Constrctions Prof. Marcelo Ferreira Siqeira mfsiqeira@dimap.frn.br

More information

Triple Connected Complementary Tree Domination Number of a Graph

Triple Connected Complementary Tree Domination Number of a Graph International Mathematical Form, Vol. 8, 2013, no. 14, 659-670 HIKARI Ltd, www.m-hikari.com Triple Connected Complementar Tree Domination Nmber of a Graph G. Mahadevan 1, Selvam Avadaappan 2, N. Ramesh

More information

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes

Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Domination, Independence and Other Numbers Associated With the Intersection Graph of a Set of Half-planes Leonor Aquino-Ruivivar Mathematics Department, De La Salle University Leonorruivivar@dlsueduph

More information

Planarity-Preserving Clustering and Embedding for Large Planar Graphs

Planarity-Preserving Clustering and Embedding for Large Planar Graphs Planarity-Presering Clstering and Embedding for Large Planar Graphs Christian A. Dncan, Michael T. Goodrich, and Stephen G. Koboro Center for Geometric Compting The Johns Hopkins Uniersity Baltimore, MD

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read.

The final datapath. M u x. Add. 4 Add. Shift left 2. PCSrc. RegWrite. MemToR. MemWrite. Read data 1 I [25-21] Instruction. Read. register 1 Read. The final path PC 4 Add Reg Shift left 2 Add PCSrc Instrction [3-] Instrction I [25-2] I [2-6] I [5 - ] register register 2 register 2 Registers ALU Zero Reslt ALUOp em Data emtor RegDst ALUSrc em I [5

More information

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation

Maximal Cliques in Unit Disk Graphs: Polynomial Approximation Maximal Cliqes in Unit Disk Graphs: Polynomial Approximation Rajarshi Gpta, Jean Walrand, Oliier Goldschmidt 2 Department of Electrical Engineering and Compter Science Uniersity of California, Berkeley,

More information

Minimum Spanning Trees Outline: MST

Minimum Spanning Trees Outline: MST Minimm Spanning Trees Otline: MST Minimm Spanning Tree Generic MST Algorithm Krskal s Algorithm (Edge Based) Prim s Algorithm (Vertex Based) Spanning Tree A spanning tree of G is a sbgraph which is tree

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

Ethernet Basics Learning Switches. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers Ethernet Basics Learning Sitches based on Chapter 4 of CompTIA Netork+ Eam Guide, 4 th ed., Mike Meers Sitch Forarding A sitch forards frames based on destination MAC address Ho does the sitch kno hich

More information

Informats. SAS Informats under OpenVMS. Reading Binary Data CHAPTER 15

Informats. SAS Informats under OpenVMS. Reading Binary Data CHAPTER 15 321 CHAPTER 15 Informats SAS Informats under OpenVMS 321 Reading Binary Data 321 SAS Informats under OpenVMS A SAS informat is an instruction or template that the SAS System uses to read data values into

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

Mixture models and clustering

Mixture models and clustering 1 Lecture topics: Miture models and clustering, k-means Distance and clustering Miture models and clustering We have so far used miture models as fleible ays of constructing probability models for prediction

More information

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k

v e v 1 C 2 b) Completely assigned T v a) Partially assigned Tv e T v 2 p k Approximation Algorithms for a Capacitated Network Design Problem R. Hassin 1? and R. Rai 2?? and F. S. Salman 3??? 1 Department of Statistics and Operations Research, Tel-Ai Uniersity, Tel Ai 69978, Israel.

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

Tutorial 8: Practice Exam Questions

Tutorial 8: Practice Exam Questions Tutorial 8: Practice Exam Questions Informatics 1 Data & Analysis Notes on Solutions Week 10, Semester 2, 2017/18 Read this first: it is not the same as the other tutorials Folloing the strike by university

More information

Three Lorentz Transformations. Considering Two Rotations

Three Lorentz Transformations. Considering Two Rotations Ad. Stdies Theor. Phs., Vol. 6,, no., 9 Three orentz Transformations Considering To otations Mkl Chandra Das* Singhania Uniersit, ajasthan, India mkldas.@gmail.om ampada Misra Department of eletronis,

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

Ma/CS 6b Class 5: Graph Connectivity

Ma/CS 6b Class 5: Graph Connectivity Ma/CS 6b Class 5: Graph Connectivity By Adam Sheffer Communications Network We are given a set of routers and wish to connect pairs of them to obtain a connected communications network. The network should

More information

Alliances and Bisection Width for Planar Graphs

Alliances and Bisection Width for Planar Graphs Alliances and Bisection Width for Planar Graphs Martin Olsen 1 and Morten Revsbæk 1 AU Herning Aarhs University, Denmark. martino@hih.a.dk MADAGO, Department of Compter Science Aarhs University, Denmark.

More information

Math 443/543 Graph Theory Notes

Math 443/543 Graph Theory Notes Math 443/543 Graph Theory Notes David Glickenstein September 3, 2008 1 Introduction We will begin by considering several problems which may be solved using graphs, directed graphs (digraphs), and networks.

More information

Chapter 1. Turtle Graphics. 1.1 Turtle Graphics. The turtle and the crane and the swallow observe the time of their coming Jeremiah 8:7

Chapter 1. Turtle Graphics. 1.1 Turtle Graphics. The turtle and the crane and the swallow observe the time of their coming Jeremiah 8:7 Goldman/An Integrated Introduction to Computer Graphics and Geometric Modeling K10188_C001 Revise Proof page 3 26.3.2009 7:54am Compositor Name: VAmoudavally Chapter 1 Turtle Graphics The turtle and the

More information

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism CHAPTER 2 Graphs 1. Introduction to Graphs and Graph Isomorphism 1.1. The Graph Menagerie. Definition 1.1.1. A simple graph G = (V, E) consists of a set V of vertices and a set E of edges, represented

More information

(iv) The square root of an integer is a rational number. (viii) There is an infinite number of natural numbers.

(iv) The square root of an integer is a rational number. (viii) There is an infinite number of natural numbers. A statement is a sentence that is either always true or always false. Examples 2 ` 2 4. Suppose x 2 2. henx is not an integer. All cats are gray. I have a gray cat. Non-examples x is an odd number. Let

More information

Chapter 7 TOPOLOGY CONTROL

Chapter 7 TOPOLOGY CONTROL Chapter TOPOLOGY CONTROL Oeriew Topology Control Gabriel Graph et al. XTC Interference SINR & Schedling Complexity Distribted Compting Grop Mobile Compting Winter 00 / 00 Distribted Compting Grop MOBILE

More information