Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots

Size: px
Start display at page:

Download "Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots"

Transcription

1 Planning, Execution and Learning Application: Examples of Planning for Mobile Manipulation and Articulated Robots Maxim Likhachev Robotics Institute Carnegie Mellon University

2 Two Examples Planning for Mobile Manipulation Planning for Articulated Robots Carnegie Mellon University 2

3 Two Examples Planning for Mobile Manipulation Planning for Articulated Robots Carnegie Mellon University 3

4 Robotic Bartender Demo ([Phillips et al.]) Robot takes in a command from User Interface as to what soda can and snack to deliver Carnegie Mellon University 4

5 Typical Sequence of Operations (State Machine) Carnegie Mellon University 5

6 Typical Sequence of Operations (State Machine) How do you pick proper x,y,ѳ for picking up? Carnegie Mellon University 6

7 Typical Sequence of Operations (State Machine) ARA*-based planning on x,y,ѳ with full-body collision checking for every edge Carnegie Mellon University 7

8 Graph for Navigation with Complex 3D Body [Hornung et al., 12] 3D (x,y,θ) lattice-based graph representation for full-body collision checking takes set of motion primitives as input takes N footprints of the robot defined as polygons as input each footprint corresponds to the projection of a part of the body onto x,y plane collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map Carnegie Mellon University 8

9 Graph for Navigation with Complex 3D Body [Hornung et al., 12] 3D (x,y,θ) lattice-based graph representation for full-body collision checking takes set of motion primitives as input takes N footprints of the robot defined as polygons as input each footprint corresponds to the projection of a part of the body onto x,y plane collision checking/cost computation is done for each footprint at the corresponding projection of the 3D map Carnegie Mellon University 9

10 Typical Sequence of Operations (State Machine) Running perception. Outside of the scope of this class with the exception of the next lecture Carnegie Mellon University 10

11 Typical Sequence of Operations (State Machine) Pick a primitive that approximates the object the best and use one of the grasps pre-computed for this primitive Carnegie Mellon University 11

12 Typical Sequence of Operations (State Machine) ARA*-based planning on q1, q7 towards an arm configuration that has its end-effector at the pre-grasp pose (partially-defined goal) Carnegie Mellon University 12

13 Typical Sequence of Operations (State Machine) ARA*-based planning on q1, q7 towards an arm configuration that has its end-effector at the pre-grasp pose (partially-defined goal) Or a sampling-based planner such as RRT-Connect [Kuffner & LaValle, 00] would work well (would have to plan towards a full arm configuration computed by IK) Carnegie Mellon University 13

14 ... Manipulation Lattice for Arm Planning [Cohen et al., 13] Representation ex. Single arm with n joints {θ 1,...,θ n } q 1 {θ 1,...,θ n }... q 2 {θ 1,...,θ n } q 0 {θ 1,...,θ n } q 3 {θ 1,...,θ n } Carnegie Mellon University 14

15 Manipulation Lattice for Arm Planning [Cohen et al., 13] Representation ex. Single arm with n joints {θ 1,...,θ n } Motion Primitives Static shoulder pan elbow flex Carnegie Mellon University 15

16 Manipulation Lattice for Arm Planning [Cohen et al., 13] Representation ex. Single arm with n joints {θ 1,...,θ n } Motion Primitives Static Adaptive Snap-to-goal motion Analytical solver & IK-based (only if feasible) Capable of satisfying arbitrary goal constraint despite discretization Carnegie Mellon University 16

17 Manipulation Lattice for Arm Planning [Cohen et al., 13] Non-uniform Dimensionality far from goal: only 4 DoFs active around goal: all 7 DoFs are active Non-uniform Resolution far from goal: larger discretization of joint angles around goal: finer discretization of joint angles 4D 1. Shoulder pan 2. Shoulder pitch 3. Upper arm roll 4. Elbow flex 7D 1. Shoulder pan 2. Shoulder pitch 3. Upper arm roll 4. Elbow flex 5. Forearm roll 6. Wrist flex 7. Wrist roll Carnegie Mellon University 17

18 Informative Heuristics for Arm Planning [Cohen et al., 13] Any ideas? Carnegie Mellon University 18

19 Informative Heuristics for Arm Planning [Cohen et al., 13] Euclidean distance for the end-effector? deep local minima! h Euclidean End-effector path according to heuristic large local minima many expansions Carnegie Mellon University 19

20 Informative Heuristics for Arm Planning [Cohen et al., 13] 3D BFS for end-effector accounting for obstacles computes distances from each <x,y,z> to the goal for the end-effector sphere dramatically better than Euclidean distance admissible fast to compute h BFS End-effector path according to heuristic shallow local minima fewer expansions Carnegie Mellon University 20

21 Typical Sequence of Operations (State Machine) Move the arm from pre-grasp pose towards grasp pose (computed via IK) and close the gripper Carnegie Mellon University 21

22 Typical Sequence of Operations (State Machine) ARA*-based planning on q1, q7 towards the home arm configuration (fully-defined goal) Carnegie Mellon University 22

23 Typical Sequence of Operations (State Machine) ARA*-based planning on q1, q7 towards the home arm configuration (fully-defined goal) How do you enforce upright constraints? Carnegie Mellon University 23

24 Two Examples Planning for Mobile Manipulation Planning for Articulated Robots Carnegie Mellon University 24

25 Little Dog Demo [Vernaza et al., 09] Little Dog robot needs to traverse a fully-known terrain Planning Plans footsteps first with an anytime variant of A* Compute COM of the robot afterwards to support execution Carnegie Mellon University 25

26 Footstep Planner [Vernaza et al., 09] Assumptions of the planner: Only one leg lifted at a time to ensure static stability Center of mass shifts during quadsupport phase to prevent tipping Footholds chosen deliberately to maximize stability Carnegie Mellon University 26

27 Footstep Planner [Vernaza et al., 09] Planner builds (on-the-fly/implicit) Stance Graph: Node (stance): 9-dimensional foothold configuration - feet positions and current gait phase Edge: feasible transition between stances Edge costs for transitions computed based on risk, anticipated delay Carnegie Mellon University 27

28 Implementation of GetSuccessors(s) Function Finite set of good quality candidate footholds selected prior to planning Valid stances are kinematically feasible 4-tuples of candidate footholds Successors of a given stance computed by: - determining reachable candidate footholds that result in a valid stance Carnegie Mellon University 28

29 Implementation of GetCost(s,s ) Function Edgecosts are weighted sum of: Overhead Fixed cost per step Center of mass travel Discourages backwards motion of COM Incircle radius Farthest distance from interior to exterior of support triangle Carnegie Mellon University 29

30 Implementation of GetCost(s,s ) Function Edgecosts are weighted sum of: Collision Risk of body/foot colliding with terrain Foot height variance Encourages robot to stay level Carnegie Mellon University 30

31 Implementation of GetCost(s,s ) Function Edgecosts are weighted sum of: Reachability Robot's ability to reach next foothold, switch to next support triangle without dragging feet Terrain slope Ensures terrain slope supports direction of motion Terrain cost Considers slippage potential given terrain Carnegie Mellon University 31

32 Implementation of GetCost(s,s ) Function Edgecosts are weighted sum of: Reachability Robot's ability to reach next Fine tuning foothold, them is switch not fun to next support triangle without dragging feet Terrain slope Ensures terrain slope supports direction of motion Terrain cost Considers slippage potential given terrain Lots of features make up the cost function. Carnegie Mellon University 32

33 Implementation of GetCost(s,s ) Function Edgecosts are weighted sum of: Reachability Robot's ability to reach next Fine tuning foothold, them is switch not fun to next support triangle without dragging feet Terrain slope Ensures terrain slope supports direction of motion Terrain cost Considers slippage potential given terrain Lots of features make up the cost function. Any thoughts on making the process easier? Using Learning Cost (Inverse RL) function we learned before! See it being used for LittleDog by [Zucker et al., 09] Carnegie Mellon University 33

34 Sometimes smart but often stupid no footstep planning Carnegie Mellon University 34

35 Summary Multiple planners used for both domains Start and goal configurations are often most constrained can be exploited by the planners Cost is really complex in planning for articulated robots (e.g., quadrupeds and humanoids) Planning is higher-dimensional but can take longer than on ground and aerial vehicles Design of proper heuristics is a key to efficiency Carnegie Mellon University 35

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz

Humanoid Robotics. Path Planning and Walking. Maren Bennewitz Humanoid Robotics Path Planning and Walking Maren Bennewitz 1 Introduction Given the robot s pose in a model of the environment Compute a path to a target location First: 2D path in a 2D grid map representation

More information

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University

Search-based Planning Library SBPL. Maxim Likhachev Robotics Institute Carnegie Mellon University Search-based Planning Library SBPL Maxim Likhachev Robotics Institute Carnegie Mellon University Outline Overview Few SBPL-based planners in details - 3D (x,y,θ) lattice-based planning for navigation (available

More information

Sub-optimal Heuristic Search and its Application to Planning for Manipulation

Sub-optimal Heuristic Search and its Application to Planning for Manipulation Sub-optimal Heuristic Search and its Application to Planning for Manipulation Mike Phillips Slides adapted from Planning for Mobile Manipulation What planning tasks are there? robotic bartender demo at

More information

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University

Search-based Planning with Motion Primitives. Maxim Likhachev Carnegie Mellon University Search-based Planning with Motion Primitives Maxim Likhachev Carnegie Mellon University generate a graph representation of the planning problem search the graph for a solution What is Search-based Planning

More information

Sub-Optimal Heuristic Search ARA* and Experience Graphs

Sub-Optimal Heuristic Search ARA* and Experience Graphs Robot Autonomy (16-662, S13) Lecture#09 (Wednesday Feb 13, 2013) Lecture by: Micheal Phillips Sub-Optimal Heuristic Search ARA* and Experience Graphs Scribes: S.Selvam Raju and Adam Lebovitz Contents 1

More information

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz Humanoid Robotics Inverse Kinematics and Whole-Body Motion Planning Maren Bennewitz 1 Motivation Plan a sequence of configurations (vector of joint angle values) that let the robot move from its current

More information

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz

Humanoid Robotics. Inverse Kinematics and Whole-Body Motion Planning. Maren Bennewitz Humanoid Robotics Inverse Kinematics and Whole-Body Motion Planning Maren Bennewitz 1 Motivation Planning for object manipulation Whole-body motion to reach a desired goal configuration Generate a sequence

More information

Robot Motion Control Matteo Matteucci

Robot Motion Control Matteo Matteucci Robot Motion Control Open loop control A mobile robot is meant to move from one place to another Pre-compute a smooth trajectory based on motion segments (e.g., line and circle segments) from start to

More information

Cognitive Robotics Robot Motion Planning Matteo Matteucci

Cognitive Robotics Robot Motion Planning Matteo Matteucci Cognitive Robotics Robot Motion Planning Robot Motion Planning eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. J.-C. Latombe (1991) Robot Motion Planning

More information

CSE-571. Deterministic Path Planning in Robotics. Maxim Likhachev 1. Motion/Path Planning. Courtesy of Maxim Likhachev University of Pennsylvania

CSE-571. Deterministic Path Planning in Robotics. Maxim Likhachev 1. Motion/Path Planning. Courtesy of Maxim Likhachev University of Pennsylvania Motion/Path Planning CSE-57 Deterministic Path Planning in Robotics Courtesy of Maxim Likhachev University of Pennsylvania Tas k : find a feasible (and cost-minimal) path/motion from the current configuration

More information

Quadruped Robots and Legged Locomotion

Quadruped Robots and Legged Locomotion Quadruped Robots and Legged Locomotion J. Zico Kolter Computer Science Department Stanford University Joint work with Pieter Abbeel, Andrew Ng Why legged robots? 1 Why Legged Robots? There is a need for

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Motion Planning for Robotic Manipulators with Independent Wrist Joints

Motion Planning for Robotic Manipulators with Independent Wrist Joints Motion Planning for Robotic Manipulators with Independent Wrist Joints Kalin Gochev Venkatraman Narayanan Benjamin Cohen Alla Safonova Maxim Likhachev Abstract Advanced modern humanoid robots often have

More information

Planning, Execution and Learning Heuristics and Multi-Heuristic A*

Planning, Execution and Learning Heuristics and Multi-Heuristic A* 15-887 Planning, Execution and Learning Heuristics and Multi-Heuristic A* Maxim Likhachev Robotics Institute Carnegie Mellon University Design of Informative Heuristics Example problem: move picture frame

More information

Trajectory Optimization

Trajectory Optimization Trajectory Optimization Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We heard about RRT*, a sampling-based planning in high-dimensional cost

More information

15-494/694: Cognitive Robotics

15-494/694: Cognitive Robotics 15-494/694: Cognitive Robotics Dave Touretzky Lecture 9: Path Planning with Rapidly-exploring Random Trees Navigating with the Pilot Image from http://www.futuristgerd.com/2015/09/10 Outline How is path

More information

3D Collision Avoidance for Navigation in Unstructured Environments

3D Collision Avoidance for Navigation in Unstructured Environments 3D Collision Avoidance for Navigation in Unstructured Environments Armin Hornung Humanoid Robots Lab, University of Freiburg May 5, 2011 Motivation Personal robots are to operate in arbitrary complex environments:

More information

Kinematics and Orientations

Kinematics and Orientations Kinematics and Orientations Hierarchies Forward Kinematics Transformations (review) Euler angles Quaternions Yaw and evaluation function for assignment 2 Building a character Just translate, rotate, and

More information

James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google)

James Kuffner. The Robotics Institute Carnegie Mellon University. Digital Human Research Center (AIST) James Kuffner (CMU/Google) James Kuffner The Robotics Institute Carnegie Mellon University Digital Human Research Center (AIST) 1 Stanford University 1995-1999 University of Tokyo JSK Lab 1999-2001 Carnegie Mellon University The

More information

Planning in Mobile Robotics

Planning in Mobile Robotics Planning in Mobile Robotics Part I. Miroslav Kulich Intelligent and Mobile Robotics Group Gerstner Laboratory for Intelligent Decision Making and Control Czech Technical University in Prague Tuesday 26/07/2011

More information

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space

ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space ECE276B: Planning & Learning in Robotics Lecture 5: Configuration Space Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Tianyu Wang: tiw161@eng.ucsd.edu Yongxi Lu: yol070@eng.ucsd.edu

More information

Motion Planning for Humanoid Robots

Motion Planning for Humanoid Robots Motion Planning for Humanoid Robots Presented by: Li Yunzhen What is Humanoid Robots & its balance constraints? Human-like Robots A configuration q is statically-stable if the projection of mass center

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning James Bruce Computer Science Department Carnegie Mellon University April 7, 2004 Agent Planning An agent is a situated entity which can choose and execute actions within in an environment.

More information

Configuration Space of a Robot

Configuration Space of a Robot Robot Path Planning Overview: 1. Visibility Graphs 2. Voronoi Graphs 3. Potential Fields 4. Sampling-Based Planners PRM: Probabilistic Roadmap Methods RRTs: Rapidly-exploring Random Trees Configuration

More information

Discrete Motion Planning

Discrete Motion Planning RBE MOTION PLANNING Discrete Motion Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Homework 1 is out Due Date - Feb 1 Updated

More information

Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving

Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving 16-782 Planning & Decision-making in Robotics Case Study: Planning for Autonomous Driving Maxim Likhachev Robotics Institute Carnegie Mellon University Typical Planning Architecture for Autonomous Vehicle

More information

Search-Based Planning with Provable Suboptimality Bounds for Continuous State Spaces

Search-Based Planning with Provable Suboptimality Bounds for Continuous State Spaces Search-Based Planning with Provable Suboptimality Bounds Juan Pablo Gonzalez for Continuous State Spaces Maxim Likhachev Autonomous Perception Research Robotics Institute General Dynamics Robotic Systems

More information

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian

Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Feasibility and Optimization of Fast Quadruped Walking with One- Versus Two-at-a-Time Swing Leg Motions for RoboSimian Peter Ha and Katie Byl Abstract This paper presents two planning methods for generating

More information

Integrated Grasp and Motion Planning using Independent Contact Regions 1

Integrated Grasp and Motion Planning using Independent Contact Regions 1 Integrated Grasp and Motion Planning using Independent Contact Regions 1 Abstract Traditionally, grasp and arm motion planning are considered as separate tasks. This might lead to problems such as limitations

More information

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io

autorob.github.io Inverse Kinematics UM EECS 398/598 - autorob.github.io autorob.github.io Inverse Kinematics Objective (revisited) Goal: Given the structure of a robot arm, compute Forward kinematics: predicting the pose of the end-effector, given joint positions. Inverse

More information

Tractable Locomotion Planning for RoboSimian

Tractable Locomotion Planning for RoboSimian Tractable Locomotion Planning for RoboSimian Brian W. Satzinger, Chelsea Lau, Marten Byl, Katie Byl Abstract This paper investigates practical solutions for lowbandwidth, teleoperated mobility for RoboSimian

More information

Super Assembling Arms

Super Assembling Arms Super Assembling Arms Yun Jiang, Nan Xiao, and Hanpin Yan {yj229, nx27, hy95}@cornell.edu Abstract Although there are more and more things personal robots can do for us at home, they are unable to accomplish

More information

arxiv: v2 [cs.ro] 29 Jul 2016

arxiv: v2 [cs.ro] 29 Jul 2016 Scaling Sampling based Motion Planning to Humanoid Robots Yiming Yang, Vladimir Ivan, Wolfgang Merkt, Sethu Vijayakumar arxiv:1607.07470v2 [cs.ro] 29 Jul 2016 Abstract Planning balanced and collision free

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

CS283: Robotics Fall 2016: Robot Arms

CS283: Robotics Fall 2016: Robot Arms CS83: Fall 016: Robot Arms Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 0.11.016 REVIEW ShanghaiTech University - SIST - 0.11.016 3 General Control Scheme for Mobile

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Visual Navigation for Flying Robots. Motion Planning

Visual Navigation for Flying Robots. Motion Planning Computer Vision Group Prof. Daniel Cremers Visual Navigation for Flying Robots Motion Planning Dr. Jürgen Sturm Motivation: Flying Through Forests 3 1 2 Visual Navigation for Flying Robots 2 Motion Planning

More information

15-780: Problem Set #4

15-780: Problem Set #4 15-780: Problem Set #4 April 21, 2014 1. Image convolution [10 pts] In this question you will examine a basic property of discrete image convolution. Recall that convolving an m n image J R m n with a

More information

Real-Time Footstep Planning in 3D Environments

Real-Time Footstep Planning in 3D Environments Real-Time Footstep Planning in 3D Environments Philipp Karkowski Stefan Oßwald Maren Bennewitz Abstract A variety of approaches exist that tackle the problem of humanoid locomotion. The spectrum ranges

More information

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs

Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs 16-350 Planning Techniques for Robotics Planning Representations: Skeletonization- and Grid-based Graphs Maxim Likhachev Robotics Institute 2D Planning for Omnidirectional Point Robot Planning for omnidirectional

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Mohammed Z. Al-Faiz,MIEEE Computer Engineering Dept. Nahrain University Baghdad, Iraq Mohammed S.Saleh

More information

An Optimization Approach to Rough Terrain Locomotion

An Optimization Approach to Rough Terrain Locomotion An Optimization Approach to Rough Terrain Locomotion Matt Zucker J. Andrew Bagnell Christopher G. Atkeson James Kuffner The Robotics Institute, Carnegie Mellon University {mzucker,dbagnell,cga,kuffner}@cs.cmu.edu

More information

Computer Game Programming Basic Path Finding

Computer Game Programming Basic Path Finding 15-466 Computer Game Programming Basic Path Finding Robotics Institute Path Planning Sven Path Planning needs to be very fast (especially for games with many characters) needs to generate believable paths

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Kinematic chains 1 Readings & prerequisites Chapter 2 (prerequisites) Reference systems Vectors Matrices Rotations, translations, roto-translations Homogeneous representation of vectors and matrices Chapter

More information

Efficient Extensible Path Planning on 3D Terrain Using Behavior Modules

Efficient Extensible Path Planning on 3D Terrain Using Behavior Modules Efficient Extensible Path Planning on 3D Terrain Using Behavior Modules Andreas Hertle Christian Dornhege Abstract We present a search-based path planning system for ground robots on three dimensional

More information

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev

Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty. Venkatraman Narayanan and Maxim Likhachev Task-Oriented Planning for Manipulating Articulated Mechanisms under Model Uncertainty Venkatraman Narayanan and Maxim Likhachev Motivation Motivation A lot of household objects are ARTICULATED A lot of

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

CS 231. Control for articulate rigid-body dynamic simulation. Articulated rigid-body dynamics

CS 231. Control for articulate rigid-body dynamic simulation. Articulated rigid-body dynamics CS 231 Control for articulate rigid-body dynamic simulation Articulated rigid-body dynamics F = ma No control 1 No control Ragdoll effects, joint limits RT Speed: many sims at real-time rates on today

More information

Lecture 18 Kinematic Chains

Lecture 18 Kinematic Chains CS 598: Topics in AI - Adv. Computational Foundations of Robotics Spring 2017, Rutgers University Lecture 18 Kinematic Chains Instructor: Jingjin Yu Outline What are kinematic chains? C-space for kinematic

More information

METR 4202: Advanced Control & Robotics

METR 4202: Advanced Control & Robotics Position & Orientation & State t home with Homogenous Transformations METR 4202: dvanced Control & Robotics Drs Surya Singh, Paul Pounds, and Hanna Kurniawati Lecture # 2 July 30, 2012 metr4202@itee.uq.edu.au

More information

Real-time Reach Planning for Animated Characters Using Hardware Acceleration

Real-time Reach Planning for Animated Characters Using Hardware Acceleration Real-time Reach Planning for Animated Characters Using Hardware Acceleration Ying Liu Norman I. Badler Center for Human Modeling and Simulation Department of Computer and Information Science University

More information

A comparison of Search-based Planners for a Legged Robot

A comparison of Search-based Planners for a Legged Robot Motion and Control, Wasowo Palace, Wasowo, Poland, July 3-5, 2013 A comparison of Search-based Planners for a Legged Robot Muhammad Asif Arain 1, Ioannis Havoutis 2, Claudio Semini 2, Jonas Buchli 3 and

More information

Robot Art Competition Using HERB: Final Report

Robot Art Competition Using HERB: Final Report Robot Art Competition Using HERB: Final Report Ryan Gibbs (rgibbs), Dorothy Kirlew (dkirlew), Astha Prasad (asthap), Sida Wang (sidaw) 1. Problem Description The purpose of this project is for a user to

More information

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1

7 Modelling and Animating Human Figures. Chapter 7. Modelling and Animating Human Figures. Department of Computer Science and Engineering 7-1 Modelling and Animating Human Figures 7-1 Introduction Modeling and animating an articulated figure is one of the most formidable tasks that an animator can be faced with. It is especially challenging

More information

Character Animation. Presented by: Pam Chow

Character Animation. Presented by: Pam Chow Character Animation Presented by: Pam Chow Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. PLAZMO AND

More information

Lecture 3: Motion Planning (cont.)

Lecture 3: Motion Planning (cont.) CS 294-115 Algorithmic Human-Robot Interaction Fall 2016 Lecture 3: Motion Planning (cont.) Scribes: Molly Nicholas, Chelsea Zhang 3.1 Previously in class... Recall that we defined configuration spaces.

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic chains Readings & prerequisites From the MSMS course one shall already be familiar with Reference systems and transformations Vectors

More information

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017

Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 Geometric Path Planning McGill COMP 765 Oct 12 th, 2017 The Motion Planning Problem Intuition: Find a safe path/trajectory from start to goal More precisely: A path is a series of robot configurations

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Character Animation 1

Character Animation 1 Character Animation 1 Overview Animation is a big topic We will concentrate on character animation as is used in many games today humans, animals, monsters, robots, etc. Character Representation A character

More information

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors

Robotics Tasks. CS 188: Artificial Intelligence Spring Manipulator Robots. Mobile Robots. Degrees of Freedom. Sensors and Effectors CS 188: Artificial Intelligence Spring 2006 Lecture 5: Robot Motion Planning 1/31/2006 Dan Klein UC Berkeley Many slides from either Stuart Russell or Andrew Moore Motion planning (today) How to move from

More information

Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing

Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing Prof. Dr. Maren Bennewitz M.Sc. Stefan Oßwald M.Sc. AbdElMoniem Bayoumi Bonn, 2 July 2015 Humanoid Robots Exercise Sheet 9 - Inverse reachability maps (IRM) and statistical testing Exercise 17 In this

More information

Manipulator trajectory planning

Manipulator trajectory planning Manipulator trajectory planning Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering Department of Cybernetics Czech Republic http://cmp.felk.cvut.cz/~hlavac Courtesy to

More information

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation

Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Navigation in Three-Dimensional Cluttered Environments for Mobile Manipulation Armin Hornung Mike Phillips E. Gil Jones Maren Bennewitz Maxim Likhachev Sachin Chitta Abstract Collision-free navigation

More information

UNIVERSITY OF CALIFORNIA. Santa Barbara. ZMP and Value Iteration Based Planning to Assist Fast Walking for RoboSimian

UNIVERSITY OF CALIFORNIA. Santa Barbara. ZMP and Value Iteration Based Planning to Assist Fast Walking for RoboSimian UNIVERSITY OF CALIFORNIA Santa Barbara ZMP and Value Iteration Based Planning to Assist Fast Walking for RoboSimian A Thesis submitted in partial satisfaction of the requirements for the degree Master

More information

Sampling-based Planning 2

Sampling-based Planning 2 RBE MOTION PLANNING Sampling-based Planning 2 Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Problem with KD-tree RBE MOTION PLANNING Curse of dimension

More information

Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot

Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot Final Report: Dynamic Dubins-curve based RRT Motion Planning for Differential Constrain Robot Abstract This project develops a sample-based motion-planning algorithm for robot with differential constraints.

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

Keyframing an IK Skeleton Maya 2012

Keyframing an IK Skeleton Maya 2012 2002-2012 Michael O'Rourke Keyframing an IK Skeleton Maya 2012 (This tutorial assumes you have done the Creating an Inverse Kinematic Skeleton tutorial in this set) Concepts Once you have built an Inverse

More information

Animating Non-Human Characters using Human Motion Capture Data

Animating Non-Human Characters using Human Motion Capture Data Animating Non-Human Characters using Human Motion Capture Data Laurel Bancroft 1 and Jessica Hodgins 2 1 College of Fine Arts, Carngie Mellon University, lbancrof@andrew.cmu.edu 2 Computer Science, Carnegie

More information

Applications of Experience Graphs in Humanoid Motion Planning

Applications of Experience Graphs in Humanoid Motion Planning Applications of Experience Graphs in Humanoid Motion Planning Sameer Bardapurkar CMU-RI-TR-17-59 14 th August 2017 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee:

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Rising Motion Controllers for Physically Simulated Characters

Rising Motion Controllers for Physically Simulated Characters Rising Motion Controllers for Physically Simulated Characters by Benjamin James Jones B.S. Computer Science, B.S. Engineering Physics, Colorado School of Mines, 2009 A THESIS SUBMITTED IN PARTIAL FULFILLMENT

More information

Whole-Body Motion Planning for Manipulation of Articulated Objects

Whole-Body Motion Planning for Manipulation of Articulated Objects Whole-Body Motion Planning for Manipulation of Articulated Objects Felix Burget Armin Hornung Maren Bennewitz Abstract Humanoid service robots performing complex object manipulation tasks need to plan

More information

Optimization of a two-link Robotic Manipulator

Optimization of a two-link Robotic Manipulator Optimization of a two-link Robotic Manipulator Zachary Renwick, Yalım Yıldırım April 22, 2016 Abstract Although robots are used in many processes in research and industry, they are generally not customized

More information

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633

Autonomous Navigation of Humanoid Using Kinect. Harshad Sawhney Samyak Daga 11633 Autonomous Navigation of Humanoid Using Kinect Harshad Sawhney 11297 Samyak Daga 11633 Motivation Humanoid Space Missions http://www.buquad.com Motivation Disaster Recovery Operations http://www.designnews.com

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots

Announcements. CS 188: Artificial Intelligence Fall Robot motion planning! Today. Robotics Tasks. Mobile Robots CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Announcements Project 1 due (yesterday)! Project 2 (Pacman with ghosts) up in a few days Reminder: you are allowed to

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2007 Lecture 6: Robot Motion Planning 9/13/2007 Dan Klein UC Berkeley Many slides over the course adapted from either Stuart Russell or Andrew Moore Announcements Project

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations

video 1 video 2 Motion Planning (It s all in the discretization) Digital Actors Basic problem Basic problem Two Possible Discretizations Motion Planning (It s all in the discretization) Motion planning is the ability for an agent to compute its own motions in order to achieve certain goals. ll autonomous robots and digital actors should

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview

Self-Collision Detection. Planning for Humanoid Robots. Digital Human Research Center. Talk Overview Self-Collision Detection and Motion Planning for Humanoid Robots James Kuffner (CMU & AIST Japan) Digital Human Research Center Self-Collision Detection Feature-based Minimum Distance Computation: Approximate

More information

Efficient Motion and Grasp Planning for Humanoid Robots

Efficient Motion and Grasp Planning for Humanoid Robots Efficient Motion and Grasp Planning for Humanoid Robots Nikolaus Vahrenkamp and Tamim Asfour and Rüdiger Dillmann Abstract The control system of a robot operating in a human-centered environments should

More information

Non-holonomic Planning

Non-holonomic Planning Non-holonomic Planning Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Recap We have learned about RRTs. q new q init q near q rand But the standard

More information

Chapter 10 Motion Planning

Chapter 10 Motion Planning Chapter 10 Motion Planning 10.1 Introduction Part 1 1 10.1 Introduction Outline 10.1.1 Introducing Motion Planning 10.1.2 Formulation of Motion Planning 10.1.3 Obstacle Free Motion Planning Summary 2 Hierarchy

More information

Path Planning With Adaptive Dimensionality

Path Planning With Adaptive Dimensionality University of Pennsylvania ScholarlyCommons Center for Human Modeling and Simulation Department of Computer & Information Science 2011 Path Planning With Adaptive Dimensionality Kalin Gochev University

More information

KINEMATICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

KINEMATICS FOR ANIMATION. Rémi Ronfard, Animation, M2R MOSIG KINEMATICS FOR ANIMATION Rémi Ronfard, Animation, M2R MOSIG Direct and inverse kinematics in animation Fast numerical methods for inverse kinematics by Bill Baxter My Adventures with Inverse Kinematics

More information

Workspace-Guided Rapidly-Exploring Random Tree Method for a Robot Arm

Workspace-Guided Rapidly-Exploring Random Tree Method for a Robot Arm WorkspaceGuided RapidlyExploring Random Tree Method for a Robot Arm Jaesik Choi choi31@cs.uiuc.edu August 12, 2007 Abstract Motion planning for robotic arms is important for real, physical world applications.

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

Introduction to Mobile Robotics Path Planning and Collision Avoidance. Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics Path Planning and Collision Avoidance. Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics Path Planning and Collision Avoidance Wolfram Burgard, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 Motion Planning Latombe (1991): is eminently necessary since, by

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

COORDINATED MOTION PLANNING FOR 3D ANIMATION USING CHINESE LION DANCE AS AN EXAMPLE. Fu-Sheng Yu and Tsai-Yen Li

COORDINATED MOTION PLANNING FOR 3D ANIMATION USING CHINESE LION DANCE AS AN EXAMPLE. Fu-Sheng Yu and Tsai-Yen Li Appear in Proceedings of International Workshop on Advanced Image Technology, Thailand, 2007. COORDINATED MOTION PLANNING FOR 3D ANIMATION USING CHINESE LION DANCE AS AN EXAMPLE Fu-Sheng Yu and Tsai-Yen

More information

IntroductionToRobotics-Lecture02

IntroductionToRobotics-Lecture02 IntroductionToRobotics-Lecture02 Instructor (Oussama Khatib):Okay. Let's get started. So as always, the lecture starts with a video segment, and today's video segment comes from 1991, and from the group

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information