Organized Segmenta.on

Size: px
Start display at page:

Download "Organized Segmenta.on"

Transcription

1 Organized Segmenta.on Alex Trevor, Georgia Ins.tute of Technology PCL 13

2 Overview Mo.va.on Connected Component Algorithm Planar Segmenta.on & Refinement Euclidean Clustering Timing Results Applica.ons Demos (Time PermiRng) Q & A Alexander J. B. Trevor Organized Segmenta.on 2

3 Mo.va.on Segmenta.on is used for many applica.ons Object Detec.on & Recogni.on Seman.c Mapping Obstacle avoidance Goal is to make a fast, general approach focused on RGB- D data We provide an open- source implementa.on in PCL A.J.B. Trevor, S. Gedikli, R.B. Rusu, H. I. Christensen. Efficient Organized Point Cloud Segmentation with Connected Components. 3rd Workshop on Semantic Perception Mapping and Exploration (SPME). Karlsruhe, Germany. May, Alexander J. B. Trevor Organized Segmenta.on 3

4 Mo.va.on RANSAC takes a lot of.me, which is okay for scanning lasers, but not for RGB- D sensors Convex hulls poorly represent the shape of many surfaces Key idea: we can exploit the organized structure to solve both issues Alexander J. B. Trevor Organized Segmenta.on 4

5 Organized Point Clouds RGB- D sensors can produce organized point clouds by back- projec.ng RGB onto the depth image Result is an image like structure, but with addi.onal informa.on channels such as X, Y, Z coordinates Neighboring pixels can be accessed in constant.me We can augment this with other densely computed features such as surface normals Key advantage is that keeping NaN points enables us to maintain organiza.on Monochrome Image Point: p = {i} RGB Image Point: p = {r, g, b} RGBD Point: p = {r, g, b, x, y, z} RGBD+Normal Point: p = {r, g, b, x, y, z, n x,n y,n z } Alexander J. B. Trevor Organized Segmenta.on 5

6 Normal Es.ma.on Surface normals can be useful for many segmenta.on tasks We use Integral Image Normal Es.ma.on of Holzer et. al Enables real-.me surface normal computa.on S Holzer, RB Rusu, M Dixon, S Gedikli, and N Navab. Adaptive neighborhood selection for real-time surface normal estimation from organized point cloud data using integral images. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages IEEE, Alexander J. B. Trevor Organized Segmenta.on 6

7 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

8 Connected Components Well known algorithm from computer vision 0 Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

9 Connected Components Well known algorithm from computer vision 0 0 Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

10 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

11 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

12 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

13 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

14 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

15 Connected Components Well known algorithm from computer vision Can be applied to organized point cloud segmentation Requires a comparison function to determine if pixels should be part of the same segment or not

16 Union Find An additional pass is required to merge labels in some cases The union-find algorithm can be used to do this efficiently 3 3

17 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

18 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

19 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

20 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

21 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

22 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

23 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

24 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

25 Boundary Detection Organized data makes it easy to find the boundary of segmented regions using standard contour tracing Provides the actual boundary shape, rather than a convex shape Example convex hull timing (80k pts): sec Example boundary timing (80k pts): sec

26 Comparison Func.ons Different comparison func.ons can be used for different segmenta.on tasks Allows us to easily modify the approach for different applica.ons These comparison func.ons have the form: Alexander J. B. Trevor Organized Segmenta.on 18

27 Planar Segmenta.on Point Representation: Distance Metrics: Comparison Function: Alexander J. B. Trevor Organized Segmenta.on 19

28 Plane Coefficient Comparator Alexander J. B. Trevor Organized Segmenta.on 20

29 See PCL s Organized Segmenta.on Demo for more: pcl_organized_segmenta.on_demo Alexander J. B. Trevor Organized Segmenta.on 21

30 Refinement of planar regions Normals near surface edges can be noisy We can address this issue with an addi.onal two passes Instead of comparing neighboring pixels values, we compare to the planar model of neighboring pixels Alexander J. B. Trevor Organized Segmenta.on 22

31 Refinement of planar regions Distance Metric: Comparison Function: Refinement requires two addi.onal passes to extend regions Alexander J. B. Trevor Organized Segmenta.on 23

32 Code Example Alexander J. B. Trevor Organized Segmenta.on 24

33 Using Color Informa.on We can easily segment on color and geometric informa.on at liole addi.onal cost We can use the same comparison as we did for planes, plus an addi.onal constraint that neighboring pixels have similar color Alexander J. B. Trevor Organized Segmenta.on 25

34 Euclidean Cluster Extrac.on Use planar regions extracted in the first pass as a mask Simply compare euclidean distance between neighboring points Alexander J. B. Trevor Organized Segmenta.on 26

35 Code Example Alexander J. B. Trevor Organized Segmenta.on 27

36 Timing Results Timing results were computed on a 2.6 GHz Intel Core i7 CPU Point Clouds from the publicly available TUM RGBD Dataset were used: fr1_desk fr1_floor fr2_pioneer_slam Alexander J. B. Trevor Organized Segmenta.on 28

37 Timing Results Planar Segmenta.on: Planar Segmenta.on with refinement: Alexander J. B. Trevor Organized Segmenta.on 29

38 Mapping Applica.on Segmenta.on approach has been used in a mapping applica.on Planar segments from mul.ple images are merged in a map frame Alexander J. B. Trevor Organized Segmenta.on 30

39 Stereo Ground Segmenta.on Applica.on Technique also works on stereo data, as this is also organized Has been applied to ground segmenta.on on outdoor wide- baseline stereo Segmenta.on & Refinement steps are used Alexander J. B. Trevor Organized Segmenta.on 31

40 Organized Edge Extrac.on Similar organized extrac.on techniques can be used to extract edges Supports mul.ple edge types: Occluding Edges Occluded Edges High Curvature Edges pcl_openni_organized_edge_detec.on Alexander J. B. Trevor Organized Segmenta.on 32

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Efficient Surface and Feature Estimation in RGBD

Efficient Surface and Feature Estimation in RGBD Efficient Surface and Feature Estimation in RGBD Zoltan-Csaba Marton, Dejan Pangercic, Michael Beetz Intelligent Autonomous Systems Group Technische Universität München RGB-D Workshop on 3D Perception

More information

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics

3D Perception. CS 4495 Computer Vision K. Hawkins. CS 4495 Computer Vision. 3D Perception. Kelsey Hawkins Robotics CS 4495 Computer Vision Kelsey Hawkins Robotics Motivation What do animals, people, and robots want to do with vision? Detect and recognize objects/landmarks Find location of objects with respect to themselves

More information

CS4495/6495 Introduction to Computer Vision

CS4495/6495 Introduction to Computer Vision CS4495/6495 Introduction to Computer Vision 9C-L1 3D perception Some slides by Kelsey Hawkins Motivation Why do animals, people & robots need vision? To detect and recognize objects/landmarks Is that a

More information

Seminar Heidelberg University

Seminar Heidelberg University Seminar Heidelberg University Mobile Human Detection Systems Pedestrian Detection by Stereo Vision on Mobile Robots Philip Mayer Matrikelnummer: 3300646 Motivation Fig.1: Pedestrians Within Bounding Box

More information

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds

Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds 1 Interactive Collision Detection for Engineering Plants based on Large-Scale Point-Clouds Takeru Niwa 1 and Hiroshi Masuda 2 1 The University of Electro-Communications, takeru.niwa@uec.ac.jp 2 The University

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Sampling Strategies for Object Classifica6on. Gautam Muralidhar

Sampling Strategies for Object Classifica6on. Gautam Muralidhar Sampling Strategies for Object Classifica6on Gautam Muralidhar Reference papers The Pyramid Match Kernel Grauman and Darrell Approximated Correspondences in High Dimensions Grauman and Darrell Video Google

More information

3D Point Cloud Segmentation Using Topological Persistence

3D Point Cloud Segmentation Using Topological Persistence 3D Point Cloud Segmentation Using Topological Persistence William J. Beksi and Nikolaos Papanikolopoulos Abstract In this paper, we present an approach to segment 3D point cloud data using ideas from persistent

More information

INTELLIGENT AUTONOMOUS SYSTEMS LAB

INTELLIGENT AUTONOMOUS SYSTEMS LAB Matteo Munaro 1,3, Alex Horn 2, Randy Illum 2, Jeff Burke 2, and Radu Bogdan Rusu 3 1 IAS-Lab at Department of Information Engineering, University of Padova 2 Center for Research in Engineering, Media

More information

Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e

Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e Mul$-objec$ve Visual Odometry Hsiang-Jen (Johnny) Chien and Reinhard Kle=e Centre for Robo+cs & Vision Dept. of Electronic and Electric Engineering School of Engineering, Computer, and Mathema+cal Sciences

More information

CRF Based Point Cloud Segmentation Jonathan Nation

CRF Based Point Cloud Segmentation Jonathan Nation CRF Based Point Cloud Segmentation Jonathan Nation jsnation@stanford.edu 1. INTRODUCTION The goal of the project is to use the recently proposed fully connected conditional random field (CRF) model to

More information

Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images

Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images Fast Sampling Plane Filtering, Polygon Construction and Merging from Depth Images Joydeep Biswas Robotics Institute Carnegie Mellon University Pittsburgh, PA 523, USA joydeepb@ri.cmu.edu Manuela Veloso

More information

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar CS395T Visual Recogni5on and Search Gautam S. Muralidhar Today s Theme Unsupervised discovery of images Main mo5va5on behind unsupervised discovery is that supervision is expensive Common tasks include

More information

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight

Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight Field-of-view dependent registration of point clouds and incremental segmentation of table-tops using time-offlight cameras Dipl.-Ing. Georg Arbeiter Fraunhofer Institute for Manufacturing Engineering

More information

Towards Semantic Scene Analysis with Time-of-Flight Cameras

Towards Semantic Scene Analysis with Time-of-Flight Cameras Towards Semantic Scene Analysis with Time-of-Flight Cameras Dirk Holz 1, Ruwen Schnabel 2, David Droeschel 1, Jörg Stückler 1, and Sven Behnke 1 1 University of Bonn, Institute of Computer Science VI,

More information

Accelerating Satellite Image Based Large- Scale Settlement Detection with GPU!

Accelerating Satellite Image Based Large- Scale Settlement Detection with GPU! Accelerating Satellite Image Based Large- Scale Settlement Detection with GPU! Dilip%R.%Patlolla% Anil%M.%Cheriyadat% Eddie%A.%Bright% Jeane9e%E.%Weaver% % Oak%Ridge%Na?onal%Laboratory% Oak%Ridge,%TN%%

More information

PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING

PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING PRECEDING VEHICLE TRACKING IN STEREO IMAGES VIA 3D FEATURE MATCHING Daniel Weingerl, Wilfried Kubinger, Corinna Engelhardt-Nowitzki UAS Technikum Wien: Department for Advanced Engineering Technologies,

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Robust Segmentation of Cluttered Scenes Using RGB-Z Images

Robust Segmentation of Cluttered Scenes Using RGB-Z Images Robust Segmentation of Cluttered Scenes Using RGB-Z Images Navneet Kapur Stanford University Stanford, CA - 94305 nkapur@stanford.edu Subodh Iyengar Stanford University Stanford, CA - 94305 subodh@stanford.edu

More information

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES

REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES REFINEMENT OF COLORED MOBILE MAPPING DATA USING INTENSITY IMAGES T. Yamakawa a, K. Fukano a,r. Onodera a, H. Masuda a, * a Dept. of Mechanical Engineering and Intelligent Systems, The University of Electro-Communications,

More information

Semantic Instance Labeling Leveraging Hierarchical Segmentation

Semantic Instance Labeling Leveraging Hierarchical Segmentation 2015 IEEE Winter Conference on Applications of Computer Vision Semantic Instance Labeling Leveraging Hierarchical Segmentation Steven Hickson Georgia Institute of Technology shickson@gatech.edu Irfan Essa

More information

SLAM with Object Discovery, Modeling and Mapping

SLAM with Object Discovery, Modeling and Mapping SLAM with Object Discovery, Modeling and Mapping Siddharth Choudhary, Alexander J. B. Trevor, Henrik I. Christensen, Frank Dellaert Abstract Object discovery and modeling have been widely studied in the

More information

Visual Perception for Robots

Visual Perception for Robots Visual Perception for Robots Sven Behnke Computer Science Institute VI Autonomous Intelligent Systems Our Cognitive Robots Complete systems for example scenarios Equipped with rich sensors Flying robot

More information

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs W. Nicholas Greene Robust Robotics Group, MIT CSAIL LPM Workshop IROS 2017 September 28, 2017 with Nicholas Roy 1

More information

Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation

Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation Multimodal Cue Integration through Hypotheses Verification for RGB-D Object Recognition and 6DOF Pose Estimation A. Aldoma 1 and F. Tombari 2 and J. Prankl 1 and A. Richtsfeld 1 and L. Di Stefano 2 and

More information

Indoor Home Furniture Detection with RGB-D Data for Service Robots

Indoor Home Furniture Detection with RGB-D Data for Service Robots Indoor Home Furniture Detection with RGB-D Data for Service Robots Oscar Alonso-Ramirez 1, Antonio Marin-Hernandez 1, Michel Devy 2 and Fernando M. Montes-Gonzalez 1. Abstract Home furniture detection

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Field of view dependent registration of point clouds and incremental extraction of table-tops using time-of-flight cameras

Field of view dependent registration of point clouds and incremental extraction of table-tops using time-of-flight cameras Field of view dependent registration of point clouds and incremental extraction of table-tops using time-of-flight cameras Georg Arbeiter, Martin Hägele and Alexander Verl Abstract Perception of the environment

More information

Real-Time Plane Segmentation and Obstacle Detection of 3D Point Clouds for Indoor Scenes

Real-Time Plane Segmentation and Obstacle Detection of 3D Point Clouds for Indoor Scenes Real-Time Plane Segmentation and Obstacle Detection of 3D Point Clouds for Indoor Scenes Zhe Wang, Hong Liu, Yueliang Qian, and Tao Xu Key Laboratory of Intelligent Information Processing && Beijing Key

More information

Colored Point Cloud Registration Revisited Supplementary Material

Colored Point Cloud Registration Revisited Supplementary Material Colored Point Cloud Registration Revisited Supplementary Material Jaesik Park Qian-Yi Zhou Vladlen Koltun Intel Labs A. RGB-D Image Alignment Section introduced a joint photometric and geometric objective

More information

CVPR 2014 Visual SLAM Tutorial Kintinuous

CVPR 2014 Visual SLAM Tutorial Kintinuous CVPR 2014 Visual SLAM Tutorial Kintinuous kaess@cmu.edu The Robotics Institute Carnegie Mellon University Recap: KinectFusion [Newcombe et al., ISMAR 2011] RGB-D camera GPU 3D/color model RGB TSDF (volumetric

More information

Reconstruction of Polygonal Faces from Large-Scale Point-Clouds of Engineering Plants

Reconstruction of Polygonal Faces from Large-Scale Point-Clouds of Engineering Plants 1 Reconstruction of Polygonal Faces from Large-Scale Point-Clouds of Engineering Plants Hiroshi Masuda 1, Takeru Niwa 2, Ichiro Tanaka 3 and Ryo Matsuoka 4 1 The University of Electro-Communications, h.masuda@euc.ac.jp

More information

Volume Visualiza0on. Today s Class. Grades & Homework feedback on Homework Submission Server

Volume Visualiza0on. Today s Class. Grades & Homework feedback on Homework Submission Server 11/3/14 Volume Visualiza0on h3p://imgur.com/trjonqk h3p://i.imgur.com/zcjc9kp.jpg Today s Class Grades & Homework feedback on Homework Submission Server Everything except HW4 (didn t get to that yet) &

More information

Real-Time Footstep Planning Using a Geometric Approach

Real-Time Footstep Planning Using a Geometric Approach Real-Time Footstep Planning Using a Geometric Approach Philipp Karkowski Maren Bennewitz Abstract To this date, many footstep planning systems rely on external sensors for mapping and traversability analysis

More information

Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds

Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds In Proceedings of the 4th International Conference on Intelligent Robotics and Applications (ICIRA), Aachen, Germany, 2011 Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds Bastian Oehler

More information

Sensory Augmentation for Increased Awareness of Driving Environment

Sensory Augmentation for Increased Awareness of Driving Environment Sensory Augmentation for Increased Awareness of Driving Environment Pranay Agrawal John M. Dolan Dec. 12, 2014 Technologies for Safe and Efficient Transportation (T-SET) UTC The Robotics Institute Carnegie

More information

Automatic Contact Surface Detection

Automatic Contact Surface Detection Automatic Contact Surface Detection Will Pryor Worcester Polytechnic Institute Email: jwpryor@wpi.edu Abstract Motion planners for humanoid robots search the space of all possible contacts the robot can

More information

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning

Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Allan Zelener Dissertation Proposal December 12 th 2016 Object Localization, Segmentation, Classification, and Pose Estimation in 3D Images using Deep Learning Overview 1. Introduction to 3D Object Identification

More information

Filtering and mapping systems for underwater 3D imaging sonar

Filtering and mapping systems for underwater 3D imaging sonar Filtering and mapping systems for underwater 3D imaging sonar Tomohiro Koshikawa 1, a, Shin Kato 1,b, and Hitoshi Arisumi 1,c 1 Field Robotics Research Group, National Institute of Advanced Industrial

More information

Text Block Detection and Segmentation for Mobile Robot Vision System Applications

Text Block Detection and Segmentation for Mobile Robot Vision System Applications Proc. of Int. Conf. onmultimedia Processing, Communication and Info. Tech., MPCIT Text Block Detection and Segmentation for Mobile Robot Vision System Applications Too Boaz Kipyego and Prabhakar C. J.

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

3D Editing System for Captured Real Scenes

3D Editing System for Captured Real Scenes 3D Editing System for Captured Real Scenes Inwoo Ha, Yong Beom Lee and James D.K. Kim Samsung Advanced Institute of Technology, Youngin, South Korea E-mail: {iw.ha, leey, jamesdk.kim}@samsung.com Tel:

More information

NICP: Dense Normal Based Point Cloud Registration

NICP: Dense Normal Based Point Cloud Registration NICP: Dense Normal Based Point Cloud Registration Jacopo Serafin 1 and Giorgio Grisetti 1 Abstract In this paper we present a novel on-line method to recursively align point clouds. By considering each

More information

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press, ISSN

Transactions on Information and Communications Technologies vol 16, 1996 WIT Press,   ISSN ransactions on Information and Communications echnologies vol 6, 996 WI Press, www.witpress.com, ISSN 743-357 Obstacle detection using stereo without correspondence L. X. Zhou & W. K. Gu Institute of Information

More information

FOOTPRINTS EXTRACTION

FOOTPRINTS EXTRACTION Building Footprints Extraction of Dense Residential Areas from LiDAR data KyoHyouk Kim and Jie Shan Purdue University School of Civil Engineering 550 Stadium Mall Drive West Lafayette, IN 47907, USA {kim458,

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Fast and Robust 3D Feature Extraction from Sparse Point Clouds

Fast and Robust 3D Feature Extraction from Sparse Point Clouds Fast and Robust 3D Feature Extraction from Sparse Point Clouds Jacopo Serafin 1, Edwin Olson 2 and Giorgio Grisetti 1 Abstract Matching 3D point clouds, a critical operation in map building and localization,

More information

Analyzing the Quality of Matched 3D Point Clouds of Objects

Analyzing the Quality of Matched 3D Point Clouds of Objects Analyzing the Quality of Matched 3D Point Clouds of Objects Igor Bogoslavskyi Cyrill Stachniss Abstract 3D laser scanners are frequently used sensors for mobile robots or autonomous cars and they are often

More information

A consumer level 3D object scanning device using Kinect for web-based C2C business

A consumer level 3D object scanning device using Kinect for web-based C2C business A consumer level 3D object scanning device using Kinect for web-based C2C business Geoffrey Poon, Yu Yin Yeung and Wai-Man Pang Caritas Institute of Higher Education Introduction Internet shopping is popular

More information

3D object recognition used by team robotto

3D object recognition used by team robotto 3D object recognition used by team robotto Workshop Juliane Hoebel February 1, 2016 Faculty of Computer Science, Otto-von-Guericke University Magdeburg Content 1. Introduction 2. Depth sensor 3. 3D object

More information

Removing Moving Objects from Point Cloud Scenes

Removing Moving Objects from Point Cloud Scenes Removing Moving Objects from Point Cloud Scenes Krystof Litomisky and Bir Bhanu University of California, Riverside krystof@litomisky.com, bhanu@ee.ucr.edu Abstract. Three-dimensional simultaneous localization

More information

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany

Deep Incremental Scene Understanding. Federico Tombari & Christian Rupprecht Technical University of Munich, Germany Deep Incremental Scene Understanding Federico Tombari & Christian Rupprecht Technical University of Munich, Germany C. Couprie et al. "Toward Real-time Indoor Semantic Segmentation Using Depth Information"

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

Learning Semantic Environment Perception for Cognitive Robots

Learning Semantic Environment Perception for Cognitive Robots Learning Semantic Environment Perception for Cognitive Robots Sven Behnke University of Bonn, Germany Computer Science Institute VI Autonomous Intelligent Systems Some of Our Cognitive Robots Equipped

More information

Introduction to PCL: The Point Cloud Library

Introduction to PCL: The Point Cloud Library Introduction to PCL: The Point Cloud Library Basic topics Alberto Pretto Thanks to Radu Bogdan Rusu, Bastian Steder and Jeff Delmerico for some of the slides! Point clouds: a definition A point cloud is

More information

Robot Autonomy Final Report : Team Husky

Robot Autonomy Final Report : Team Husky Robot Autonomy Final Report : Team Husky 1 Amit Bansal Master student in Robotics Institute, CMU ab1@andrew.cmu.edu Akshay Hinduja Master student in Mechanical Engineering, CMU ahinduja@andrew.cmu.edu

More information

Building a 3D Object Scanner

Building a 3D Object Scanner Distributed Computing Building a 3D Object Scanner Bachelor Thesis Ulla Aeschbacher ullaa@ethz.ch Distributed Computing Group Computer Engineering and Networks Laboratory ETH Zürich Supervisors: Manuel

More information

PCL :: Segmentation. November 6, 2011

PCL :: Segmentation. November 6, 2011 PCL :: Segmentation November 6, 2011 Outline 1. Model Based Segmentation 2. Plane Fitting Example 3. Normal Estimation 4. Polygonal Prism 5. Euclidean Clustering RANSAC If we know what to expect, we can

More information

Occlusion Detection of Real Objects using Contour Based Stereo Matching

Occlusion Detection of Real Objects using Contour Based Stereo Matching Occlusion Detection of Real Objects using Contour Based Stereo Matching Kenichi Hayashi, Hirokazu Kato, Shogo Nishida Graduate School of Engineering Science, Osaka University,1-3 Machikaneyama-cho, Toyonaka,

More information

Vision: Towards an Extensible App Ecosystem for Home Automa;on through Cloud- Offload

Vision: Towards an Extensible App Ecosystem for Home Automa;on through Cloud- Offload Vision: Towards an Extensible App Ecosystem for Home Automa;on through Cloud- Offload Yuichi Igarashi Hitachi Ltd., Yokohama Research Laboratory Kaustubh Joshi MaL Hiltunen Richard Schlich;ng AT&T Shannon

More information

Computer Vision 558 Corner Detection Overview and Comparison

Computer Vision 558 Corner Detection Overview and Comparison Computer Vision 558 Corner Detection Overview and Comparison Alexandar Alexandrov ID 9823753 May 3, 2002 0 Contents 1 Introduction 2 1.1 How it started............................ 2 1.2 Playing with ideas..........................

More information

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images

Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Learning Depth-Sensitive Conditional Random Fields for Semantic Segmentation of RGB-D Images Andreas C. Müller and Sven Behnke Abstract We present a structured learning approach to semantic annotation

More information

Introduction to PCL: The Point Cloud Library

Introduction to PCL: The Point Cloud Library Introduction to PCL: The Point Cloud Library 1 - basic topics Alberto Pretto Thanks to Radu Bogdan Rusu, Bastian Steder and Jeff Delmerico for some of the slides! Contact Alberto Pretto, PhD Assistant

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

Generating Object Candidates from RGB-D Images and Point Clouds

Generating Object Candidates from RGB-D Images and Point Clouds Generating Object Candidates from RGB-D Images and Point Clouds Helge Wrede 11.05.2017 1 / 36 Outline Introduction Methods Overview The Data RGB-D Images Point Clouds Microsoft Kinect Generating Object

More information

Agenda. General Organiza/on and architecture Structural/func/onal view of a computer Evolu/on/brief history of computer.

Agenda. General Organiza/on and architecture Structural/func/onal view of a computer Evolu/on/brief history of computer. UNIT I: OVERVIEW Agenda General Organiza/on and architecture Structural/func/onal view of a computer Evolu/on/brief history of computer. Architecture & Organiza/on Computer Architecture is those abributes

More information

Interactive RGB-D Image Segmentation Using Hierarchical Graph Cut and Geodesic Distance

Interactive RGB-D Image Segmentation Using Hierarchical Graph Cut and Geodesic Distance Interactive RGB-D Image Segmentation Using Hierarchical Graph Cut and Geodesic Distance Ling Ge, Ran Ju, Tongwei Ren, Gangshan Wu Multimedia Computing Group, State Key Laboratory for Novel Software Technology,

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

Fast Stereo Matching of Feature Links

Fast Stereo Matching of Feature Links Fast Stereo Matching of Feature Links 011.05.19 Chang-il, Kim Introduction Stereo matching? interesting topics of computer vision researches To determine a disparity between stereo images A fundamental

More information

arxiv: v1 [cs.cv] 1 Aug 2017

arxiv: v1 [cs.cv] 1 Aug 2017 Dense Piecewise Planar RGB-D SLAM for Indoor Environments Phi-Hung Le and Jana Kosecka arxiv:1708.00514v1 [cs.cv] 1 Aug 2017 Abstract The paper exploits weak Manhattan constraints to parse the structure

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

Semantic Mapping and Reasoning Approach for Mobile Robotics

Semantic Mapping and Reasoning Approach for Mobile Robotics Semantic Mapping and Reasoning Approach for Mobile Robotics Caner GUNEY, Serdar Bora SAYIN, Murat KENDİR, Turkey Key words: Semantic mapping, 3D mapping, probabilistic, robotic surveying, mine surveying

More information

Fast Lighting Independent Background Subtraction

Fast Lighting Independent Background Subtraction Fast Lighting Independent Background Subtraction Yuri Ivanov Aaron Bobick John Liu [yivanov bobick johnliu]@media.mit.edu MIT Media Laboratory February 2, 2001 Abstract This paper describes a new method

More information

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence

CS4495/6495 Introduction to Computer Vision. 3B-L3 Stereo correspondence CS4495/6495 Introduction to Computer Vision 3B-L3 Stereo correspondence For now assume parallel image planes Assume parallel (co-planar) image planes Assume same focal lengths Assume epipolar lines are

More information

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds www.crs4.it/vic/ vcg.isti.cnr.it/ Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds R. Pintus, E. Gobbetti, M.Agus, R. Combet CRS4 Visual Computing M. Callieri

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion

Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion 007 IEEE International Conference on Robotics and Automation Roma, Italy, 0-4 April 007 FrE5. Accurate Motion Estimation and High-Precision D Reconstruction by Sensor Fusion Yunsu Bok, Youngbae Hwang,

More information

Patent Image Retrieval

Patent Image Retrieval Patent Image Retrieval Stefanos Vrochidis IRF Symposium 2008 Vienna, November 6, 2008 Aristotle University of Thessaloniki Overview 1. Introduction 2. Related Work in Patent Image Retrieval 3. Patent Image

More information

RASTERIZING POLYGONS IN IMAGE SPACE

RASTERIZING POLYGONS IN IMAGE SPACE On-Line Computer Graphics Notes RASTERIZING POLYGONS IN IMAGE SPACE Kenneth I. Joy Visualization and Graphics Research Group Department of Computer Science University of California, Davis A fundamental

More information

SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE

SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE S. Hirose R&D Center, TOPCON CORPORATION, 75-1, Hasunuma-cho, Itabashi-ku, Tokyo, Japan Commission

More information

CSCI 5980/8980: Assignment #4. Fundamental Matrix

CSCI 5980/8980: Assignment #4. Fundamental Matrix Submission CSCI 598/898: Assignment #4 Assignment due: March 23 Individual assignment. Write-up submission format: a single PDF up to 5 pages (more than 5 page assignment will be automatically returned.).

More information

Near Real-time Pointcloud Smoothing for 3D Imaging Systems Colin Lea CS420 - Parallel Programming - Fall 2011

Near Real-time Pointcloud Smoothing for 3D Imaging Systems Colin Lea CS420 - Parallel Programming - Fall 2011 Near Real-time Pointcloud Smoothing for 3D Imaging Systems Colin Lea CS420 - Parallel Programming - Fall 2011 Abstract -- In this project a GPU-based implementation of Moving Least Squares is presented

More information

Fast 2.5D Mesh Segmentation to Approximately. Convex Surfaces. Robert Cupec, Emmanuel K. Nyarko and Damir Filko

Fast 2.5D Mesh Segmentation to Approximately. Convex Surfaces. Robert Cupec, Emmanuel K. Nyarko and Damir Filko 1 Fast 2.5D esh Segmentation to Approximately Convex Surfaces Robert Cupec, Emmanuel K. Nyarko and Damir Filko Faculty of Electrical Engineering, J. J. Strossmayer University of Osijek, Croatia Abstract

More information

RGBD Point Cloud Alignment Using Lucas-Kanade Data Association and Automatic Error Metric Selection

RGBD Point Cloud Alignment Using Lucas-Kanade Data Association and Automatic Error Metric Selection IEEE TRANSACTIONS ON ROBOTICS, VOL. 31, NO. 6, DECEMBER 15 1 RGBD Point Cloud Alignment Using Lucas-Kanade Data Association and Automatic Error Metric Selection Brian Peasley and Stan Birchfield, Senior

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

Kinect Device. How the Kinect Works. Kinect Device. What the Kinect does 4/27/16. Subhransu Maji Slides credit: Derek Hoiem, University of Illinois

Kinect Device. How the Kinect Works. Kinect Device. What the Kinect does 4/27/16. Subhransu Maji Slides credit: Derek Hoiem, University of Illinois 4/27/16 Kinect Device How the Kinect Works T2 Subhransu Maji Slides credit: Derek Hoiem, University of Illinois Photo frame-grabbed from: http://www.blisteredthumbs.net/2010/11/dance-central-angry-review

More information

AMR 2011/2012: Final Projects

AMR 2011/2012: Final Projects AMR 2011/2012: Final Projects 0. General Information A final project includes: studying some literature (typically, 1-2 papers) on a specific subject performing some simulations or numerical tests on an

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Micro-scale Stereo Photogrammetry of Skin Lesions for Depth and Colour Classification

Micro-scale Stereo Photogrammetry of Skin Lesions for Depth and Colour Classification Micro-scale Stereo Photogrammetry of Skin Lesions for Depth and Colour Classification Tim Lukins Institute of Perception, Action and Behaviour 1 Introduction The classification of melanoma has traditionally

More information

M 2 R: Enabling Stronger Privacy in MapReduce Computa;on

M 2 R: Enabling Stronger Privacy in MapReduce Computa;on M 2 R: Enabling Stronger Privacy in MapReduce Computa;on Anh Dinh, Prateek Saxena, Ee- Chien Chang, Beng Chin Ooi, Chunwang Zhang School of Compu,ng Na,onal University of Singapore 1. Mo;va;on Distributed

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 14 130307 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Stereo Dense Motion Estimation Translational

More information

DiFi: Distance Fields - Fast Computation Using Graphics Hardware

DiFi: Distance Fields - Fast Computation Using Graphics Hardware DiFi: Distance Fields - Fast Computation Using Graphics Hardware Avneesh Sud Dinesh Manocha UNC-Chapel Hill http://gamma.cs.unc.edu/difi Distance Fields Distance Function For a site a scalar function f:r

More information

Contents I IMAGE FORMATION 1

Contents I IMAGE FORMATION 1 Contents I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation............................. 4 1.1.1 Pinhole Perspective....................... 4 1.1.2 Weak Perspective.........................

More information

Incremental compact 3D maps of planar patches from RGBD points

Incremental compact 3D maps of planar patches from RGBD points Incremental compact 3D maps of planar patches from RGBD points Juan Navarro and José M. Cañas Universidad Rey Juan Carlos, Spain Abstract. The RGBD sensors have opened the door to low cost perception capabilities

More information

Towards a visual perception system for LNG pipe inspection

Towards a visual perception system for LNG pipe inspection Towards a visual perception system for LNG pipe inspection LPV Project Team: Brett Browning (PI), Peter Rander (co PI), Peter Hansen Hatem Alismail, Mohamed Mustafa, Joey Gannon Qri8 Lab A Brief Overview

More information

Exploiting Depth Camera for 3D Spatial Relationship Interpretation

Exploiting Depth Camera for 3D Spatial Relationship Interpretation Exploiting Depth Camera for 3D Spatial Relationship Interpretation Jun Ye Kien A. Hua Data Systems Group, University of Central Florida Mar 1, 2013 Jun Ye and Kien A. Hua (UCF) 3D directional spatial relationships

More information

Estimation of Planar Surfaces in Noisy Range Images for the RoboCup Rescue Competition

Estimation of Planar Surfaces in Noisy Range Images for the RoboCup Rescue Competition Estimation of Planar Surfaces in Noisy Range Images for the RoboCup Rescue Competition Johannes Pellenz pellenz@uni-koblenz.de with Sarah Steinmetz and Dietrich Paulus Working Group Active Vision University

More information

International Conference on Communication, Media, Technology and Design. ICCMTD May 2012 Istanbul - Turkey

International Conference on Communication, Media, Technology and Design. ICCMTD May 2012 Istanbul - Turkey VISUALIZING TIME COHERENT THREE-DIMENSIONAL CONTENT USING ONE OR MORE MICROSOFT KINECT CAMERAS Naveed Ahmed University of Sharjah Sharjah, United Arab Emirates Abstract Visualizing or digitization of the

More information