Virtual Memory 2: demand paging

Size: px
Start display at page:

Download "Virtual Memory 2: demand paging"

Transcription

1 Virtual Memory : demand paging also: anatomy of a process Guillaume Salagnac Insa-Lyon IST Semester Fall 8

2 Reminder: OS duties CPU CPU cache (SRAM) main memory (DRAM) fast storage (SSD) large storage (disk) Virtual Memory means: hiding the actual location of data during execution placing data and moving it around to improve performance doing so for several processes running simultaneously /9

3 Virtual memory: principle VA=VPN.PO CPU VPN VAS MMU/TLB VPN PPN Ø Ø PT PA=PPN.PO PPN PAS Address space virtualization: CPU only works with Virtual Addresses MMU/TLB translates every request into a Physical Address virtual-to-physical mapping info stored in the Page Table one Virtual Address Space (i.e. one PT) for each process /9

4 4/9 Outline. Virtual Memory for runtime performance: demand paging. Virtual Memory for multiprogramming: page sharing. Virtual Memory for isolation and protection 4. Anatomy of a Virtual Address Space

5 VM for speed: demand paging and swapping Remember: we use DRAM as a cache for the disk Demand Paging: working principle allocate all virtual pages of all processes on the disk only load a page to RAM when it is actually required Possible states for each virtual page: Unmapped = page doesn t exist no data associated with page (neither in memory nor on disk) AKA unallocated Present = page exists and is currently copied in memory data can be access by CPU AKA mapped, loaded, cached, swapped-in Unloaded = allocated on disk but currently not in memory AKA uncached, swapped-out note: page state recorded in PTE 5/9

6 Swapping data between memory and disk Question: what happens if CPU tries to access an unloaded page? CPU DRAM Disk VAS Ø Ø PAS VPN PPN metadata present present Ø unallocated Ø unloaded to disk sector n o 8 6/9

7 7/9 Swapping data between memory and disk From the MMU viewpoint: page in memory = access is possible = PTE is valid page not in memory = access not possible = PTE is invalid unallocated or unloaded implementation: boolean flag in PTE known as the valid bit When a program tries to access an invalid page: MMU raises a software interrupt (trap) CPU jumps in the kernel and executes associated ISR if page is unallocated non-recoverable error kernel kills the process (segmentation fault) if page is unloaded process is not guilty! kernel handles page fault by loading data in memory

8 8/9 Page fault handling. CPU requests a certain virtual address. MMU looks VA up in PT but finds a PTE with valid=false. MMU sends an interrupt request with offending instruction and address 4. CPU switches to supervisor mode and jumps to ISR 5. OS reads page table of current process check that virtual page does exist (i.e. is allocated) 6. OS find a free physical page (by looking in the frame table) sometimes we must swap out a page to make space 7. OS swaps in the required page from disk disk access = I/O burst context switch to keep CPU busy 8. when page loaded: OS updates PTE to reflect new mapping 9. OS marks original process as ready still transparent for application programmer

9 Demand paging: summary Idea: use DRAM as a cache for the disk complicated interaction between software and hardware MMU detects accesses to unloaded pages: page fault OS deals with loading/unloading to disk: swapping invisible from userland CPU kept busy via context switching Average access time to main memory: AMAT = page hit time + (page fault rate page fault penalty) page hit time DRAM latency 5 ns page fault penalty disk latency 5 ms system performance is very sensitive to page fault rate 9/9

10 /9 Outline. Virtual Memory for runtime performance: demand paging. Virtual Memory for multiprogramming: page sharing. Virtual Memory for isolation and protection 4. Anatomy of a Virtual Address Space

11 Reminder: OS duties CPU CPU cache (SRAM) main memory (DRAM) fast storage (SSD) large storage (disk) Virtual Memory means: hiding the actual location of data during execution placing data and moving it around to improve performance doing so for several processes running simultaneously /9

12 VM for multiprogramming: process isolation Idea: each process gets an individual virtual address space OS maintains one page table per process Page Table Page Table Ø Ø Ø Ø VAS PAS VAS Remarks: RAM allocated to the most useful virtual pages MMU reconfigured at each context switch flush the TLB i.e. forget all PTEs of previous process take as new reference the PT of the new process /9

13 VM for multiprogramming: shared memory Idea: enable several processes to communicate one physical page can be mapped into several VASes Page Table Page Table Ø Ø Ø Ø VAS PAS VAS Remarks: feature accessible through kernel API: mmap() syscall shared page typically placed at the same VA why? /9

14 4/9 Outline. Virtual Memory for runtime performance: demand paging. Virtual Memory for multiprogramming: page sharing. Virtual Memory for isolation and protection 4. Anatomy of a Virtual Address Space

15 5/9 VM for security: kernel protection Idea: each PTE contain some permission information e.g: read-only, non-executable, kernel-only... if PTE is valid MMU also checks for permissions Page Table Page Table { } Ø user space user space Ø { } kernel space kernel space VAS PAS VAS Remarks: kernel typically mapped (though protected) in every VAS in general, located above userspace in the VAS e.g. Linux x86: GB=user space, GB 4GB=kernel not all pages allocated!

16 VM for security: MMIO protection Idea: physical addresses lead to DRAM and peripherals Memory-mapped input/output typically: DRAM allocated to userland MMIO restricted to kernel easy to enforce using paging Note: the MMU is a peripheral too 6/9

17 Virtual memory: summary Under the responsibility of the kernel reconfigure the MMU/TLB at every context switch one process = one page table handle page faults carry out all swapping operations between RAM and disk allocate memory pages for processes e.g. via the mmap() syscall before: VAS mmap(...) after: VAS 7/9

18 8/9 Outline. Virtual Memory for runtime performance: demand paging. Virtual Memory for multiprogramming: page sharing. Virtual Memory for isolation and protection 4. Anatomy of a Virtual Address Space Static allocation:.text and.data sections Stack allocation of local variables Heap allocation of dynamic data structures

19 Virtual memory: principle VA=VPN.PO CPU VPN VAS MMU/TLB VPN PPN Ø Ø PT PA=PPN.PO PPN PAS Address space virtualization: CPU only works with Virtual Addresses MMU/TLB translates every request into a Physical Address virtual-to-physical mapping info stored in the Page Table one Virtual Address Space (i.e. one PT) for each process 9/9

20 Anatomy of a process address space VPN To launch a new program: create a new PCB and a new PT copy the executable in memory PCB.PC := address of main() 4 PCB.state := ready 5 append PCB to the ready queue X Virtual Address Space one executable = several sections.text = program instructions.data = global variables.heap = dynamic allocation.stack = local variables (+ calls) show contents of an executable file: objdump -h./prog.elf objdump -d./prog.elf /9

21 Static allocation of instructions and global variables Static = «does not move during execution» location decided once, before execution begins size decided once, before execution begins source code: int i,n,r; factorial() { i = ; } while(n>) { i = i*n; n = n-; } r = i; machine code: 848a7: aa: c7 5 c b: 848b4: eb 848b6: 8b 5 c bc: a c: f af c 848c4: a c c9: a ce: 8 e8 848d: a d6: a db: 85 c 848dd: 7f d7 848df: a c e4: a e9:... /9

22 Static allocation of instructions and global variables Static = «does not move during execution» location decided once, before execution begins size decided once, before execution begins source code: int i,n,r; factorial() { i = ; } while(n>) { i = i*n; n = n-; } r = i; disassembled machine code: 848a7: aa: movl $x, x8496c 848b: 848b4: jmp x848d6 848b6: mov x8496c,%edx 848bc: mov x8496,%eax 848c: imul %edx,%eax 848c4: mov %eax, x8496c 848c9: mov x8496,%eax 848ce: sub $x,%eax 848d: mov %eax, x d6: mov x8496,%eax 848db: test %eax,%eax 848dd: jg x848b6 848df: mov x8496c,%eax 848e4: mov %eax, x e9:... /9

23 Dynamic allocation in the.stack section Problem: what if the size and/or quantity of variables is unknown before execution? int f(int n) { if(n<=) return ; int a=f(n-); int b=f(n-); return a+b; } Solution: use an unbounded data structure i.e. a stack Remarks: approach used in 99% of programming languages AKA execution stack, program stack, control stack, run-time stack, machine stack, call stack, or just the stack one function activation = one portion of the stack local variables, function arguments, return address... dedicated CPU instructions: PUSH, POP, CALL, RET top of stack tracked by Stack Pointer register SP memory beyond SP not considered significant /9

24 The execution stack: remarks CPU SP Definition: area dedicated to dynamic allocation allocated and released Last-In First-Out contents: local variables, return addresses... managed by the compiler top of stack pointed by SP register Advantages easy to use for the programmer maps nicely to features of high-level languages efficient at runtime using register-indirect addressing mode e.g. LOAD [SP] automatic stack growth implemented by OS Limitations LIFO: not suitable for certain data structures /9

25 Dynamic allocation at runtime AKA heap allocation Idea: allow for arbitrary allocations/deallocations during execution User interface malloc(size) size search the heap for a large-enough free zone, return its address (or return an error if unable to find one) free(address) notify the allocator that a previously allocated block is no longer needed and can be reused for later allocations Advantages total flexibility for the programmer compatible with all kinds of data structures Drawbacks total flexibility for the programmer complex implementation allocation can become slow 4/9

26 Heap allocation vs allocation of new VM pages Problem: how to implement malloc() and free()? Bad idea: forward all allocation requests to the kernel e.g. via the mmap() and munmap() syscalls before: after: mmap(...) VAS VAS Drawbacks cannot allocate half a page wasted space AKA fragmentation frequent system calls bad performance Solution: implement the memory allocator in userspace recycle freed block within the same process when possible only when heap is full request new pages from kernel 5/9

27 } } } } } } } Heap allocation: remarks Why it is hard: cannot split a request: allocated zone must be contiguous cannot move a block once allocated: app has pointers to it if several blocks are possible: which one to choose? if chosen free block is too large: should we split it? too many free blocks allocation becomes slow free blocks too small unable to use them for allocation Data structure: list of free blocks AKA freelist Occ. Occupied Free Occ. Free Occ. Free Occ. Occupied Example: where to allocate a block of size? 5?? 6/9

28 Anatomy of a process: summary VPN X Virtual Address Space one VAS = several sections.text = program instructions (static) initialized from executable file VM flags: read-only, executable.data = global variables (static) initialized from executable file VM flags: read-write, non-executable.heap = dynamic allocation userspace malloc()/free() API mmap() to request new pages when full.stack = local variables (+ calls) accessed via PUSH/POP instructions Last In First Out allocation 7/9

29 8/9 Outline. Virtual Memory for runtime performance: demand paging. Virtual Memory for multiprogramming: page sharing. Virtual Memory for isolation and protection 4. Anatomy of a Virtual Address Space Static allocation:.text and.data sections Stack allocation of local variables Heap allocation of dynamic data structures

30 Summary Virtual memory via paging dissociate logical addresses from physical addresses managed in software (kernel) + hardware (MMU/TLB) Demand paging swap memory pages between DRAM and disk page faults detected by MMU, handled by OS disk is slow faults must remain unfrequent Memory allocation static (code, globals) vs dynamic allocation execution stack for local variables heap allocation with malloc()/free() 9/9

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program Virtual Memory (VM) Overview and motivation VM as tool for caching VM as tool for memory management VM as tool for memory protection Address translation 4 May 22 Virtual Memory Processes Definition: A

More information

Lecture 19: Virtual Memory: Concepts

Lecture 19: Virtual Memory: Concepts CSCI-UA.2-3 Computer Systems Organization Lecture 9: Virtual Memory: Concepts Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified) from: Clark Barrett

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

CS5460: Operating Systems

CS5460: Operating Systems CS5460: Operating Systems Lecture 2: OS Hardware Interface (Chapter 2) Course web page: http://www.eng.utah.edu/~cs5460/ CADE lab: WEB L224 and L226 http://www.cade.utah.edu/ Projects will be on Linux

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson Virtual Memory I CSE 35 Spring 27 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Midterms Graded If you did

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 24 LAST TIME Extended virtual memory concept to be a cache of memory stored on disk DRAM becomes L4 cache of data stored on L5 disk Extend page

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 205 Lecture 23 LAST TIME: VIRTUAL MEMORY! Began to focus on how to virtualize memory! Instead of directly addressing physical memory, introduce a level of

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe Virtual Memory: Concepts 5 23 / 8 23: Introduction to Computer Systems 6 th Lecture, Mar. 2, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Address spaces VM as a tool lfor caching VM as a tool for

More information

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk class8.ppt 5-23 The course that gives CMU its Zip! Virtual Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

Operating Systems. System calls. Guillaume Salagnac. Fall Insa-Lyon IST Semester

Operating Systems. System calls. Guillaume Salagnac. Fall Insa-Lyon IST Semester Operating Systems System calls Guillaume Salagnac Insa-Lyon IST Semester Fall 2018 2/36 Previously on IST-OPS Application 1 Application 2 OS Kernel Hardware The CPU implements the Von Neumann cycle executes

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, March 2, 27 Instructors: Franz Franchetti & Seth Copen Goldstein Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-6-) Timothy Roscoe Herbstsemester 26 AS 26 Virtual Memory 8: Virtual Memory Computer Architecture

More information

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation Virtual Memory Topics (Chapter 9) Motivations for VM Address translation 1 Motivations for Virtual Memory Use Physical DRAM as a Cache for the Disk Address space of a process can exceed physical memory

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Processes and Tasks What comprises the state of a running program (a process or task)?

Processes and Tasks What comprises the state of a running program (a process or task)? Processes and Tasks What comprises the state of a running program (a process or task)? Microprocessor Address bus Control DRAM OS code and data special caches code/data cache EAXEBP EIP DS EBXESP EFlags

More information

CSE 560 Computer Systems Architecture

CSE 560 Computer Systems Architecture This Unit: CSE 560 Computer Systems Architecture App App App System software Mem I/O The operating system () A super-application Hardware support for an Page tables and address translation s and hierarchy

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = ; c->gals = 7; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp Java: Car c = new

More information

Virtual Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Virtual Memory. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Virtual Memory Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3044: Operating Systems, Fall 2017, Jinkyu Jeong (jinkyu@skku.edu) Virtual Memory:

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

Understanding the Design of Virtual Memory. Zhiqiang Lin

Understanding the Design of Virtual Memory. Zhiqiang Lin CS 6V8-05: System Security and Malicious Code Analysis Understanding the Design of Virtual Memory Zhiqiang Lin Department of Computer Science University of Texas at Dallas February 27 th, 202 Outline Basic

More information

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007

The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 15-410...The cow and Zaphod... Virtual Memory #2 Feb. 21, 2007 Dave Eckhardt Bruce Maggs 1 L16_VM2 Wean Synchronization Watch for exam e-mail Please answer promptly Computer Club demo night Thursday (2/22)

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides Alan L. Cox alc@rice.edu Some slides adapted from CMU 5.23 slides Objectives Be able to explain the rationale for VM Be able to explain how VM is implemented Be able to translate virtual addresses to physical

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

Virtual Memory 1. Virtual Memory

Virtual Memory 1. Virtual Memory Virtual Memory 1 Virtual Memory key concepts virtual memory, physical memory, address translation, MMU, TLB, relocation, paging, segmentation, executable file, swapping, page fault, locality, page replacement

More information

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck Main memory management CMSC 411 Computer Systems Architecture Lecture 16 Memory Hierarchy 3 (Main Memory & Memory) Questions: How big should main memory be? How to handle reads and writes? How to find

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

CS 261 Fall Mike Lam, Professor. Virtual Memory

CS 261 Fall Mike Lam, Professor. Virtual Memory CS 261 Fall 2016 Mike Lam, Professor Virtual Memory Topics Operating systems Address spaces Virtual memory Address translation Memory allocation Lingering questions What happens when you call malloc()?

More information

Computer Architecture Lecture 13: Virtual Memory II

Computer Architecture Lecture 13: Virtual Memory II 18-447 Computer Architecture Lecture 13: Virtual Memory II Lecturer: Rachata Ausavarungnirun Carnegie Mellon University Spring 2014, 2/17/2014 (with material from Onur Mutlu, Justin Meza and Yoongu Kim)

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

This Unit: Main Memory. Virtual Memory. Virtual Memory. Other Uses of Virtual Memory

This Unit: Main Memory. Virtual Memory. Virtual Memory. Other Uses of Virtual Memory This Unit: Virtual Application OS Compiler Firmware I/O Digital Circuits Gates & Transistors hierarchy review DRAM technology A few more transistors Organization: two level addressing Building a memory

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

16 Sharing Main Memory Segmentation and Paging

16 Sharing Main Memory Segmentation and Paging Operating Systems 64 16 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) !

! What is main memory? ! What is static and dynamic allocation? ! What is segmentation? Maria Hybinette, UGA. High Address (0x7fffffff) ! Memory Questions? CSCI [4 6]730 Operating Systems Main Memory! What is main memory?! How does multiple processes share memory space?» Key is how do they refer to memory addresses?! What is static and dynamic

More information

Protection and System Calls. Otto J. Anshus

Protection and System Calls. Otto J. Anshus Protection and System Calls Otto J. Anshus Protection Issues CPU protection Prevent a user from using the CPU for too long Throughput of jobs, and response time to events (incl. user interactive response

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 1 Agenda Virtual Memory Paged Physical Memory Swap Space

More information

Virtual memory Paging

Virtual memory Paging Virtual memory Paging M1 MOSIG Operating System Design Renaud Lachaize Acknowledgments Many ideas and slides in these lectures were inspired by or even borrowed from the work of others: Arnaud Legrand,

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory

Memory Management. q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory Management q Basic memory management q Swapping q Kernel memory allocation q Next Time: Virtual memory Memory management Ideal memory for a programmer large, fast, nonvolatile and cheap not an option

More information

18-447: Computer Architecture Lecture 18: Virtual Memory III. Yoongu Kim Carnegie Mellon University Spring 2013, 3/1

18-447: Computer Architecture Lecture 18: Virtual Memory III. Yoongu Kim Carnegie Mellon University Spring 2013, 3/1 18-447: Computer Architecture Lecture 18: Virtual Memory III Yoongu Kim Carnegie Mellon University Spring 2013, 3/1 Upcoming Schedule Today: Lab 3 Due Today: Lecture/Recitation Monday (3/4): Lecture Q&A

More information

Memory Management. Kevin Webb Swarthmore College February 27, 2018

Memory Management. Kevin Webb Swarthmore College February 27, 2018 Memory Management Kevin Webb Swarthmore College February 27, 2018 Today s Goals Shifting topics: different process resource memory Motivate virtual memory, including what it might look like without it

More information

CS399 New Beginnings. Jonathan Walpole

CS399 New Beginnings. Jonathan Walpole CS399 New Beginnings Jonathan Walpole Memory Management Memory Management Memory a linear array of bytes - Holds O.S. and programs (processes) - Each cell (byte) is named by a unique memory address Recall,

More information

Physical memory vs. Logical memory Process address space Addresses assignment to processes Operating system tasks Hardware support CONCEPTS 3.

Physical memory vs. Logical memory Process address space Addresses assignment to processes Operating system tasks Hardware support CONCEPTS 3. T3-Memory Index Memory management concepts Basic Services Program loading in memory Dynamic memory HW support To memory assignment To address translation Services to optimize physical memory usage COW

More information

Simple idea 1: load-time linking. Our main questions. Some terminology. Simple idea 2: base + bound register. Protection mechanics.

Simple idea 1: load-time linking. Our main questions. Some terminology. Simple idea 2: base + bound register. Protection mechanics. Our main questions! How is protection enforced?! How are processes relocated?! How is ory partitioned? Simple idea 1: load-time linking! Link as usual, but keep the list of references! At load time, determine

More information

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse http://rebrn.com/re/bad-chrome-6282/ Virtual Memory I CSE 35 Winter 28 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan Administrative

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

Virtual Memory #2 Feb. 21, 2018

Virtual Memory #2 Feb. 21, 2018 15-410...The mysterious TLB... Virtual Memory #2 Feb. 21, 2018 Dave Eckhardt Brian Railing 1 L16_VM2 Last Time Mapping problem: logical vs. physical addresses Contiguous memory mapping (base, limit) Swapping

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Architecture Spring 2004 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture 18: Virtual Memory Lecture Outline Review of Main Memory Virtual Memory Simple Interleaving Cycle

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Administrivia. Lab 1 due Friday 12pm. We give will give short extensions to groups that run into trouble. But us:

Administrivia. Lab 1 due Friday 12pm. We give will give short extensions to groups that run into trouble. But  us: Administrivia Lab 1 due Friday 12pm. We give will give short extensions to groups that run into trouble. But email us: - How much is done & left? - How much longer do you need? Attend section Friday at

More information

CS 5460/6460 Operating Systems

CS 5460/6460 Operating Systems CS 5460/6460 Operating Systems Fall 2009 Instructor: Matthew Flatt Lecturer: Kevin Tew TAs: Bigyan Mukherjee, Amrish Kapoor 1 Join the Mailing List! Reminders Make sure you can log into the CADE machines

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory 1 Learning Outcomes An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. 2 Memory Management Unit (or TLB) The position and function

More information

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19 PROCESS VIRTUAL MEMORY PART 2 CS24 Operating Systems Winter 25-26, Lecture 9 2 Virtual Memory Abstraction Last time, officially introduced concept of virtual memory Programs use virtual addresses to refer

More information

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14

SYSTEM CALL IMPLEMENTATION. CS124 Operating Systems Fall , Lecture 14 SYSTEM CALL IMPLEMENTATION CS124 Operating Systems Fall 2017-2018, Lecture 14 2 User Processes and System Calls Previously stated that user applications interact with the kernel via system calls Typically

More information

The Virtual Memory Abstraction. Memory Management. Address spaces: Physical and Virtual. Address Translation

The Virtual Memory Abstraction. Memory Management. Address spaces: Physical and Virtual. Address Translation The Virtual Memory Abstraction Memory Management Physical Memory Unprotected address space Limited size Shared physical frames Easy to share data Virtual Memory Programs are isolated Arbitrary size All

More information

15 Sharing Main Memory Segmentation and Paging

15 Sharing Main Memory Segmentation and Paging Operating Systems 58 15 Sharing Main Memory Segmentation and Paging Readings for this topic: Anderson/Dahlin Chapter 8 9; Siberschatz/Galvin Chapter 8 9 Simple uniprogramming with a single segment per

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory.

Learning Outcomes. An understanding of page-based virtual memory in depth. Including the R3000 s support for virtual memory. Virtual Memory Learning Outcomes An understanding of page-based virtual memory in depth. Including the R000 s support for virtual memory. Memory Management Unit (or TLB) The position and function of the

More information

P6/Linux Memory System Nov 11, 2009"

P6/Linux Memory System Nov 11, 2009 P6/Linux Memory System Nov 11, 2009" REMEMBER" 2! 3! Intel P6" P6 Memory System" DRAM" external system bus (e.g. PCI)" L2" cache" cache bus! bus interface unit" inst" TLB" instruction" fetch unit" L1"

More information

Virtual Memory (2) 1

Virtual Memory (2) 1 Virtual Memory (2) 1 Changelog 1 Changes made in this version not seen in first lecture: 21 November 2017: 1-level example: added final answer of memory value, not just location 21 November 2017: two-level

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

Foundations of Computer Systems

Foundations of Computer Systems 8-6 Foundations of Computer Systems Lecture 5: Virtual Memory Concepts and Systems October 8, 27 8-6 SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O

More information

Virtual Memory. 11/8/16 (election day) Vote!

Virtual Memory. 11/8/16 (election day) Vote! Virtual Memory 11/8/16 (election day) Vote! Recall: the job of the OS The OS is an interface layer between a user s programs and hardware. Program Operating System Computer Hardware It provides an abstract

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 26 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun https://xkcd.com/495/

More information

Processes, Address Spaces, and Memory Management. CS449 Spring 2016

Processes, Address Spaces, and Memory Management. CS449 Spring 2016 Processes, Address Spaces, and Memory Management CS449 Spring 2016 Process A running program and its associated data Process s Address Space 0x7fffffff Stack Data (Heap) Data (Heap) Globals Text (Code)

More information

Address spaces and memory management

Address spaces and memory management Address spaces and memory management Review of processes Process = one or more threads in an address space Thread = stream of executing instructions Address space = memory space used by threads Address

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 27 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan https://xkcd.com/495/

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda Virtual Memory Paged Physical Memory Swap Space Page Faults

More information

Handout 4 Memory Hierarchy

Handout 4 Memory Hierarchy Handout 4 Memory Hierarchy Outline Memory hierarchy Locality Cache design Virtual address spaces Page table layout TLB design options (MMU Sub-system) Conclusion 2012/11/7 2 Since 1980, CPU has outpaced

More information

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18 PROCESS VIRTUAL MEMORY CS124 Operating Systems Winter 2015-2016, Lecture 18 2 Programs and Memory Programs perform many interactions with memory Accessing variables stored at specific memory locations

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O Hallaron Today Address spaces VM as a tool for caching VM as a tool for memory management VM as

More information

Memory Management. Outline. Memory. Virtual Memory. Instructor: Dr. Tongping Liu

Memory Management. Outline. Memory. Virtual Memory. Instructor: Dr. Tongping Liu Outline Memory Management Instructor: Dr Tongping Liu Virtual memory Page-based memory management Ø Page table and address translation Multi-level page table Translation lookaside buffer (TLB) Demand paging

More information

CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1. All cell phones must be turned off and put away.

CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1. All cell phones must be turned off and put away. CS 537: Introduction to Operating Systems Fall 2016: Midterm Exam #1 This exam is closed book, closed notes. All cell phones must be turned off and put away. No calculators may be used. You have two hours

More information

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15 Memory Addressing Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection Memory as

More information

COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory

COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory 1 COEN-4730 Computer Architecture Lecture 3 Review of Caches and Virtual Memory Cristinel Ababei Dept. of Electrical and Computer Engineering Marquette University Credits: Slides adapted from presentations

More information

Computer Systems II. Memory Management" Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed

Computer Systems II. Memory Management Subdividing memory to accommodate many processes. A program is loaded in main memory to be executed Computer Systems II Memory Management" Memory Management" Subdividing memory to accommodate many processes A program is loaded in main memory to be executed Memory needs to be allocated efficiently to

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Virtual Memory CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructor: Justin Hsia 7/30/2012 Summer 2012 Lecture #24 1 Review of Last Lecture (1/2) Multiple instruction issue increases max speedup, but

More information