Introduction Methods K-means Spectral Clustering Markov Random Fields Modeling Data Mixture Modeling Conclusion. Microscopy

Size: px
Start display at page:

Download "Introduction Methods K-means Spectral Clustering Markov Random Fields Modeling Data Mixture Modeling Conclusion. Microscopy"

Transcription

1 Microscopy Supervised Segmentation of Domain Boundaries in STM Images of Self-Assembled Molecule Layers Daniel Lander, Rodrigo Rios, Matt Vollmer, Yu (Dan) Zhou Supervised by: Dominique Zosso Department of Mathematics, University of California, Los Angeles (UCLA) 08/07/2013

2 2/31 Overview 1 Introduction 2 Methods 3 K-means 4 Spectral Clustering 5 Markov Random Fields 6 Modeling Data 7 Mixture Modeling 8 Conclusion

3 3/31 Introduction Scanning Tunneling Microscopy (STM) Used to measure topography of surface at nano-scale Produces two different types of images of interest Self-assembled cage molecules on Au{111} [left] Beta-sheets of peptide on graphite [right] [2] [3]

4 4/31 Introduction Cage Molecules Produces SAMs with relatively few defects SAMs made from 1-carboranethiol, 1-adamantanethiol, and 2-adamantanethiol [2] [6]

5 5/31 Introduction Image Segmentation I 0 be the observed image stored as set of pixels and P is a uniformity (homogeneity) predicate Partitioning of I 0 into a set of subregions (S 1, S 2,..., S n ) where n S i = F with S i S j = Ø, i j (1) i=1 P(S i ) = true to S j i and P(S i S j ) = false, when S i is adjacent

6 6/31 Introduction Previous Work Applied principal component analysis, mean diffused orientation Gnorm-TV, and a structure tensor for pre-processing Chan-Vese for contour modeling Data is on beta sheets as opposed to self-assembled cage molecules [3] [3]

7 Introduction Methods K-means Spectral Clustering Markov Random Fields Modeling Data Mixture Modeling Conclusion Introduction Objective Accurately segment and characterize different domains in an STM image with self-assembled cage molecules [2] [6] 7/31

8 8/31 Methods Preprocessing Mexican hat filter separates structure from texture Hole finder to isolate artifacts

9 9/31 Methods Fourier Transform Chunking image 1 Block-wise without overlap 2 Pixel by pixel Apply Gaussian window and Fourier transform Power spectrum is invariant under spatial translation

10 10/31 Methods Fourier Domain K-means Spectral clustering Bayesian Probability in Fourier Domain Markov random fields 1 Spectral clustering initialization 2 Partial labeling Mixture modeling Assessing Correctness Pixel by pixel difference with ground truth

11 11/31 The k-means Algorithm Data: X = {x i i = 1,..., n} and Centroids: C = {c i i = 1,..., k} S j = {x x is a member of a cluster j} n Cost = dist(ω i, c k ), c k = S k i=1 ω i S k ω i

12 12/31 k-means block-wise results Original synthetic (a) 8 pixel, 0.23 (b) 16 pixel, 0.27 (c) 32 pixel, 0.32 (d) 64 pixel, 0.54

13 13/31 k-means pixel by pixel results Original Synthetic 32 pixel size, 0.59

14 14/31 Spectral Clustering D i,i = m 2 j=0 W i,j L = D W Given weight matrix, W. ω(a, B) = i A,j B i A,j B W i,j e Î 0 (i) RatioCut(A 1,..., A k ) = 1 2 k i=1 2 Î 0 (j) 2 2 2σ 2 ω(a i, A i C ) A i Finishing steps: 1 Define matrix U, in R nxk 2 Cluster points in R k using the k-means algorithm

15 (c) σ = log(2.5), 0.78 (d) σ = log(3), /31 Spectral clustering block-wise results Various σ at 32 pixel size Original synthetic (a) σ = log(1.5), 0.69 (b) σ = log(2), 0.54

16 Spectral clustering block-wise results Various pixel sizes at optimal σ = log(2.5) Original synthetic (a) 8 pixel, 0.29 (b) 16 pixel, 0.48 (c) 32 pixel, 0.59 (d) 64 pixel, /31

17 17/31 Spectral clustering pixel by pixel results (a) Original synthetic (b) σ = 0.071, 32 pixel, 0.95 (c) 32 pixel

18 18/31 Markov random fields Markov Random Fields (MRFs) Assume local dependence of pixels Solve optimization problem: P(L) is the clique potential P(I 0 L) is the data term max P(L I 0) P(L)P(I 0 L) L

19 19/31 Markov random fields The Tentative Procedure Initialize mean (µ k ) and variance (Σ k ) for spectrum of each cluster using k-means Apply Expectation-Maximization (EM) algorithm on P(L) = P ( ) ( ) L(x) L Ω\x = L(x) LN(x) (2) x I 0 x I 0 P x I 0 e λh where H = y N(x) 1 1 [L(x)=L(y)] (3) P(I 0 L) = x I 0 N (PS µ k, Σ k ) where PS = Î 0 (x) 2 (4) Maximize label configuration L in double product for P(L)P(I 0 L) across k clusters Update expected new mean and variance parameters of spectral clusters

20 20/31 Markov random fields with spectral clustering initialization Original synthetic (a) Initial, 0.95 (b) λ = 0.05, 0.87, 25 iterations (c) λ = 0.05, 0.80, 50 iterations (d) λ = 0.05, 0.74, 75 iterations

21 21/31 Markov random fields with user input (a) Original synthetic (b) Initial, 0.60 (c) λ = , 0.84, 50 iterations

22 22/31 Markov random fields results with partial labeling (a) Original synthetic (b) λ = 1, 32 pixel, 0.86

23 Applying algorithms on data (a) 1-adamantanethiol (b) Spec clust, σ = 0.071, 32 pixel, 0.52 (c) User input, λ = , 32 pixel, 0.61 (d) Partial labeling, λ = 1, 32 pixel, /31

24 Applying algorithms on data (a) 2-adamantanethiol (b) Spec clust, σ = 0.071, 32 pixel, 0.69 (c) User input, λ = , 32 pixel, 0.85 (d) Partial labeling, λ = 1, 32 pixel, /31

25 25/31 Mixture modeling Mixture models Assigns mixture vector u(x) = (u 1 (x),..., u k (x)) to pixel x of being in k clusters New clique potential with spatial gradient: P(u) = P(u(x)) = N ( u(x) µ = 0, σ 2 ) g x I 0 x I 0 (5) Probability vector used as weights for product of normal distributions in data term: P(I 0 u) = ( k N ( ) PS µ i, σ 2) u i (x) x I 0 i=1 (6)

26 26/31 Mixture modeling Mixture models New maximization problem: ( k x I0 i=1 max u N ( u(x) µ = 0, σ 2) N ( PS µ i, σg 2 ) ui (x) ) After a log transformation: min u,λ x I 0 i=1 subject to k u i (x) 2 (PS µ i ) 2 + λ u 2 k u i (x) = 1 and u i (x) 0 x I 0 i=1

27 27/31 Conclusions & Outlook 1 Block by block is not as good as pixel by pixel 2 Spectral clustering works best on synthetic images 3 Markov random fields with k-means manual initialization and partial labeling works best on microscopy data 4 Optimize Markov random fields to be interactive 5 Attempt mixture modeling

28 28/31 References I Julian Besag. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological), pages , Arrelaine A. Dameron, Lyndon F. Charles, and Paul S. Weiss. Structures and displacement of 1-adamantanethiol self-assembled monolayers on au {111}. Journal of the American Chemical Society, 127(24): , 2005.

29 29/31 References II Huynh Nen Lim Tawny Meyer Travis Dragomiretskiy, Jonathan Siegel Konstantin and Joseph Woodworth. Image analysis and classification in scanning tunneling microscopy Rafael C. Gonzalez and R.E. Woods. Digital image processing, John A. Hartigan and Manchek A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1): , 1979.

30 30/31 References III J. Nathan Hohman, Shelley A. Claridge, Moonhee Kim, and Paul S. Weiss. Cage molecules for self-assembly. Materials Science and Engineering: R: Reports, 70(3): , Anil K Jain, M. Narasimha Murty, and Patrick J Flynn. Data clustering: a review. ACM computing surveys (CSUR), 31(3): , Todd K. Moon. The expectation-maximization algorithm. Signal processing magazine, IEEE, 13(6):47 60, 1996.

31 31/31 References IV Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4): , 2007.

Supervised STM Image Segmentation of Self-Assembled Molecule Layers

Supervised STM Image Segmentation of Self-Assembled Molecule Layers Supervised STM Image Segmentation of Self-Assembled Molecule Layers Daniel Lander, Rodrigo Rios, Mathew Vollmer, and Daniel Zhou Summer 2013 Abstract Self-Assembled monolayers, or SAMs, of cage molecules

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

How to mix spatial and spectral information when processing hyperspectral images

How to mix spatial and spectral information when processing hyperspectral images How to mix spatial and spectral information when processing hyperspectral images Gilles Rabatel Cemagref, France KVCV Workshop on multivariate imaging analysis 8 th november 2007 Gembloux, Belgium Presentation

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database October 6, 2015 Spectral Clustering on Handwritten Digits Database Danielle dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park Advance

More information

Lesion Segmentation and Bias Correction in Breast Ultrasound B-mode Images Including Elastography Information

Lesion Segmentation and Bias Correction in Breast Ultrasound B-mode Images Including Elastography Information Lesion Segmentation and Bias Correction in Breast Ultrasound B-mode Images Including Elastography Information Gerard Pons a, Joan Martí a, Robert Martí a, Mariano Cabezas a, Andrew di Battista b, and J.

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields Wei Liu 1, Peihong Zhu 1, Jeffrey S. Anderson 2, Deborah Yurgelun-Todd 3, and P. Thomas Fletcher 1 1 Scientific

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Bioimage Informatics

Bioimage Informatics Bioimage Informatics Lecture 14, Spring 2012 Bioimage Data Analysis (IV) Image Segmentation (part 3) Lecture 14 March 07, 2012 1 Outline Review: intensity thresholding based image segmentation Morphological

More information

Figure 1: Workflow of object-based classification

Figure 1: Workflow of object-based classification Technical Specifications Object Analyst Object Analyst is an add-on package for Geomatica that provides tools for segmentation, classification, and feature extraction. Object Analyst includes an all-in-one

More information

Fourier Transform and Texture Filtering

Fourier Transform and Texture Filtering Fourier Transform and Texture Filtering Lucas J. van Vliet www.ph.tn.tudelft.nl/~lucas Image Analysis Paradigm scene Image formation sensor pre-processing Image enhancement Image restoration Texture filtering

More information

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation

Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation Purdue University: Digital Image Processing Laboratories Digital Image Processing Laboratory: Markov Random Fields and MAP Image Segmentation December, 205 Introduction This laboratory explores the use

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington A^ ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Digital Image Processing. Lecture # 15 Image Segmentation & Texture

Digital Image Processing. Lecture # 15 Image Segmentation & Texture Digital Image Processing Lecture # 15 Image Segmentation & Texture 1 Image Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) Applications:

More information

Document image binarisation using Markov Field Model

Document image binarisation using Markov Field Model 009 10th International Conference on Document Analysis and Recognition Document image binarisation using Markov Field Model Thibault Lelore, Frédéric Bouchara UMR CNRS 6168 LSIS Southern University of

More information

Application of Spectral Clustering Algorithm

Application of Spectral Clustering Algorithm 1/27 Application of Spectral Clustering Algorithm Danielle Middlebrooks dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park Advance

More information

Short Survey on Static Hand Gesture Recognition

Short Survey on Static Hand Gesture Recognition Short Survey on Static Hand Gesture Recognition Huu-Hung Huynh University of Science and Technology The University of Danang, Vietnam Duc-Hoang Vo University of Science and Technology The University of

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

A Survey on Image Segmentation Using Clustering Techniques

A Survey on Image Segmentation Using Clustering Techniques A Survey on Image Segmentation Using Clustering Techniques Preeti 1, Assistant Professor Kompal Ahuja 2 1,2 DCRUST, Murthal, Haryana (INDIA) Abstract: Image is information which has to be processed effectively.

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

An ICA based Approach for Complex Color Scene Text Binarization

An ICA based Approach for Complex Color Scene Text Binarization An ICA based Approach for Complex Color Scene Text Binarization Siddharth Kherada IIIT-Hyderabad, India siddharth.kherada@research.iiit.ac.in Anoop M. Namboodiri IIIT-Hyderabad, India anoop@iiit.ac.in

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Segmentation. (template) matching

Segmentation. (template) matching Segmentation. (template) matching 1 Announcements Midterm March 3 2010, in class Duration: 45 min Weight: 20% of final course mark Closed book, closed notes Calculator allowed Practice midterm posted.

More information

Empirical Bayesian Motion Segmentation

Empirical Bayesian Motion Segmentation 1 Empirical Bayesian Motion Segmentation Nuno Vasconcelos, Andrew Lippman Abstract We introduce an empirical Bayesian procedure for the simultaneous segmentation of an observed motion field estimation

More information

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Level Sets & Snakes Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Scale Space and PDE methods in image analysis and processing - Arjan

More information

Unsupervised Texture Image Segmentation Using MRF- EM Framework

Unsupervised Texture Image Segmentation Using MRF- EM Framework Journal of Advances in Computer Research Quarterly ISSN: 2008-6148 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 4, No. 2, May 2013), Pages: 1-13 www.jacr.iausari.ac.ir Unsupervised Texture

More information

Image Segmentation using Gaussian Mixture Models

Image Segmentation using Gaussian Mixture Models Image Segmentation using Gaussian Mixture Models Rahman Farnoosh, Gholamhossein Yari and Behnam Zarpak Department of Applied Mathematics, University of Science and Technology, 16844, Narmak,Tehran, Iran

More information

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs

CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs CS 543: Final Project Report Texture Classification using 2-D Noncausal HMMs Felix Wang fywang2 John Wieting wieting2 Introduction We implement a texture classification algorithm using 2-D Noncausal Hidden

More information

CoE4TN4 Image Processing

CoE4TN4 Image Processing CoE4TN4 Image Processing Chapter 11 Image Representation & Description Image Representation & Description After an image is segmented into regions, the regions are represented and described in a form suitable

More information

Markov Random Fields and Segmentation with Graph Cuts

Markov Random Fields and Segmentation with Graph Cuts Markov Random Fields and Segmentation with Graph Cuts Computer Vision Jia-Bin Huang, Virginia Tech Many slides from D. Hoiem Administrative stuffs Final project Proposal due Oct 27 (Thursday) HW 4 is out

More information

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors

Texture. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors. Frequency Descriptors Texture The most fundamental question is: How can we measure texture, i.e., how can we quantitatively distinguish between different textures? Of course it is not enough to look at the intensity of individual

More information

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200, Kasugai,

More information

Machine learning Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures

Machine learning Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures Machine learning Pattern recognition Classification/Clustering GW Chapter 12 (some concepts) Textures Patterns and pattern classes Pattern: arrangement of descriptors Descriptors: features Patten class:

More information

AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION

AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION AN IMPROVED K-MEANS CLUSTERING ALGORITHM FOR IMAGE SEGMENTATION WILLIAM ROBSON SCHWARTZ University of Maryland, Department of Computer Science College Park, MD, USA, 20742-327, schwartz@cs.umd.edu RICARDO

More information

Normalized Texture Motifs and Their Application to Statistical Object Modeling

Normalized Texture Motifs and Their Application to Statistical Object Modeling Normalized Texture Motifs and Their Application to Statistical Obect Modeling S. D. Newsam B. S. Manunath Center for Applied Scientific Computing Electrical and Computer Engineering Lawrence Livermore

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Texture Modeling using MRF and Parameters Estimation

Texture Modeling using MRF and Parameters Estimation Texture Modeling using MRF and Parameters Estimation Ms. H. P. Lone 1, Prof. G. R. Gidveer 2 1 Postgraduate Student E & TC Department MGM J.N.E.C,Aurangabad 2 Professor E & TC Department MGM J.N.E.C,Aurangabad

More information

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA

Processing and Others. Xiaojun Qi -- REU Site Program in CVMA Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVMA (0 Summer) Segmentation Outline Strategies and Data Structures Overview of Algorithms Region Splitting Region Merging

More information

Data: a collection of numbers or facts that require further processing before they are meaningful

Data: a collection of numbers or facts that require further processing before they are meaningful Digital Image Classification Data vs. Information Data: a collection of numbers or facts that require further processing before they are meaningful Information: Derived knowledge from raw data. Something

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

CHAPTER 2 TEXTURE CLASSIFICATION METHODS GRAY LEVEL CO-OCCURRENCE MATRIX AND TEXTURE UNIT

CHAPTER 2 TEXTURE CLASSIFICATION METHODS GRAY LEVEL CO-OCCURRENCE MATRIX AND TEXTURE UNIT CHAPTER 2 TEXTURE CLASSIFICATION METHODS GRAY LEVEL CO-OCCURRENCE MATRIX AND TEXTURE UNIT 2.1 BRIEF OUTLINE The classification of digital imagery is to extract useful thematic information which is one

More information

IMAGE SEGMENTATION. Václav Hlaváč

IMAGE SEGMENTATION. Václav Hlaváč IMAGE SEGMENTATION Václav Hlaváč Czech Technical University in Prague Faculty of Electrical Engineering, Department of Cybernetics Center for Machine Perception http://cmp.felk.cvut.cz/ hlavac, hlavac@fel.cvut.cz

More information

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking

Boundary descriptors. Representation REPRESENTATION & DESCRIPTION. Descriptors. Moore boundary tracking Representation REPRESENTATION & DESCRIPTION After image segmentation the resulting collection of regions is usually represented and described in a form suitable for higher level processing. Most important

More information

Unsupervised Learning

Unsupervised Learning Networks for Pattern Recognition, 2014 Networks for Single Linkage K-Means Soft DBSCAN PCA Networks for Kohonen Maps Linear Vector Quantization Networks for Problems/Approaches in Machine Learning Supervised

More information

Processing of binary images

Processing of binary images Binary Image Processing Tuesday, 14/02/2017 ntonis rgyros e-mail: argyros@csd.uoc.gr 1 Today From gray level to binary images Processing of binary images Mathematical morphology 2 Computer Vision, Spring

More information

Adaptive Fuzzy Connectedness-Based Medical Image Segmentation

Adaptive Fuzzy Connectedness-Based Medical Image Segmentation Adaptive Fuzzy Connectedness-Based Medical Image Segmentation Amol Pednekar Ioannis A. Kakadiaris Uday Kurkure Visual Computing Lab, Dept. of Computer Science, Univ. of Houston, Houston, TX, USA apedneka@bayou.uh.edu

More information

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING

IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING SECOND EDITION IMAGE ANALYSIS, CLASSIFICATION, and CHANGE DETECTION in REMOTE SENSING ith Algorithms for ENVI/IDL Morton J. Canty с*' Q\ CRC Press Taylor &. Francis Group Boca Raton London New York CRC

More information

EECS490: Digital Image Processing. Lecture #19

EECS490: Digital Image Processing. Lecture #19 Lecture #19 Shading and texture analysis using morphology Gray scale reconstruction Basic image segmentation: edges v. regions Point and line locators, edge types and noise Edge operators: LoG, DoG, Canny

More information

Statistics of Natural Image Categories

Statistics of Natural Image Categories Statistics of Natural Image Categories Authors: Antonio Torralba and Aude Oliva Presented by: Sebastian Scherer Experiment Please estimate the average depth from the camera viewpoint to all locations(pixels)

More information

Image Segmentation. GV12/3072 Image Processing.

Image Segmentation. GV12/3072 Image Processing. Image Segmentation 1 Recap from last time Samples not squares Sensors are not perfect Quantization hurts Questions? 2 Overview What is image segmentation? Thresholding and thresholding algorithms Performance

More information

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning

CS325 Artificial Intelligence Ch. 20 Unsupervised Machine Learning CS325 Artificial Intelligence Cengiz Spring 2013 Unsupervised Learning Missing teacher No labels, y Just input data, x What can you learn with it? Unsupervised Learning Missing teacher No labels, y Just

More information

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures

Pattern recognition. Classification/Clustering GW Chapter 12 (some concepts) Textures Pattern recognition Classification/Clustering GW Chapter 12 (some concepts) Textures Patterns and pattern classes Pattern: arrangement of descriptors Descriptors: features Patten class: family of patterns

More information

CRFs for Image Classification

CRFs for Image Classification CRFs for Image Classification Devi Parikh and Dhruv Batra Carnegie Mellon University Pittsburgh, PA 15213 {dparikh,dbatra}@ece.cmu.edu Abstract We use Conditional Random Fields (CRFs) to classify regions

More information

Digital Image Processing Chapter 11: Image Description and Representation

Digital Image Processing Chapter 11: Image Description and Representation Digital Image Processing Chapter 11: Image Description and Representation Image Representation and Description? Objective: To represent and describe information embedded in an image in other forms that

More information

Color Image Segmentation

Color Image Segmentation Color Image Segmentation Yining Deng, B. S. Manjunath and Hyundoo Shin* Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 93106-9560 *Samsung Electronics Inc.

More information

Introduction to digital image classification

Introduction to digital image classification Introduction to digital image classification Dr. Norman Kerle, Wan Bakx MSc a.o. INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION Purpose of lecture Main lecture topics Review

More information

Expectation-Maximization Algorithm and Image Segmentation

Expectation-Maximization Algorithm and Image Segmentation Expectation-Maximization Algorithm and Image Segmentation Daozheng Chen 1 In computer vision, image segmentation problem is to partition a digital image into multiple parts. The goal is to change the representation

More information

Introduction to SLAM Part II. Paul Robertson

Introduction to SLAM Part II. Paul Robertson Introduction to SLAM Part II Paul Robertson Localization Review Tracking, Global Localization, Kidnapping Problem. Kalman Filter Quadratic Linear (unless EKF) SLAM Loop closing Scaling: Partition space

More information

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation

4/13/ Introduction. 1. Introduction. 2. Formulation. 2. Formulation. 2. Formulation 1. Introduction Motivation: Beijing Jiaotong University 1 Lotus Hill Research Institute University of California, Los Angeles 3 CO 3 for Ultra-fast and Accurate Interactive Image Segmentation This paper

More information

Identify Curvilinear Structure Based on Oriented Phase Congruency in Live Cell Images

Identify Curvilinear Structure Based on Oriented Phase Congruency in Live Cell Images International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 4 (2013), pp. 335-340 International Research Publications House http://www. irphouse.com /ijict.htm Identify

More information

North Asian International Research Journal of Sciences, Engineering & I.T.

North Asian International Research Journal of Sciences, Engineering & I.T. North Asian International Research Journal of Sciences, Engineering & I.T. IRJIF. I.F. : 3.821 Index Copernicus Value: 52.88 ISSN: 2454-7514 Vol. 4, Issue-12 December-2018 Thomson Reuters ID: S-8304-2016

More information

Image Analysis Image Segmentation (Basic Methods)

Image Analysis Image Segmentation (Basic Methods) Image Analysis Image Segmentation (Basic Methods) Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Computer Vision course

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings

An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings An Integrated System for Digital Restoration of Prehistoric Theran Wall Paintings Nikolaos Karianakis 1 Petros Maragos 2 1 University of California, Los Angeles 2 National Technical University of Athens

More information

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1

Wavelet Applications. Texture analysis&synthesis. Gloria Menegaz 1 Wavelet Applications Texture analysis&synthesis Gloria Menegaz 1 Wavelet based IP Compression and Coding The good approximation properties of wavelets allow to represent reasonably smooth signals with

More information

Dr. Ulas Bagci

Dr. Ulas Bagci CAP5415-Computer Vision Lecture 11-Image Segmentation (BASICS): Thresholding, Region Growing, Clustering Dr. Ulas Bagci bagci@ucf.edu 1 Image Segmentation Aim: to partition an image into a collection of

More information

Unsupervised: no target value to predict

Unsupervised: no target value to predict Clustering Unsupervised: no target value to predict Differences between models/algorithms: Exclusive vs. overlapping Deterministic vs. probabilistic Hierarchical vs. flat Incremental vs. batch learning

More information

INF 4300 Classification III Anne Solberg The agenda today:

INF 4300 Classification III Anne Solberg The agenda today: INF 4300 Classification III Anne Solberg 28.10.15 The agenda today: More on estimating classifier accuracy Curse of dimensionality and simple feature selection knn-classification K-means clustering 28.10.15

More information

Lecture 10 CNNs on Graphs

Lecture 10 CNNs on Graphs Lecture 10 CNNs on Graphs CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 26, 2017 Two Scenarios For CNNs on graphs, we have two distinct scenarios: Scenario 1: Each

More information

A Bottom Up Algebraic Approach to Motion Segmentation

A Bottom Up Algebraic Approach to Motion Segmentation A Bottom Up Algebraic Approach to Motion Segmentation Dheeraj Singaraju and RenéVidal Center for Imaging Science, Johns Hopkins University, 301 Clark Hall, 3400 N. Charles St., Baltimore, MD, 21218, USA

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

CLASSIFICATION AND CHANGE DETECTION

CLASSIFICATION AND CHANGE DETECTION IMAGE ANALYSIS, CLASSIFICATION AND CHANGE DETECTION IN REMOTE SENSING With Algorithms for ENVI/IDL and Python THIRD EDITION Morton J. Canty CRC Press Taylor & Francis Group Boca Raton London NewYork CRC

More information

Probabilistic Graphical Models Part III: Example Applications

Probabilistic Graphical Models Part III: Example Applications Probabilistic Graphical Models Part III: Example Applications Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Fall 2014 CS 551, Fall 2014 c 2014, Selim

More information

Contrast adjustment via Bayesian sequential partitioning

Contrast adjustment via Bayesian sequential partitioning Contrast adjustment via Bayesian sequential partitioning Zhiyu Wang, Shuo Xie, Bai Jiang Abstract Photographs taken in dim light have low color contrast. However, traditional methods for adjusting contrast

More information

Colour Image Segmentation Using K-Means, Fuzzy C-Means and Density Based Clustering

Colour Image Segmentation Using K-Means, Fuzzy C-Means and Density Based Clustering Colour Image Segmentation Using K-Means, Fuzzy C-Means and Density Based Clustering Preeti1, Assistant Professor Kompal Ahuja2 1,2 DCRUST, Murthal, Haryana (INDIA) DITM, Gannaur, Haryana (INDIA) Abstract:

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Introduction to Medical Imaging (5XSA0) Module 5

Introduction to Medical Imaging (5XSA0) Module 5 Introduction to Medical Imaging (5XSA0) Module 5 Segmentation Jungong Han, Dirk Farin, Sveta Zinger ( s.zinger@tue.nl ) 1 Outline Introduction Color Segmentation region-growing region-merging watershed

More information

Hidden MRF Detection of Motion of Objects with Uniform Brightness

Hidden MRF Detection of Motion of Objects with Uniform Brightness Motion Hidden MRF Detection of Motion of Objects with Uniform Brightness Adam Kuriafiski 1 and Mariusz Nieniewski 1'2 1 Institute of Fundamental Technological Research, PAS, Warsaw, Dept. of Fundamental

More information

THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S. Visualization of Biological Molecules in Their Native Stat e.

THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S. Visualization of Biological Molecules in Their Native Stat e. THREE-DIMENSIONA L ELECTRON MICROSCOP Y OF MACROMOLECULAR ASSEMBLIE S Visualization of Biological Molecules in Their Native Stat e Joachim Frank CHAPTER 1 Introduction 1 1 The Electron Microscope and

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Region & edge based Segmentation

Region & edge based Segmentation INF 4300 Digital Image Analysis Region & edge based Segmentation Fritz Albregtsen 06.11.2018 F11 06.11.18 IN5520 1 Today We go through sections 10.1, 10.4, 10.5, 10.6.1 We cover the following segmentation

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Bus Detection and recognition for visually impaired people

Bus Detection and recognition for visually impaired people Bus Detection and recognition for visually impaired people Hangrong Pan, Chucai Yi, and Yingli Tian The City College of New York The Graduate Center The City University of New York MAP4VIP Outline Motivation

More information

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone:

Remote Sensing & Photogrammetry W4. Beata Hejmanowska Building C4, room 212, phone: Remote Sensing & Photogrammetry W4 Beata Hejmanowska Building C4, room 212, phone: +4812 617 22 72 605 061 510 galia@agh.edu.pl 1 General procedures in image classification Conventional multispectral classification

More information

Schedule for Rest of Semester

Schedule for Rest of Semester Schedule for Rest of Semester Date Lecture Topic 11/20 24 Texture 11/27 25 Review of Statistics & Linear Algebra, Eigenvectors 11/29 26 Eigenvector expansions, Pattern Recognition 12/4 27 Cameras & calibration

More information

Integrating Intensity and Texture in Markov Random Fields Segmentation. Amer Dawoud and Anton Netchaev. {amer.dawoud*,

Integrating Intensity and Texture in Markov Random Fields Segmentation. Amer Dawoud and Anton Netchaev. {amer.dawoud*, Integrating Intensity and Texture in Markov Random Fields Segmentation Amer Dawoud and Anton Netchaev {amer.dawoud*, anton.netchaev}@usm.edu School of Computing, University of Southern Mississippi 118

More information

Analysis of K-Means Clustering Based Image Segmentation

Analysis of K-Means Clustering Based Image Segmentation IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 10, Issue 2, Ver.1 (Mar - Apr.2015), PP 01-06 www.iosrjournals.org Analysis of K-Means

More information

Part III: Affinity Functions for Image Segmentation

Part III: Affinity Functions for Image Segmentation Part III: Affinity Functions for Image Segmentation Charless Fowlkes joint work with David Martin and Jitendra Malik at University of California at Berkeley 1 Q: What measurements should we use for constructing

More information

EE 584 MACHINE VISION

EE 584 MACHINE VISION EE 584 MACHINE VISION Binary Images Analysis Geometrical & Topological Properties Connectedness Binary Algorithms Morphology Binary Images Binary (two-valued; black/white) images gives better efficiency

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University

Classification. Vladimir Curic. Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Classification Vladimir Curic Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University Outline An overview on classification Basics of classification How to choose appropriate

More information

Saliency Detection in Aerial Imagery

Saliency Detection in Aerial Imagery Saliency Detection in Aerial Imagery using Multi-scale SLIC Segmentation Samir Sahli 1, Daniel A. Lavigne 2 and Yunlong Sheng 1 1- COPL, Image Science group, Laval University, Quebec, Canada 2- Defence

More information

Lecture 3: Geometric and Signal 3D Processing (and some Visualization)

Lecture 3: Geometric and Signal 3D Processing (and some Visualization) Lecture 3: Geometric and Signal 3D Processing (and some Visualization) Chandrajit Bajaj Algorithms & Tools Structure elucidation: filtering, contrast enhancement, segmentation, skeletonization, subunit

More information