TESTING FOR SPATIAL AUTOCORRELATION IN MODEL FITTING. Mike Antolin. November 5, 2007

Size: px
Start display at page:

Download "TESTING FOR SPATIAL AUTOCORRELATION IN MODEL FITTING. Mike Antolin. November 5, 2007"

Transcription

1 Gettig Started TESTING FOR SPATIAL AUTOCORRELATION IN MODEL FITTING Mike Atoli November 5, 2007 The R package is supported olie by a series of servers that cotai the mai GUI (program), ad a series of additioal packages useful for specialized aalyses. We will first ope the R program the load packages oto each of your computers the ecessary. The most geerally useful package is i the basic R, the MASS library. # Load mai statistical library library(mass) Let s load the coral data (Bruo et al ) ad make some ice plots to see what they look like. First, chage the default directory to the place where you have the data file, by goig to the File pulldow ad the the Chage dir... butto. ### Import data coral<-read.table("gbr_ws_data.csv",sep=",",header=t) attach(coral) ames(coral) # create a graphics widow for each plot plot(lat_dd,lon_dd) Bruo, J.F., E.R. Selig, K.S. Casey, C.A. Page, B. L. Willis, C.D. Harvell, H. Sweatma A. M. Meledy Thermal Stress ad Coral Cover as Drivers of Coral Disease Outbreaks. PLoS Biology.

2 LON_DD LAT_DD Now let s make a couple of other eat lookig plots of the same data, just for fu. First, use the Packages pulldow to get the scatterplot3d ad geor packages. # Make some facy plots for exploratory data aalysis library(geor) library(scatterplot3d) # make data colums used by poits.geodata coral$coords = cbid(lat_dd,lon_dd) coral$data = CASES plot(lat_dd, LON_DD, type= "",mai="number of Cases", text(jitter(lat_dd), jitter(lon_dd),cases,cex=0.75) poits.geodata(coral,cex.var=coral_cover,cex.mi=.,cex.max=3, mai="coral Cover", poits.geodata(coral,cex.var=wssta,cex.mi=.,cex.max=3, mai="ocea Temperature", scatterplot3d(lat_dd, y=lon_dd, CASES, type="h", mai="number of Cases", Testig the data for fit to the Poisso ad egative biomial distributios: Parasite data are quite ofte NOT ormally distributed, so data should be plotted ad tested for fits to either Poisso (radom) or the egative biomial distributio (aggregated, or clumped). First fit to a Poisso distributio: # Make some defiitios ad descriptios of the data avecases<-mea(cases) # average cases defied varcases< var(cases) # variace of cases sd(cases) summary(cases) sample_size=legth(cases) 2

3 sample_size # Create data tables for aalysis frequecies<-table(cases) frequecies ucases<-as.vector(ames(frequecies)) # get levels from the table ito a vector ycases<-as.umeric(ucases) # chage them from a vector to a umber maxlev<-levels(as.factor(ycases)) # umber of levels i frequecy table maxlev # this will be used for plottig ad biig # plot the fit to Poisso distributio par(mfrow=c(,2)) barplot(frequecies,ylab="frequecy",xlab="obs. Cases") barplot(dpois(0:(maxlev-),avecases)*sample_size,ames=as.character(0:(maxlev-)), ylab="frequecy",xlab="exp. Cases") varmea=varcases/avecases varmea if (varmea>) text(2,25,"looks like this is NOT Poisso distributed!", cex=,col="red",fot=4) Now check the egative biomial distributio # plot the fit to to a egative biomial par(mfrow=c(,2)) barplot(frequecies,ylab="frequecy",xlab="obs. Cases") barplot(dbiom(0:(maxlev-),,mu=avecases)*sample_size,ames=as.character(0: (maxlev-)),ylab="frequecy",xlab="exp. Cases") k<-avecases^2/(varcases-avecases) if (k<) text(2,20,"looks like this could be egative biomial!", cex=,col="red",fot=4) Make a sweet plot! # Plot double a historgram with both observed ad expected o it exp<-dbiom(0:(maxlev-),,mu=avecases)*sample_size both<-umeric(2*maxlev) both[:(2*maxlev) %% 2!=0]<-frequecies both[:(2*maxlev) %% 2==0]<-exp lab<-character(2*maxlev) lab[:(2*maxlev) %% 2==0]<-as.character(0:(maxlev-)) barplot(both,col=rep(c("white","grey"),maxlev),ames=lab,ylab="frequecy",xlab="cases" ) leged(90,70,c("obs","exp"),fill=c("white","grey")) # make facy X-axis axis(,at=c(:(2*maxlev)), label=labels[:(2*maxlev) %% 2==0]<-as.character(0:((2*maxlev)-)), lwd=2,pos=-.5,cex.axis=0.5) How about a statistical test for goodess of fit? 3

4 ## Do a approximate test of goodess of fit to the egative biomial distributio # make categories cs<-factor(0:(maxlev-)) #levels(cs) # this will check how may "bis" you've made # make your expected ad observed categories, ad calculate chi-squared ef<-as.vector(tapply(exp,cs,sum)) of<-as.vector(tapply(frequecies,cs,sum)) chisq<-sum((of-ef)^2/ef) ef of Prob<--pchisq(chisq,(levels(cs)-3)) Prob # Write the result of your test o your plot mtext(paste("chi-squared = ",chisq," with probability P =",Prob), side=3,cex=,col="red",fot=4) Fittig a GLM: # Use GLM to test effects of temperature ad coral cover o whitig, betwee regios # origial model library(mass) # Fit a GLM usig quasi-poisso errors fit = glm(cases ~ WSSTA + CORAL_COVER + WSSTA*CORAL_COVER + factor(sector), family=quasipoisso) coef(fit) summary(fit) # Estimate the k parameter for the egative biomial distributio ybar=predict(fit,type="respose") theta.ml(cases, ybar) theta= # Fit a GLM with egative biomial errors fit2=glm(cases ~ WSSTA + CORAL_COVER + WSSTA*CORAL_COVER +factor(sector), family=egative.biomial(theta=theta)) coef(fit2) summary(fit2) plot(wssta,fit2$resid,xlab="wssta") Testig residuals of the model for additioal spatial autocorrelatio Mora s I, a measure of spatial autocorrelatio to idetify departures from spatial radomess over all samples i the system: I YZ ij i= j= = 2W w ( y y ) i= ( y y)( y i i 2 j y) 4

5 y i ad y j are values of your variable at ay poits i ad j is the umber of samplig poits, w ij is the spatial proximity betwee poits i ad j, W is the sum of all 2 values of w ij, the spatial weights matrix. A positive I would idicate that additioal local processes ot accouted for i the model could be actig. First load the spatial library: ##### Istall Spatial Stats library S_HOME="RSpatial/" source(paste(s_home,"spatial_start.r",sep="")) Spatial_start().First<-fuctio(){Spatial_start() Create the spatial weights matrix, i this case a rescale iverse of distace betwee poits. spt.wt<-spwtdist(lat_dd,lon_dd,rescale=t) Ru the spatial aalysis ad make the diagostic plots: morai(fit2$resid,spt.wt) #Plots to test for spatial autocorrelatio par(mfrow=c(2,2)) plot(wssta,fit2$resid,xlab="wssta") plot(fit2$resid, CASES -fit2$resid,xlab="residual",ylab="predicted value") title("predicted values vs residuals",cex=.7) plot(fit2$resid,spt.wt %*% fit2$resid, xlab="residual",ylab="weighted residuals") title("w * RESIDUALS VS. RESIDUALS",cex=.7) cor(fit2$resid,spt.wt %*% fit2$resid) 5

Overview Chapter 12 A display model

Overview Chapter 12 A display model Overview Chapter 12 A display model Why graphics? A graphics model Examples Bjare Stroustrup www.stroustrup.com/programmig 3 Why bother with graphics ad GUI? Why bother with graphics ad GUI? It s very

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

IMP: Superposer Integrated Morphometrics Package Superposition Tool

IMP: Superposer Integrated Morphometrics Package Superposition Tool IMP: Superposer Itegrated Morphometrics Package Superpositio Tool Programmig by: David Lieber ( 03) Caisius College 200 Mai St. Buffalo, NY 4208 Cocept by: H. David Sheets, Dept. of Physics, Caisius College

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Customer Portal Quick Reference User Guide

Customer Portal Quick Reference User Guide Customer Portal Quick Referece User Guide Overview This user guide is iteded for FM Approvals customers usig the Approval Iformatio Maagemet (AIM) customer portal to track their active projects. AIM is

More information

Capability Analysis (Variable Data)

Capability Analysis (Variable Data) Capability Aalysis (Variable Data) Revised: 0/0/07 Summary... Data Iput... 3 Capability Plot... 5 Aalysis Summary... 6 Aalysis Optios... 8 Capability Idices... Prefereces... 6 Tests for Normality... 7

More information

Descriptive Statistics Summary Lists

Descriptive Statistics Summary Lists Chapter 209 Descriptive Statistics Summary Lists Itroductio This procedure is used to summarize cotiuous data. Large volumes of such data may be easily summarized i statistical lists of meas, couts, stadard

More information

Performance Plus Software Parameter Definitions

Performance Plus Software Parameter Definitions Performace Plus+ Software Parameter Defiitios/ Performace Plus Software Parameter Defiitios Chapma Techical Note-TG-5 paramete.doc ev-0-03 Performace Plus+ Software Parameter Defiitios/2 Backgroud ad Defiitios

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

DATA MINING II - 1DL460

DATA MINING II - 1DL460 DATA MINING II - 1DL460 Sprig 2017 A secod course i data miig http://www.it.uu.se/edu/course/homepage/ifoutv2/vt17/ Kjell Orsbor Uppsala Database Laboratory Departmet of Iformatio Techology, Uppsala Uiversity,

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters.

SD vs. SD + One of the most important uses of sample statistics is to estimate the corresponding population parameters. SD vs. SD + Oe of the most importat uses of sample statistics is to estimate the correspodig populatio parameters. The mea of a represetative sample is a good estimate of the mea of the populatio that

More information

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types

Data Analysis. Concepts and Techniques. Chapter 2. Chapter 2: Getting to Know Your Data. Data Objects and Attribute Types Data Aalysis Cocepts ad Techiques Chapter 2 1 Chapter 2: Gettig to Kow Your Data Data Objects ad Attribute Types Basic Statistical Descriptios of Data Data Visualizatio Measurig Data Similarity ad Dissimilarity

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard

Using the Keyboard. Using the Wireless Keyboard. > Using the Keyboard 1 A wireless keyboard is supplied with your computer. The wireless keyboard uses a stadard key arragemet with additioal keys that perform specific fuctios. Usig the Wireless Keyboard Two AA alkalie batteries

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016

CS 111: Program Design I Lecture 15: Objects, Pandas, Modules. Robert H. Sloan & Richard Warner University of Illinois at Chicago October 13, 2016 CS 111: Program Desig I Lecture 15: Objects, Padas, Modules Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago October 13, 2016 OBJECTS AND DOT NOTATION Objects (Implicit i Chapter 2, Variables,

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

NTH, GEOMETRIC, AND TELESCOPING TEST

NTH, GEOMETRIC, AND TELESCOPING TEST NTH, GEOMETRIC, AND TELESCOPING TEST Sectio 9. Calculus BC AP/Dual, Revised 08 viet.dag@humbleisd.et /4/08 0:0 PM 9.: th, Geometric, ad Telescopig Test SUMMARY OF TESTS FOR SERIES Lookig at the first few

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) IC Desig Lab. Fast Fourier Trasfor FFT, - e e π π G Twiddle Factor : e π Radi- DIT FFT: IC Desig Lab. π cos si π Syetry Property Periodicity Property u u u * Cougate Syetric Property a a b b a b b a b

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

Parabolic Path to a Best Best-Fit Line:

Parabolic Path to a Best Best-Fit Line: Studet Activity : Fidig the Least Squares Regressio Lie By Explorig the Relatioship betwee Slope ad Residuals Objective: How does oe determie a best best-fit lie for a set of data? Eyeballig it may be

More information

Baan Tools User Management

Baan Tools User Management Baa Tools User Maagemet Module Procedure UP008A US Documetiformatio Documet Documet code : UP008A US Documet group : User Documetatio Documet title : User Maagemet Applicatio/Package : Baa Tools Editio

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

3D Model Retrieval Method Based on Sample Prediction

3D Model Retrieval Method Based on Sample Prediction 20 Iteratioal Coferece o Computer Commuicatio ad Maagemet Proc.of CSIT vol.5 (20) (20) IACSIT Press, Sigapore 3D Model Retrieval Method Based o Sample Predictio Qigche Zhag, Ya Tag* School of Computer

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Consider the following population data for the state of California. Year Population

Consider the following population data for the state of California. Year Population Assigmets for Bradie Fall 2016 for Chapter 5 Assigmet sheet for Sectios 5.1, 5.3, 5.5, 5.6, 5.7, 5.8 Read Pages 341-349 Exercises for Sectio 5.1 Lagrage Iterpolatio #1, #4, #7, #13, #14 For #1 use MATLAB

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics

ENGI 4421 Probability and Statistics Faculty of Engineering and Applied Science Problem Set 1 Descriptive Statistics ENGI 44 Probability ad Statistics Faculty of Egieerig ad Applied Sciece Problem Set Descriptive Statistics. If, i the set of values {,, 3, 4, 5, 6, 7 } a error causes the value 5 to be replaced by 50,

More information

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018

CS 111: Program Design I Lecture 15: Modules, Pandas again. Robert H. Sloan & Richard Warner University of Illinois at Chicago March 8, 2018 CS 111: Program Desig I Lecture 15: Modules, Padas agai Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago March 8, 2018 PYTHON STANDARD LIBRARY & BEYOND: MODULES Extedig Pytho Every moder

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb

( n+1 2 ) , position=(7+1)/2 =4,(median is observation #4) Median=10lb Chapter 3 Descriptive Measures Measures of Ceter (Cetral Tedecy) These measures will tell us where is the ceter of our data or where most typical value of a data set lies Mode the value that occurs most

More information

The VSS CCD photometry spreadsheet

The VSS CCD photometry spreadsheet The VSS CCD photometry spreadsheet Itroductio This Excel spreadsheet has bee developed ad tested by the BAA VSS for aalysig results files produced by the multi-image CCD photometry procedure i AIP4Wi v2.

More information

CS 11 C track: lecture 1

CS 11 C track: lecture 1 CS 11 C track: lecture 1 Prelimiaries Need a CMS cluster accout http://acctreq.cms.caltech.edu/cgi-bi/request.cgi Need to kow UNIX IMSS tutorial liked from track home page Track home page: http://courses.cms.caltech.edu/courses/cs11/material

More information

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Appendix D. Controller Implementation

Appendix D. Controller Implementation COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Appedix D Cotroller Implemetatio Cotroller Implemetatios Combiatioal logic (sigle-cycle); Fiite state machie (multi-cycle, pipelied);

More information

ICS Regent. Communications Modules. Module Operation. RS-232, RS-422 and RS-485 (T3150A) PD-6002

ICS Regent. Communications Modules. Module Operation. RS-232, RS-422 and RS-485 (T3150A) PD-6002 ICS Reget Commuicatios Modules RS-232, RS-422 ad RS-485 (T3150A) Issue 1, March, 06 Commuicatios modules provide a serial commuicatios iterface betwee the cotroller ad exteral equipmet. Commuicatios modules

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS

EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS EM375 STATISTICS AND MEASUREMENT UNCERTAINTY LEAST SQUARES LINEAR REGRESSION ANALYSIS I this uit of the course we ivestigate fittig a straight lie to measured (x, y) data pairs. The equatio we wat to fit

More information

Panel Methods : Mini-Lecture. David Willis

Panel Methods : Mini-Lecture. David Willis Pael Methods : Mii-Lecture David Willis 3D - Pael Method Examples Other Applicatios of Pael Methods http://www.flowsol.co.uk/ http://oe.mit.edu/flowlab/ Boudary Elemet Methods Pael methods belog to a broader

More information

Web OS Switch Software

Web OS Switch Software Web OS Switch Software BBI Quick Guide Nortel Networks Part Number: 213164, Revisio A, July 2000 50 Great Oaks Boulevard Sa Jose, Califoria 95119 408-360-5500 Mai 408-360-5501 Fax www.orteletworks.com

More information

Describing data with graphics and numbers

Describing data with graphics and numbers Describig data with graphics ad umbers Types of Data Categorical Variables also kow as class variables, omial variables Quatitative Variables aka umerical ariables either cotiuous or discrete. Graphig

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

USB TO PARALLEL USB to DB25 Parallel Adapter Cable

USB TO PARALLEL USB to DB25 Parallel Adapter Cable USB TO PARALLEL USB to DB25 Parallel Adapter Cable User Maual XUPP25 www.hamletcom.com Dear Customer, thaks for choosig a Hamlet product. Please carefully follow the istructios for its use ad maiteace

More information

Avid Interplay Bundle

Avid Interplay Bundle Avid Iterplay Budle Versio 2.5 Cofigurator ReadMe Overview This documet provides a overview of Iterplay Budle v2.5 ad describes how to ru the Iterplay Budle cofiguratio tool. Iterplay Budle v2.5 refers

More information

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits:

prerequisites: 6.046, 6.041/2, ability to do proofs Randomized algorithms: make random choices during run. Main benefits: Itro Admiistrivia. Sigup sheet. prerequisites: 6.046, 6.041/2, ability to do proofs homework weekly (first ext week) collaboratio idepedet homeworks gradig requiremet term project books. questio: scribig?

More information

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure.

SAMPLE VERSUS POPULATION. Population - consists of all possible measurements that can be made on a particular item or procedure. SAMPLE VERSUS POPULATION Populatio - cosists of all possible measuremets that ca be made o a particular item or procedure. Ofte a populatio has a ifiite umber of data elemets Geerally expese to determie

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1

Eigenimages. Digital Image Processing: Bernd Girod, 2013 Stanford University -- Eigenimages 1 Eigeimages Uitary trasforms Karhue-Loève trasform ad eigeimages Sirovich ad Kirby method Eigefaces for geder recogitio Fisher liear discrimat aalysis Fisherimages ad varyig illumiatio Fisherfaces vs. eigefaces

More information

Bayesian approach to reliability modelling for a probability of failure on demand parameter

Bayesian approach to reliability modelling for a probability of failure on demand parameter Bayesia approach to reliability modellig for a probability of failure o demad parameter BÖRCSÖK J., SCHAEFER S. Departmet of Computer Architecture ad System Programmig Uiversity Kassel, Wilhelmshöher Allee

More information

Unit 4. NFS and Samba

Unit 4. NFS and Samba it 4 F ad amba oa Warre F (etwork File ystem) F allows remote access to files o a Liux system he F cliet logs ito the F server ad mouts the exported directories i at a local l mout poit hared files ca

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le

Fundamentals of Media Processing. Shin'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dinh Le Fudametals of Media Processig Shi'ichi Satoh Kazuya Kodama Hiroshi Mo Duy-Dih Le Today's topics Noparametric Methods Parze Widow k-nearest Neighbor Estimatio Clusterig Techiques k-meas Agglomerative Hierarchical

More information

CS 111: Program Design I Lecture 21: Network Analysis. Robert H. Sloan & Richard Warner University of Illinois at Chicago April 10, 2018

CS 111: Program Design I Lecture 21: Network Analysis. Robert H. Sloan & Richard Warner University of Illinois at Chicago April 10, 2018 CS 111: Program Desig I Lecture 21: Network Aalysis Robert H. Sloa & Richard Warer Uiversity of Illiois at Chicago April 10, 2018 NETWORK ANALYSIS Which displays a graph i the sese of graph/etwork aalysis?

More information

Filter design. 1 Design considerations: a framework. 2 Finite impulse response (FIR) filter design

Filter design. 1 Design considerations: a framework. 2 Finite impulse response (FIR) filter design Filter desig Desig cosideratios: a framework C ı p ı p H(f) Aalysis of fiite wordlegth effects: I practice oe should check that the quatisatio used i the implemetatio does ot degrade the performace of

More information

NAG Library Function Document nag_fft_hermitian (c06ebc)

NAG Library Function Document nag_fft_hermitian (c06ebc) c06 Fourier Trasforms NAG Library Fuctio Documet ag_fft_hermitia () 1 Purpose ag_fft_hermitia () calculates the discrete Fourier trasform of a Hermitia sequece of complex data values. (No extra workspace

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Global Support Guide. Verizon WIreless. For the BlackBerry 8830 World Edition Smartphone and the Motorola Z6c

Global Support Guide. Verizon WIreless. For the BlackBerry 8830 World Edition Smartphone and the Motorola Z6c Verizo WIreless Global Support Guide For the BlackBerry 8830 World Editio Smartphoe ad the Motorola Z6c For complete iformatio o global services, please refer to verizowireless.com/vzglobal. Whether i

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

ENGR 132. Fall Exam 1

ENGR 132. Fall Exam 1 ENGR 3 Fall 03 Exam INSTRUCTIONS: Duratio: 60 miutes Keep your eyes o your ow work. Keep your work covered at all times.. Each studet is resposible for followig directios. Read carefully.. MATLAB ad Excel

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

Fast Fourier Transform (FFT) Algorithms

Fast Fourier Transform (FFT) Algorithms Fast Fourier Trasform FFT Algorithms Relatio to the z-trasform elsewhere, ozero, z x z X x [ ] 2 ~ elsewhere,, ~ e j x X x x π j e z z X X π 2 ~ The DFS X represets evely spaced samples of the z- trasform

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

JoLetter 6.7. JoLauterbach Software GmbH. Mail and merge with QuarkXPress. JoLauterbach Software GmbH. Stolzingstraße 4a Bayreuth Germany

JoLetter 6.7. JoLauterbach Software GmbH. Mail and merge with QuarkXPress. JoLauterbach Software GmbH. Stolzingstraße 4a Bayreuth Germany JoLetter 6.7 Mail ad merge with QuarkXPress JoLauterbach Software GmbH Stolzigstraße 4a 95445 Bayreuth Germay Telefo: +49-921-730 3363 Fax: +49-921-730 3394 E-Mail: ifo@jolauterbach.com Iteret: http://www.jolauterbach.com

More information

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour

Diego Nehab. n A Transformation For Extracting New Descriptors of Shape. n Locus of points equidistant from contour Diego Nehab A Trasformatio For Extractig New Descriptors of Shape Locus of poits equidistat from cotour Medial Axis Symmetric Axis Skeleto Shock Graph Shaked 96 1 Shape matchig Aimatio Dimesio reductio

More information

Task scenarios Outline. Scenarios in Knowledge Extraction. Proposed Framework for Scenario to Design Diagram Transformation

Task scenarios Outline. Scenarios in Knowledge Extraction. Proposed Framework for Scenario to Design Diagram Transformation 6-0-0 Kowledge Trasformatio from Task Scearios to View-based Desig Diagrams Nima Dezhkam Kamra Sartipi {dezhka, sartipi}@mcmaster.ca Departmet of Computig ad Software McMaster Uiversity CANADA SEKE 08

More information

Evaluation scheme for Tracking in AMI

Evaluation scheme for Tracking in AMI A M I C o m m u i c a t i o A U G M E N T E D M U L T I - P A R T Y I N T E R A C T I O N http://www.amiproject.org/ Evaluatio scheme for Trackig i AMI S. Schreiber a D. Gatica-Perez b AMI WP4 Trackig:

More information

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion

EECS 442 Computer vision. Multiple view geometry Affine structure from Motion EECS 442 Computer visio Multiple view geometry Affie structure from Motio - Affie structure from motio problem - Algebraic methods - Factorizatio methods Readig: [HZ] Chapters: 6,4,8 [FP] Chapter: 2 Some

More information

A Taste of Maya. Character Setup

A Taste of Maya. Character Setup This tutorial goes through the steps to add aimatio cotrols to a previously modeled character. The character i the scee below is wearig clothes made with Cloth ad the sceery has bee created with Pait Effects.

More information

Floristic Quality Assessment (FQA) Calculator for Colorado User s Guide

Floristic Quality Assessment (FQA) Calculator for Colorado User s Guide Floristic Quality Assessmet (FQA) Calculator for Colorado User s Guide Created by the Colorado atural Heritage Program Last Updated April 2012 The FQA Calculator was created by Michelle Fik ad Joaa Lemly

More information

15 UNSUPERVISED LEARNING

15 UNSUPERVISED LEARNING 15 UNSUPERVISED LEARNING [My father] advised me to sit every few moths i my readig chair for a etire eveig, close my eyes ad try to thik of ew problems to solve. I took his advice very seriously ad have

More information

A Novel Feature Extraction Algorithm for Haar Local Binary Pattern Texture Based on Human Vision System

A Novel Feature Extraction Algorithm for Haar Local Binary Pattern Texture Based on Human Vision System A Novel Feature Extractio Algorithm for Haar Local Biary Patter Texture Based o Huma Visio System Liu Tao 1,* 1 Departmet of Electroic Egieerig Shaaxi Eergy Istitute Xiayag, Shaaxi, Chia Abstract The locality

More information

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals

UNIT 4 Section 8 Estimating Population Parameters using Confidence Intervals UNIT 4 Sectio 8 Estimatig Populatio Parameters usig Cofidece Itervals To make ifereces about a populatio that caot be surveyed etirely, sample statistics ca be take from a SRS of the populatio ad used

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

Improving Template Based Spike Detection

Improving Template Based Spike Detection Improvig Template Based Spike Detectio Kirk Smith, Member - IEEE Portlad State Uiversity petra@ee.pdx.edu Abstract Template matchig algorithms like SSE, Covolutio ad Maximum Likelihood are well kow for

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

CSE 111 Bio: Program Design I Lecture 17: software development, list methods

CSE 111 Bio: Program Design I Lecture 17: software development, list methods CSE 111 Bio: Program Desig I Lecture 17: software developmet, list methods Robert H. Sloa(CS) & Rachel Poretsky(Bio) Uiversity of Illiois, Chicago October 19, 2017 NESTED LOOPS: REVIEW Geerate times table

More information

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 10. Defining Classes. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 10 Defiig Classes Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 10.1 Structures 10.2 Classes 10.3 Abstract Data Types 10.4 Itroductio to Iheritace Copyright 2015 Pearso Educatio,

More information

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual) Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter

More information

MR-2010I %MktBSize Macro 989. %MktBSize Macro

MR-2010I %MktBSize Macro 989. %MktBSize Macro MR-2010I %MktBSize Macro 989 %MktBSize Macro The %MktBSize autocall macro suggests sizes for balaced icomplete block desigs (BIBDs). The sizes that it reports are sizes that meet ecessary but ot sufficiet

More information

Normal Distributions

Normal Distributions Normal Distributios Stacey Hacock Look at these three differet data sets Each histogram is overlaid with a curve : A B C A) Weights (g) of ewly bor lab rat pups B) Mea aual temperatures ( F ) i A Arbor,

More information