Foundations of Computer Systems

Size: px
Start display at page:

Download "Foundations of Computer Systems"

Transcription

1 8-6 Foundations of Computer Systems Lecture 5: Virtual Memory Concepts and Systems October 8, SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron. /8/ Lecture #5

2 Socrative Experiment (Continuing) Pittsburgh Students (86PGH): Silicon Valley Students (86SV): Microphone/Speak out/raise Hand: Still G-R-E-A-T! Socrative: Let s me open floor for electronic questions, putting questions into a visual queue so I don t miss any Let s me do flash polls, etc. Prevents cross-talk and organic discussions in more generalized forums from pulling coteries out of class discussion into parallel question space. Keeps focus and reduces distraction while adding another vehicle for classroom interactivity. Won t allow more than 5 students per room So, I created one room per campus May later try random assignment to a room, etc. /8/ Lecture #5 2

3 8-6 Foundations of Computer Systems Lecture 5: Virtual Memory Concepts and Systems Address spaces VM as a tool for caching VM as a tool for memory management VM as a tool for memory protection Address translation Simple memory system example Case study: Core i7/linux memory system Memory mapping /8/ Lecture #5 3

4 A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers in devices like cars, elevators, and digital picture frames /8/ Lecture #5 4

5 A System Using Virtual Addressing CPU Chip CPU Virtual address (VA) 4 MMU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in all modern servers, laptops, and smart phones One of the great ideas in computer science /8/ Lecture #5 5

6 Address Spaces Linear address space: Ordered set of contiguous non-negative integer addresses: {,, 2, 3 } Virtual address space: Set of N = 2 n virtual addresses {,, 2, 3,, N-} Physical address space: Set of M = 2 m physical addresses {,, 2, 3,, M-} /8/ Lecture #5 6

7 Why Virtual Memory (VM)? Uses main memory efficiently Use DRAM as a cache for parts of a virtual address space Simplifies memory management Each process gets the same uniform linear address space Isolates address spaces One process can t interfere with another s memory User program cannot access privileged kernel information and code /8/ Lecture #5 7

8 VM as a Tool for Caching Conceptually, virtual memory is an array of N contiguous bytes stored on disk. The contents of the array on disk are cached in physical memory (DRAM cache) These cache blocks are called pages (size is P = 2 p bytes) Virtual memory Physical memory VP VP Unallocated Cached Uncached Unallocated Empty Empty PP PP Cached Uncached Empty VP 2 n-p - Cached Uncached N- M- PP 2 m-p - Virtual pages (VPs) stored on disk Physical pages (PPs) cached in DRAM /8/ Lecture #5 8

9 DRAM Cache Organization DRAM cache organization driven by the enormous miss penalty DRAM is about x slower than SRAM Disk is about,x slower than DRAM Consequences Large page (block) size: typically 4 KB, sometimes 4 MB Fully associative Any VP can be placed in any PP Requires a large mapping function different from cache memories Highly sophisticated, expensive replacement algorithms Too complicated and open-ended to be implemented in hardware Write-back rather than write-through /8/ Lecture #5 9

10 Enabling Data Structure: Page Table A page table is an array of page table entries (PTEs) that maps virtual pages to physical pages. Per-process kernel data structure in DRAM Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 4 Virtual memory (disk) /8/ Lecture #5 VP VP 2 VP 3 VP 4 VP 6 VP 7 PP PP 3

11 Page Hit Page hit: reference to VM word that is in physical memory (DRAM cache hit) Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 4 Virtual memory (disk) VP VP 2 VP 3 VP 4 PP PP 3 VP 6 VP 7 /8/ Lecture #5

12 Page Fault Page fault: reference to VM word that is not in physical memory (DRAM cache miss) Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 4 Virtual memory (disk) VP VP 2 VP 3 VP 4 PP PP 3 VP 6 VP 7 /8/ Lecture #5 2

13 Handling Page Fault Page miss causes page fault (an exception) Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 4 Virtual memory (disk) VP VP 2 VP 3 VP 4 PP PP 3 VP 6 VP 7 /8/ Lecture #5 3

14 Handling Page Fault Page miss causes page fault (an exception) Page fault handler selects a victim to be evicted (here VP 4) Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 4 Virtual memory (disk) VP VP 2 VP 3 VP 4 PP PP 3 VP 6 VP 7 /8/ Lecture #5 4

15 Handling Page Fault Page miss causes page fault (an exception) Page fault handler selects a victim to be evicted (here VP 4) Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 3 Virtual memory (disk) VP VP 2 VP 3 VP 4 PP PP 3 VP 6 VP 7 /8/ Lecture #5 5

16 Handling Page Fault Page miss causes page fault (an exception) Page fault handler selects a victim to be evicted (here VP 4) Offending instruction is restarted: page hit! Virtual address Valid PTE PTE 7 Physical page number or disk address null null Memory resident page table (DRAM) Key point: Waiting until the miss to copy the page to DRAM is known as demand paging Physical memory (DRAM) VP VP 2 VP 7 VP 3 Virtual memory (disk) VP VP 2 VP 3 VP 4 VP 6 VP 7 PP PP 3 /8/ Lecture #5 6

17 Allocating Pages Allocating a new page (VP 5) of virtual memory. Valid PTE PTE 7 Physical page number or disk address null Memory resident page table (DRAM) Physical memory (DRAM) VP VP 2 VP 7 VP 3 Virtual memory (disk) VP VP 2 VP 3 VP 4 VP 5 VP 6 VP 7 PP PP 3 /8/ Lecture #5 7

18 Locality to the Rescue Again! Virtual memory seems terribly inefficient, but it works because of locality. At any point in time, programs tend to access a set of active virtual pages called the working set Programs with better temporal locality will have smaller working sets If (working set size < main memory size) Good performance for one process after compulsory misses If ( SUM(working set sizes) > main memory size ) Thrashing: Performance meltdown where pages are swapped (copied) in and out continuously /8/ Lecture #5 8

19 VM as a Tool for Memory Management Key idea: each process has its own virtual address space It can view memory as a simple linear array Mapping function scatters addresses through physical memory Well-chosen mappings can improve locality Virtual Address Space for Process : VP VP 2... Address translation PP 2 Physical Address Space (DRAM) N- Virtual Address Space for Process 2: VP VP 2... PP 6 PP 8... (e.g., read-only library code) N- M- /8/ Lecture #5 9

20 VM as a Tool for Memory Management Simplifying memory allocation Each virtual page can be mapped to any physical page A virtual page can be stored in different physical pages at different times Sharing code and data among processes Map virtual pages to the same physical page (here: PP 6) Address translation Virtual Address Space for Process : VP VP 2... PP 2 Physical Address Space (DRAM) N- Virtual Address Space for Process 2: VP VP 2... PP 6 PP 8... (e.g., read-only library code) N- M- /8/ Lecture #5 2

21 Simplifying Linking and Loading Linking Each program has similar virtual address space Code, data, and heap always start at the same addresses. Loading execve allocates virtual pages for.text and.data sections & creates PTEs marked as invalid The.text and.data sections are copied, page by page, on demand by the virtual memory system x4 Kernel virtual memory User stack (created at runtime) Memory-mapped region for shared libraries Run-time heap (created by malloc) Read/write segment (.data,.bss) Read-only segment (.init,.text,.rodata) Unused Memory invisible to user code %rsp (stack pointer) brk Loaded from the executable file /8/ Lecture #5 2

22 VM as a Tool for Memory Protection Extend PTEs with permission bits MMU checks these bits on each access Process i: VP : VP : VP 2: SUP No No Yes READ Yes Yes Yes WRITE No Yes Yes EXEC Yes Yes No Address PP 6 PP 4 PP 2 Physical Address Space PP 2 PP 4 PP 6 Process j: VP : VP : VP 2: SUP No Yes No READ Yes Yes Yes WRITE No Yes Yes EXEC Yes Yes Yes Address PP 9 PP 6 PP PP 8 PP 9 PP /8/ Lecture #5 22

23 VM Address Translation Virtual Address Space V = {,,, N} Physical Address Space P = {,,, M} Address Translation MAP: V P U { } For virtual address a: MAP(a) = a if data at virtual address a is at physical address a in P MAP(a) = if data at virtual address a is not in physical memory Either invalid or stored on disk /8/ Lecture #5 23

24 Summary of Address Translation Symbols Basic Parameters N = 2 n : Number of addresses in virtual address space M = 2 m : Number of addresses in physical address space P = 2 p : Page size (bytes) Components of the virtual address (VA) TLBI: TLB index TLBT: TLB tag VPO: Virtual page offset VPN: Virtual page number Components of the physical address (PA) PPO: Physical page offset (same as VPO) PPN: Physical page number /8/ Lecture #5 24

25 Address Translation With a Page Table Virtual address Page table base register (PTBR) n- Virtual page number (VPN) p p- Virtual page offset (VPO) Physical page table address for the current process Page table Valid Physical page number (PPN) Valid bit = : Page not in memory (page fault) Valid bit = m- p p- Physical page number (PPN) Physical page offset (PPO) Physical address /8/ Lecture #5 25

26 Address Translation: Page Hit CPU Chip CPU VA MMU 2 PTEA PTE 3 PA Cache/ Memory 4 Data 5 ) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory 4) MMU sends physical address to cache/memory 5) Cache/memory sends data word to processor /8/ Lecture #5 26

27 Address Translation: Page Fault Exception 4 Page fault handler CPU Chip CPU VA 7 MMU 2 PTEA PTE 3 Cache/ Memory Victim page 5 New page Disk 6 ) Processor sends virtual address to MMU 2-3) MMU fetches PTE from page table in memory 4) Valid bit is zero, so MMU triggers page fault exception 5) Handler identifies victim (and, if dirty, pages it out to disk) 6) Handler pages in new page and updates PTE in memory 7) Handler returns to original process, restarting faulting instruction /8/ Lecture #5 27

28 Integrating VM and Cache PTE CPU Chip CPU VA MMU PTEA PA PTEA hit PTEA miss PA miss PTE PTEA PA Memory PA hit Data Data L cache VA: virtual address, PA: physical address, PTE: page table entry, PTEA = PTE address /8/ Lecture #5 28

29 Speeding up Translation with a TLB Page table entries (PTEs) are cached in L like any other memory word PTEs may be evicted by other data references PTE hit still requires a small L delay Solution: Translation Lookaside Buffer (TLB) Small set-associative hardware cache in MMU Maps virtual page numbers to physical page numbers Contains complete page table entries for small number of pages /8/ Lecture #5 29

30 Accessing the TLB MMU uses the VPN portion of the virtual address to access the TLB: TLBT matches tag of line within set n- TLB tag (TLBT) T = 2 t sets VPN p+t p+t- TLB index (TLBI) p p- VPO Set v tag PTE v tag PTE TLBI selects the set Set v tag PTE v tag PTE Set T- v tag PTE v tag PTE /8/ Lecture #5 3

31 TLB Hit CPU Chip TLB 2 VPN PTE 3 CPU VA MMU PA 4 Cache/ Memory Data 5 A TLB hit eliminates a memory access /8/ Lecture #5 3

32 TLB Miss CPU Chip TLB 4 2 PTE VPN 3 CPU VA MMU PTEA PA Cache/ Memory 5 Data 6 A TLB miss incurs an additional memory access (the PTE) Fortunately, TLB misses are rare. Why? /8/ Lecture #5 32

33 ... Multi-Level Page Tables Suppose: 4KB (2 2 ) page size, 48-bit address space, 8-byte PTE Level 2 Tables Problem: Would need a 52 GB page table! 2 48 * 2-2 * 2 3 = 2 39 bytes Level Table... Common solution: Multi-level page table Example: 2-level page table Level table: each PTE points to a page table (always memory resident) Level 2 table: each PTE points to a page (paged in and out like any other data) /8/ Lecture #5 33

34 A Two-Level Page Table Hierarchy Level page table PTE PTE PTE 2 (null) PTE 3 (null) PTE 4 (null) PTE 5 (null) PTE 6 (null) PTE 7 (null) PTE 8 (K - 9) null PTEs Level 2 page tables PTE... PTE 23 PTE... PTE null PTEs 32 bit addresses, 4KB pages, 4-byte PTEs Virtual memory VP... VP 23 VP VP 247 Gap PTE unallocated pages VP K allocated VM pages for code and data 6K unallocated VM pages 23 unallocated pages allocated VM page for the stack /8/ Lecture #5 34

35 Translating with a k-level Page Table Page table base register (PTBR) n- VPN VIRTUAL ADDRESS VPN 2... VPN k p- VPO Level page table Level 2 page table Level k page table PPN m- PPN p- PPO PHYSICAL ADDRESS /8/ Lecture #5 35

36 Summary Programmer s view of virtual memory Each process has its own private linear address space Cannot be corrupted by other processes System view of virtual memory Uses memory efficiently by caching virtual memory pages Efficient only because of locality Simplifies memory management and programming Simplifies protection by providing a convenient interpositioning point to check permissions /8/ Lecture #5 36

37 Review of Symbols Basic Parameters N = 2 n : Number of addresses in virtual address space M = 2 m : Number of addresses in physical address space P = 2 p : Page size (bytes) Components of the virtual address (VA) TLBI: TLB index TLBT: TLB tag VPO: Virtual page offset VPN: Virtual page number Components of the physical address (PA) PPO: Physical page offset (same as VPO) PPN: Physical page number CO: Byte offset within cache line CI: Cache index CT: Cache tag /8/ Lecture #5 37

38 Simple Memory System Example Addressing 4-bit virtual addresses 2-bit physical address Page size = 64 bytes VPN Virtual Page Number VPO Virtual Page Offset PPN Physical Page Number PPO Physical Page Offset /8/ Lecture #5 38

39 . Simple Memory System TLB 6 entries 4-way associative TLBT TLBI VPN VPO Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid 3 9 D D 2 4 A D A 34 2 /8/ Lecture #5 39

40 2. Simple Memory System Page Table Only show first 6 entries (out of 256) VPN PPN Valid VPN PPN Valid A B 4 C 5 6 D 2D 6 E 7 F D /8/ Lecture #5 4

41 3. Simple Memory System Cache 6 lines, 4-byte block size Physically addressed Direct mapped CT CI CO PPN PPO Idx Tag Valid B B B2 B3 Idx Tag Valid B B B2 B A D 2 B A 2D 93 5 DA 3B 3 36 B B D 8F 9 C 2 5 D F D D E B D3 7 6 C2 DF 3 F 4 /8/ Lecture #5 4

42 Address Translation Example # Virtual Address: x3d4 TLBT TLBI VPN VPO VPN xf TLBI x3 TLBT x3 TLB Hit? Y Page Fault? N PPN: xd Physical Address CT CI CO PPN PPO CO CI x5 CT xd Hit? Y Byte: x36 /8/ Lecture #5 42

43 Address Translation Example #2 Virtual Address: x2 TLBT TLBI VPN VPO VPN x TLBI TLBT x TLB Hit? N Page Fault? N PPN: x28 Physical Address CT CI CO PPN PPO CO CI x8 CT x28 Hit? N Byte: Mem /8/ Lecture #5 43

44 Address Translation Example #3 Virtual Address: x2 TLBT TLBI VPN VPO VPN x TLBI TLBT x TLB Hit? N Page Fault? N PPN: x28 Physical Address CT CI CO PPN PPO CO CI x8 CT x28 Hit? N Byte: Mem /8/ Lecture #5 44

45 Intel Core i7 Memory System Processor package Core x4 Registers Instruction fetch MMU (addr translation) L d-cache 32 KB, 8-way L i-cache 32 KB, 8-way L d-tlb 64 entries, 4-way L i-tlb 28 entries, 4-way L2 unified cache 256 KB, 8-way L3 unified cache 8 MB, 6-way (shared by all cores) L2 unified TLB 52 entries, 4-way QuickPath interconnect GB/s each DDR3 Memory controller 3 x 64 GB/s 32 GB/s total (shared by all cores) To other cores To I/O bridge Main memory /8/ Lecture #5 45

46 Review of Symbols Basic Parameters N = 2 n : Number of addresses in virtual address space M = 2 m : Number of addresses in physical address space P = 2 p : Page size (bytes) Components of the virtual address (VA) TLBI: TLB index TLBT: TLB tag VPO: Virtual page offset VPN: Virtual page number Components of the physical address (PA) PPO: Physical page offset (same as VPO) PPN: Physical page number CO: Byte offset within cache line CI: Cache index CT: Cache tag /8/ Lecture #5 46

47 End-to-end Core i7 Address Translation VPN TLB miss CPU TLBT Virtual address (VA) VPO 4 TLBI... TLB hit 32/64 Result L hit L d-cache (64 sets, 8 lines/set)... L2, L3, and main memory L miss L TLB (6 sets, 4 entries/set) CR3 9 VPN PTE VPN2 VPN3 VPN4 PTE PTE PTE 4 2 PPN PPO Physical address (PA) CT CI CO Page tables /8/ Lecture #5 47

48 Core i7 Level -3 Page Table Entries 63 XD 62 Unused Page table physical base address Unused G PS A CD WT U/S R/W P= Available for OS (page table location on disk) P= Each entry references a 4K child page table. Significant fields: P: Child page table present in physical memory () or not (). R/W: Read-only or read-write access access permission for all reachable pages. U/S: user or supervisor (kernel) mode access permission for all reachable pages. WT: Write-through or write-back cache policy for the child page table. A: Reference bit (set by MMU on reads and writes, cleared by software). PS: Page size either 4 KB or 4 MB (defined for Level PTEs only). Page table physical base address: 4 most significant bits of physical page table address (forces page tables to be 4KB aligned) XD: Disable or enable instruction fetches from all pages reachable from this PTE. /8/ Lecture #5 48

49 Core i7 Level 4 Page Table Entries 63 XD 62 Unused Page physical base address Unused G D A CD WT U/S R/W P= Available for OS (page location on disk) P= Each entry references a 4K child page. Significant fields: P: Child page is present in memory () or not () R/W: Read-only or read-write access permission for child page U/S: User or supervisor mode access WT: Write-through or write-back cache policy for this page A: Reference bit (set by MMU on reads and writes, cleared by software) D: Dirty bit (set by MMU on writes, cleared by software) Page physical base address: 4 most significant bits of physical page address (forces pages to be 4KB aligned) XD: Disable or enable instruction fetches from this page. /8/ Lecture #5 49

50 Core i7 Page Table Translation 9 VPN 9 VPN 2 9 VPN 3 VPN Virtual VPO address CR3 Physical address of L PT L PT L2 PT L3 PT Page global Page upper Page middle directory directory directory 4 / 4 / 4 / 4 / L PTE L2 PTE L3 PTE L4 PT Page table L4 PTE /2 Offset into physical and virtual page 52 GB region per entry GB region per entry 2 MB region per entry 4 KB region per entry Physical address of page 4 2 Physical PPN 4 / PPO address /8/ Lecture #5 5

51 Cute Trick for Speeding Up L Access CT Tag Check Physical address (PA) CT CI CO PPN PPO Virtual address (VA) Address Translation VPN 36 2 Observation Bits that determine CI identical in virtual and physical address Can index into cache while address translation taking place Generally we hit in TLB, so PPN bits (CT bits) available next Virtually indexed, physically tagged Cache carefully sized to make this possible VPO No Change CI L Cache /8/ Lecture #5 5

52 Virtual Address Space of a Linux Process Different for each process Identical for each process %rsp Process-specific data structs (ptables, task and mm structs, kernel stack) Physical memory Kernel code and data User stack Kernel virtual memory brk x4 Memory mapped region for shared libraries Runtime heap (malloc) Uninitialized data (.bss) Initialized data (.data) Program text (.text) Process virtual memory /8/ Lecture #5 52

53 Linux Organizes VM as Collection of Areas task_struct mm mm_struct pgd mmap vm_area_struct vm_end vm_start vm_prot vm_flags vm_next Process virtual memory Shared libraries pgd: Page global directory address Points to L page table vm_prot: Read/write permissions for this area vm_flags Pages shared with other processes or private to this process vm_end vm_start vm_prot vm_flags vm_next vm_end vm_start vm_prot vm_flags vm_next /8/ Lecture #5 53 Data Text

54 Linux Page Fault Handling vm_area_struct Process virtual memory vm_end vm_start vm_prot vm_flags vm_next vm_end vm_start vm_prot vm_flags shared libraries data read 3 read Segmentation fault: accessing a non-existing page Normal page fault vm_next vm_end vm_start vm_prot vm_flags vm_next text 2 write Protection exception: e.g., violating permission by writing to a read-only page (Linux reports as Segmentation fault) /8/ Lecture #5 54

55 Memory Mapping VM areas initialized by associating them with disk objects. Process is known as memory mapping. Area can be backed by (i.e., get its initial values from) : Regular file on disk (e.g., an executable object file) Initial page bytes come from a section of a file Anonymous file (e.g., nothing) First fault will allocate a physical page full of 's (demand-zero page) Once the page is written to (dirtied), it is like any other page Dirty pages are copied back and forth between memory and a special swap file. /8/ Lecture #5 55

56 Sharing Revisited: Shared Objects Process virtual memory Physical memory Process 2 virtual memory Process maps the shared object. Shared object /8/ Lecture #5 56

57 Sharing Revisited: Shared Objects Process virtual memory Physical memory Process 2 virtual memory Process 2 maps the shared object. Notice how the virtual addresses can be different. Shared object /8/ Lecture #5 57

58 Sharing Revisited: Private Copy-on-write (COW) Objects Process virtual memory Physical memory Process 2 virtual memory Two processes mapping a private copy-on-write (COW) object. Private copy-on-write area Area flagged as private copy-on-write PTEs in private areas are flagged as read-only Private copy-on-write object /8/ Lecture #5 58

59 Sharing Revisited: Private Copy-on-write (COW) Objects Process virtual memory Physical memory Copy-on-write Process 2 virtual memory Write to private copy-on-write page Instruction writing to private page triggers protection fault. Handler creates new R/W page. Instruction restarts upon handler return. Copying deferred as long as possible! Private copy-on-write object /8/ Lecture #5 59

60 The fork Function Revisited VM and memory mapping explain how fork provides private address space for each process. To create virtual address for new new process Create exact copies of current mm_struct, vm_area_struct, and page tables. Flag each page in both processes as read-only Flag each vm_area_struct in both processes as private COW On return, each process has exact copy of virtual memory Subsequent writes create new pages using COW mechanism. /8/ Lecture #5 6

61 The execve Function Revisited User stack Private, demand-zero To load and run a new program a.out in the current process using execve: libc.so.data.text Memory mapped region for shared libraries Shared, file-backed Free vm_area_struct s and page tables for old areas a.out.data.text Runtime heap (via malloc) Uninitialized data (.bss) Initialized data (.data) Program text (.text) Private, demand-zero Private, demand-zero Private, file-backed Create vm_area_struct s and page tables for new areas Programs and initialized data backed by object files..bss and stack backed by anonymous files. Set PC to entry point in.text Linux will fault in code and data pages as needed. /8/ Lecture #5 6

62 User-Level Memory Mapping void *mmap(void *start, int len, int prot, int flags, int fd, int offset) Map len bytes starting at offset offset of the file specified by file description fd, preferably at address start start: may be for pick an address prot: PROT_READ, PROT_WRITE,... flags: MAP_ANON, MAP_PRIVATE, MAP_SHARED,... Return a pointer to start of mapped area (may not be start) /8/ Lecture #5 62

63 User-Level Memory Mapping void *mmap(void *start, int len, int prot, int flags, int fd, int offset) len bytes len bytes start (or address chosen by kernel) offset (bytes) Disk file specified by file descriptor fd Process virtual memory /8/ Lecture #5 63

64 Example: Using mmap to Copy Files Copying a file to stdout without transferring data to user space. #include "csapp.h" void mmapcopy(int fd, int size) { } /* Ptr to memory mapped area */ char *bufp; bufp = Mmap(NULL, size, PROT_READ, MAP_PRIVATE, fd, ); Write(, bufp, size); return; mmapcopy.c /* mmapcopy driver */ int main(int argc, char **argv) { struct stat stat; int fd; } /* Check for required cmd line arg */ if (argc!= 2) { printf("usage: %s <filename>\n", argv[]); exit(); } /* Copy input file to stdout */ fd = Open(argv[], O_RDONLY, ); Fstat(fd, &stat); mmapcopy(fd, stat.st_size); exit(); mmapcopy.c /8/ Lecture #5 64

65 8-6 Foundations of Computer Systems Lecture 6: Dynamic Memory Allocation October 23, 27 Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron. /8/ Lecture #5 65

Virtual Memory: Systems

Virtual Memory: Systems Virtual Memory: Systems 5-23: Introduction to Computer Systems 8 th Lecture, March 28, 27 Instructor: Franz Franchetti & Seth Copen Goldstein Recap: Hmmm, How Does This Work?! Process Process 2 Process

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Virtual Memory: Systems

Virtual Memory: Systems Virtual Memory: Systems 5-23 / 8-23: Introduc2on to Computer Systems 7 th Lecture, Mar. 22, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Virtual memory ques7ons and answers Simple memory system example

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, March 2, 27 Instructors: Franz Franchetti & Seth Copen Goldstein Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides Alan L. Cox alc@rice.edu Some slides adapted from CMU 5.23 slides Objectives Be able to explain the rationale for VM Be able to explain how VM is implemented Be able to translate virtual addresses to physical

More information

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program Virtual Memory (VM) Overview and motivation VM as tool for caching VM as tool for memory management VM as tool for memory protection Address translation 4 May 22 Virtual Memory Processes Definition: A

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-6-) Timothy Roscoe Herbstsemester 26 AS 26 Virtual Memory 8: Virtual Memory Computer Architecture

More information

Memory System Case Studies Oct. 13, 2008

Memory System Case Studies Oct. 13, 2008 Topics 15-213 Memory System Case Studies Oct. 13, 2008 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping Class15+.ppt Intel P6 (Bob Colwell s Chip,

More information

Pentium/Linux Memory System March 17, 2005

Pentium/Linux Memory System March 17, 2005 15-213 The course that gives CMU its Zip! Topics Pentium/Linux Memory System March 17, 2005 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping 17-linuxmem.ppt

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O Hallaron Today Address spaces VM as a tool for caching VM as a tool for memory management VM as

More information

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe Virtual Memory: Concepts 5 23 / 8 23: Introduction to Computer Systems 6 th Lecture, Mar. 2, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Address spaces VM as a tool lfor caching VM as a tool for

More information

VM as a cache for disk

VM as a cache for disk Virtualization Virtual Memory Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Virtualization of a resource: presenting a user with a different view of that

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 16: Dynamic Memory Allocation October 23, 2017 18-600 SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O

More information

Virtual Memory. Spring Instructors: Aykut and Erkut Erdem

Virtual Memory. Spring Instructors: Aykut and Erkut Erdem Virtual Memory Spring 22 Instructors: Aykut and Erkut Erdem Acknowledgement: The course slides are adapted from the slides prepared by R.E. Bryant, D.R. O Hallaron, G. Kesden and Markus Püschel of Carnegie-

More information

Understanding the Design of Virtual Memory. Zhiqiang Lin

Understanding the Design of Virtual Memory. Zhiqiang Lin CS 6V8-05: System Security and Malicious Code Analysis Understanding the Design of Virtual Memory Zhiqiang Lin Department of Computer Science University of Texas at Dallas February 27 th, 202 Outline Basic

More information

P6/Linux Memory System Nov 11, 2009"

P6/Linux Memory System Nov 11, 2009 P6/Linux Memory System Nov 11, 2009" REMEMBER" 2! 3! Intel P6" P6 Memory System" DRAM" external system bus (e.g. PCI)" L2" cache" cache bus! bus interface unit" inst" TLB" instruction" fetch unit" L1"

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

Lecture 19: Virtual Memory: Concepts

Lecture 19: Virtual Memory: Concepts CSCI-UA.2-3 Computer Systems Organization Lecture 9: Virtual Memory: Concepts Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified) from: Clark Barrett

More information

P6 memory system P6/Linux Memory System October 31, Overview of P6 address translation. Review of abbreviations. Topics. Symbols: ...

P6 memory system P6/Linux Memory System October 31, Overview of P6 address translation. Review of abbreviations. Topics. Symbols: ... 15-213 P6/Linux ory System October 31, 00 Topics P6 address translation Linux memory management Linux fault handling memory mapping DRAM bus interface unit instruction fetch unit processor package P6 memory

More information

Intel P The course that gives CMU its Zip! P6/Linux Memory System November 1, P6 memory system. Review of abbreviations

Intel P The course that gives CMU its Zip! P6/Linux Memory System November 1, P6 memory system. Review of abbreviations 15-213 The course that gives CMU its Zip! P6/Linux ory System November 1, 01 Topics P6 address translation Linux memory management Linux fault handling memory mapping Intel P6 Internal Designation for

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23 / 8-23: Introduc=on to Computer Systems 6 th Lecture, Mar. 8, 24 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden Today VM Movaon and Address spaces ) VM as a

More information

Intel P6 (Bob Colwell s Chip, CMU Alumni) The course that gives CMU its Zip! Memory System Case Studies November 7, 2007.

Intel P6 (Bob Colwell s Chip, CMU Alumni) The course that gives CMU its Zip! Memory System Case Studies November 7, 2007. class.ppt 15-213 The course that gives CMU its Zip! ory System Case Studies November 7, 07 Topics P6 address translation x86-64 extensions Linux memory management Linux fault handling ory mapping Intel

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = ; c->gals = 7; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp Java: Car c = new

More information

Page Which had internal designation P5

Page Which had internal designation P5 Intel P6 Internal Designation for Successor to Pentium Which had internal designation P5 Fundamentally Different from Pentium 1 Out-of-order, superscalar operation Designed to handle server applications

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 27 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan https://xkcd.com/495/

More information

VIRTUAL MEMORY: CONCEPTS

VIRTUAL MEMORY: CONCEPTS VIRTUAL MEMORY: CONCEPTS CS 45 Computer Organization and Architecture Prof. Donald J. Patterson Adapted from Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition VIRTUAL MEMORY:

More information

Operating Systems: Internals and Design. Chapter 8. Seventh Edition William Stallings

Operating Systems: Internals and Design. Chapter 8. Seventh Edition William Stallings Operating Systems: Internals and Design Chapter 8 Principles Virtual Memory Seventh Edition William Stallings Operating Systems: Internals and Design Principles You re gonna need a bigger boat. Steven

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 26 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun https://xkcd.com/495/

More information

University of Washington Virtual memory (VM)

University of Washington Virtual memory (VM) Virtual memory (VM) Overview and mo-va-on VM as tool for caching VM as tool for memory management VM as tool for memory protec-on Address transla-on Processes Defini=on: A process is an instance of a running

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 17: Advanced Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

Virtual Memory III /18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March Instructors: Bill Nace and Gregory Kesden

Virtual Memory III /18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March Instructors: Bill Nace and Gregory Kesden Virtual Memory III 15-213/18-243: Introduc3on to Computer Systems 17 th Lecture, 23 March 2010 Instructors: Bill Nace and Gregory Kesden (c) 1998-2010. All Rights Reserved. All work contained herein is

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 24 LAST TIME Extended virtual memory concept to be a cache of memory stored on disk DRAM becomes L4 cache of data stored on L5 disk Extend page

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk class8.ppt 5-23 The course that gives CMU its Zip! Virtual Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache

More information

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15 Memory Addressing Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection Memory as

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 205 Lecture 23 LAST TIME: VIRTUAL MEMORY! Began to focus on how to virtualize memory! Instead of directly addressing physical memory, introduce a level of

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson

Virtual Memory I. CSE 351 Spring Instructor: Ruth Anderson Virtual Memory I CSE 35 Spring 27 Instructor: Ruth Anderson Teaching Assistants: Dylan Johnson Kevin Bi Linxing Preston Jiang Cody Ohlsen Yufang Sun Joshua Curtis Administrivia Midterms Graded If you did

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 23 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 208 Lecture 23 LAST TIME: VIRTUAL MEMORY Began to focus on how to virtualize memory Instead of directly addressing physical memory, introduce a level of indirection

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 25

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2015 Lecture 25 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2015 Lecture 25 LAST TIME: PROCESS MEMORY LAYOUT! Explored how Linux uses IA32! All processes have a similar layout Each process has its own page table structure

More information

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation Virtual Memory Topics (Chapter 9) Motivations for VM Address translation 1 Motivations for Virtual Memory Use Physical DRAM as a Cache for the Disk Address space of a process can exceed physical memory

More information

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse

Virtual Memory I. CSE 351 Winter Instructor: Mark Wyse http://rebrn.com/re/bad-chrome-6282/ Virtual Memory I CSE 35 Winter 28 Instructor: Mark Wyse Teaching Assistants: Kevin Bi Parker DeWilde Emily Furst Sarah House Waylon Huang Vinny Palaniappan Administrative

More information

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19

PROCESS VIRTUAL MEMORY PART 2. CS124 Operating Systems Winter , Lecture 19 PROCESS VIRTUAL MEMORY PART 2 CS24 Operating Systems Winter 25-26, Lecture 9 2 Virtual Memory Abstraction Last time, officially introduced concept of virtual memory Programs use virtual addresses to refer

More information

CS 261 Fall Mike Lam, Professor. Virtual Memory

CS 261 Fall Mike Lam, Professor. Virtual Memory CS 261 Fall 2016 Mike Lam, Professor Virtual Memory Topics Operating systems Address spaces Virtual memory Address translation Memory allocation Lingering questions What happens when you call malloc()?

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

University*of*Washington*

University*of*Washington* Roadmap C: car c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch Upon process switch what is updated in order to assist address translation? Contiguous

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda Virtual Memory Paged Physical Memory Swap Space Page Faults

More information

Memory Management. Fundamentally two related, but distinct, issues. Management of logical address space resource

Memory Management. Fundamentally two related, but distinct, issues. Management of logical address space resource Management Fundamentally two related, but distinct, issues Management of logical address space resource On IA-32, address space may be scarce resource for a user process (4 GB max) Management of physical

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

CSE 560 Computer Systems Architecture

CSE 560 Computer Systems Architecture This Unit: CSE 560 Computer Systems Architecture App App App System software Mem I/O The operating system () A super-application Hardware support for an Page tables and address translation s and hierarchy

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 1 Agenda Virtual Memory Paged Physical Memory Swap Space

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

Lecture 21: Virtual Memory. Spring 2018 Jason Tang

Lecture 21: Virtual Memory. Spring 2018 Jason Tang Lecture 21: Virtual Memory Spring 2018 Jason Tang 1 Topics Virtual addressing Page tables Translation lookaside buffer 2 Computer Organization Computer Processor Memory Devices Control Datapath Input Output

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

CSE 120 Principles of Operating Systems Spring 2017

CSE 120 Principles of Operating Systems Spring 2017 CSE 120 Principles of Operating Systems Spring 2017 Lecture 12: Paging Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient translations (TLBs)

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 CPU management Roadmap Process, thread, synchronization, scheduling Memory management Virtual memory Disk

More information

18-447: Computer Architecture Lecture 16: Virtual Memory

18-447: Computer Architecture Lecture 16: Virtual Memory 18-447: Computer Architecture Lecture 16: Virtual Memory Justin Meza Carnegie Mellon University (with material from Onur Mutlu, Michael Papamichael, and Vivek Seshadri) 1 Notes HW 2 and Lab 2 grades will

More information

Memory Management! Goals of this Lecture!

Memory Management! Goals of this Lecture! Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Why it works: locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware and

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2015 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2015 Previous class What is logical address? Who use it? Describes a location in the logical address space Compiler and CPU

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 10: Virtual Memory II Ryan Huang Slides adapted from Geoff Voelker s lectures Administrivia Next Tuesday project hacking day No class My office

More information

Memory Management! How the hardware and OS give application pgms:" The illusion of a large contiguous address space" Protection against each other"

Memory Management! How the hardware and OS give application pgms: The illusion of a large contiguous address space Protection against each other Memory Management! Goals of this Lecture! Help you learn about:" The memory hierarchy" Spatial and temporal locality of reference" Caching, at multiple levels" Virtual memory" and thereby " How the hardware

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Computer Architecture Lecture 13: Virtual Memory II

Computer Architecture Lecture 13: Virtual Memory II 18-447 Computer Architecture Lecture 13: Virtual Memory II Lecturer: Rachata Ausavarungnirun Carnegie Mellon University Spring 2014, 2/17/2014 (with material from Onur Mutlu, Justin Meza and Yoongu Kim)

More information

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy

Memory Management. Goals of this Lecture. Motivation for Memory Hierarchy Memory Management Goals of this Lecture Help you learn about: The memory hierarchy Spatial and temporal locality of reference Caching, at multiple levels Virtual memory and thereby How the hardware and

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

Compsci 104. Duke University. Input/Output. Instructors: Alvin R. Lebeck. Some Slides provided by Randy Bryant and Dave O Hallaron and G.

Compsci 104. Duke University. Input/Output. Instructors: Alvin R. Lebeck. Some Slides provided by Randy Bryant and Dave O Hallaron and G. Input/Output Instructors: Alvin R. Lebeck Some Slides provided by Randy Bryant and Dave O Hallaron and G. Kedem 1 Administrivia HW #7 up, Due Monday Dec 5 (no late submissions) Work on processor project,

More information

seven Virtual Memory Introduction

seven Virtual Memory Introduction Virtual Memory seven Exercise Goal: You will study how Linux implements virtual memory. A general architecture-independent memory model is the basis of all Linux virtual memory implementations, though

More information

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1

Memory Allocation. Copyright : University of Illinois CS 241 Staff 1 Memory Allocation Copyright : University of Illinois CS 241 Staff 1 Recap: Virtual Addresses A virtual address is a memory address that a process uses to access its own memory Virtual address actual physical

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements CS 61C: Great Ideas in Computer Architecture Virtual II Guest Lecturer: Justin Hsia Agenda Review of Last Lecture Goals of Virtual Page Tables Translation Lookaside Buffer (TLB) Administrivia VM Performance

More information

Virtual Memory. Virtual Memory

Virtual Memory. Virtual Memory Virtual Memory Virtual Memory Main memory is cache for secondary storage Secondary storage (disk) holds the complete virtual address space Only a portion of the virtual address space lives in the physical

More information

John Wawrzynek & Nick Weaver

John Wawrzynek & Nick Weaver CS 61C: Great Ideas in Computer Architecture Lecture 23: Virtual Memory John Wawrzynek & Nick Weaver http://inst.eecs.berkeley.edu/~cs61c From Previous Lecture: Operating Systems Input / output (I/O) Memory

More information

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1

Memory Management. Disclaimer: some slides are adopted from book authors slides with permission 1 Memory Management Disclaimer: some slides are adopted from book authors slides with permission 1 Recap Paged MMU: Two main Issues Translation speed can be slow TLB Table size is big Multi-level page table

More information

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Virtual Memory CS 3410 Computer System Organization & Programming [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Click any letter let me know you re here today. Instead of a DJ Clicker Question today,

More information

18-447: Computer Architecture Lecture 18: Virtual Memory III. Yoongu Kim Carnegie Mellon University Spring 2013, 3/1

18-447: Computer Architecture Lecture 18: Virtual Memory III. Yoongu Kim Carnegie Mellon University Spring 2013, 3/1 18-447: Computer Architecture Lecture 18: Virtual Memory III Yoongu Kim Carnegie Mellon University Spring 2013, 3/1 Upcoming Schedule Today: Lab 3 Due Today: Lecture/Recitation Monday (3/4): Lecture Q&A

More information

Applications of. Virtual Memory in. OS Design

Applications of. Virtual Memory in. OS Design Applications of Virtual Memory in OS Design Nima Honarmand Introduction Virtual memory is a powerful level of indirection Indirection: IMO, the most powerful concept in Computer Science Fundamental Theorem

More information

Recap: Memory Management

Recap: Memory Management , 4/13/2018 EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Memory Protection, Virtual Memory, Paging References: T. Anderson, M. Dahlin, Operating Systems: Principles and

More information

How to create a process? What does process look like?

How to create a process? What does process look like? How to create a process? On Unix systems, executable read by loader Compile time runtime Ken Birman ld loader Cache Compiler: generates one object file per source file Linker: combines all object files

More information