G. Myers: Advances in Computer Architecture

Size: px
Start display at page:

Download "G. Myers: Advances in Computer Architecture"

Transcription

1 1 / 15 G. Myers: Advances in Computer Architecture P. A. Wilsey Univ of Cincinnati

2 2 / 15 Chapter 1: Introduction Computer architecture is largely a process of boundary determination. Given a definition of the function to be performed by the system as a whole, the computer architect s role is one of making trade-offs. Working with a set of criteria (which often conflict), such as cost, speed, and reliability, the architect determines which functions, or parts of functions belong inside the boundary and which belong outside the boundary.

3 3 / 15 Computer Architecture Design Process The process of computer architecture can be structured in a manner similar to most other design processes. Ideally, the architect approaches the task in the following order: 1. Requirements Analysis 2. Requirements Specification 3. Study of Prior Solutions 4. Conceptual Design 5. Detailed Design 6. Tuning 7. Evaluation

4 4 / 15 Requirements Analysis Requirements analysis: largely a study of the definition of the overall system architecture. Questions answered here may include: what are the characteristics of the programming languages to be provided, peripheral devices, and environment (real-time, commercial, scientific).

5 5 / 15 Requirements Specification Requirements specification: involving (1) a determination and weighing of design criteria, (2) the identification of the functions to be evaluated against these criteria, and (3) the identification of other factors (such as constraints imposed by the available manufacturing technology). Examples of criteria: Cost Reliability Feasibility Extensibility Compatibility Speed Security Risk Programming Ease

6 6 / 15 Study of Prior Solutions Study of Prior Solutions: what have others with similar constraints done and, more importantly, how successful was the resulting product.

7 7 / 15 Conceptual Design Conceptual Design: the core of the machine design process where trade off analysis occurs. Identification of placement of functions on either side of the hardware/software boundary.

8 8 / 15 Detailed Design Detailed Design: instruction types, formats, and semantics; data representation; addressing mechanisms; # of registers; and so on.

9 9 / 15 Study of Prior Tuning Tuning:

10 10 / 15 Evaluation Evaluation: In general, there will be many iterations through some or all of these 7 steps before a final design is realized.

11 11 / 15 Chapter 2: A Critique of the Conventional von Neumann Architecture Observation: Current computing systems have not been designed with a global study of the system function and its hardware/software trade offs. Instead, most computer architects have based their designs on tradition and the bottom-up view to minimize the cost of hardware and let the programmers solve all of the difficult problems. Substantiating Evidence: With very few exceptions, there have been no advances in computer architectures since the 1950s.

12 12 / 15 Semantic Gap Original Definition: A measure of the difference between the concepts in high-level languages and the concepts in the underlying computer architecture. Myers Extension: The gap between the concepts of the uses to which a computing system will be put and the concepts in the underlying architecture.

13 13 / 15 Consequence of the Semantic Gap 1. Software Unreliability: references to undefined (unassigned) variables out-of-bounds array references 2. Machine efficiency problems: a large number of instructions must be generated by the compiler and interpreted by the machine to realize each programming language construct. 3. Excessive program size: related to #2 above. This also has serious repercussions on compilation setting for error checking. Consider the PL/1 statement: C(I,J)=A(I,J)+B(J,I) 75 machine instructions (274 bytes) if bounds checking turned on 17 machine instructions (62 bytes) if bounds checking turned off 4. Compiler Complexity

14 14 / 15 Chapter 3: The Binding of Programs to Machines A: assembled C: compiled I: interpreted C Path 1 Low level machine language High level language program A C One for one machine language Intermediate machine language I Path 3 I Path 2 I Machine I Path 4

15 15 / 15 Chapter 4: Requisites for Improved Architectures 1. Self-Defining Data: Tags Descriptors Objects 2. Small Protection Domains: protection of a program or process from itself (i.e., protecting a subroutine and its data from other subroutines). protection of a program from system software. 3. Subroutine Management 4. Capability-Based Addressing 5. Single-Level Store 6. Process Management

Principles of Programming Languages. Lecture Outline

Principles of Programming Languages. Lecture Outline Principles of Programming Languages CS 492 Lecture 1 Based on Notes by William Albritton 1 Lecture Outline Reasons for studying concepts of programming languages Programming domains Language evaluation

More information

Concepts of Programming Languages

Concepts of Programming Languages Concepts of Programming Languages Lecture 1 - Introduction Patrick Donnelly Montana State University Spring 2014 Patrick Donnelly (Montana State University) Concepts of Programming Languages Spring 2014

More information

Chapter 1 Preliminaries

Chapter 1 Preliminaries Chapter 1 Preliminaries Chapter 1 Topics Reasons for Studying Concepts of Programming Languages Programming Domains Language Evaluation Criteria Influences on Language Design Language Categories Language

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries Chapter 1 Topics Reasons for Studying Concepts of Programming Languages Programming Domains Language Evaluation Criteria Influences on Language Design Language Categories Language

More information

Chapter 1. Preliminaries

Chapter 1. Preliminaries Chapter 1 Preliminaries Chapter 1 Topics Reasons for Studying Concepts of Programming Languages Programming Domains Language Evaluation Criteria Influences on Language Design Language Categories Language

More information

School of Computer Science

School of Computer Science Course Title: Date: 10/30/03 Course Number: COP-340 Number of Credits: 3 Subject Area: Computer Systems Subject Area Coordinator: Masoud Sadjadi email: sadjadi@cis.fiu.edu Catalog Description: Overview

More information

Programming Languages, Summary CSC419; Odelia Schwartz

Programming Languages, Summary CSC419; Odelia Schwartz Programming Languages, Summary CSC419; Odelia Schwartz Chapter 1 Topics Reasons for Studying Concepts of Programming Languages Programming Domains Language Evaluation Criteria Influences on Language Design

More information

Why study Programming Language Concepts? Chapter One. Language Evaluation Criteria. Programming Domains. Readability Writability Reliability Cost

Why study Programming Language Concepts? Chapter One. Language Evaluation Criteria. Programming Domains. Readability Writability Reliability Cost Chapter One Preliminaries, including Why study PL concepts? Programming domains PL evaluation criteria What influences PL design? Tradeoffs faced by programming languages Implementation methods Programming

More information

Early computers (1940s) cost millions of dollars and were programmed in machine language. less error-prone method needed

Early computers (1940s) cost millions of dollars and were programmed in machine language. less error-prone method needed Chapter 1 :: Programming Language Pragmatics Michael L. Scott Early computers (1940s) cost millions of dollars and were programmed in machine language machine s time more valuable than programmer s machine

More information

Why are there so many programming languages? Why do we have programming languages? What is a language for? What makes a language successful?

Why are there so many programming languages? Why do we have programming languages? What is a language for? What makes a language successful? Chapter 1 :: Introduction Introduction Programming Language Pragmatics Michael L. Scott Why are there so many programming languages? evolution -- we've learned better ways of doing things over time socio-economic

More information

Binding and Variables

Binding and Variables Binding and Variables 1. DEFINITIONS... 2 2. VARIABLES... 3 3. TYPE... 4 4. SCOPE... 4 5. REFERENCES... 7 6. ROUTINES... 9 7. ALIASING AND OVERLOADING... 10 8. GENERICS AND TEMPLATES... 12 A. Bellaachia

More information

What is a programming language?

What is a programming language? Overview Introduction Motivation Why study programming languages? Some key concepts What is a programming language? What is a programming language?...there is no agreement on what a programming language

More information

Introduction to Programming Languages and Compilers. CS164 11:00-12:30 TT 10 Evans. UPRM ICOM 4029 (Adapted from: Prof. Necula UCB CS 164)

Introduction to Programming Languages and Compilers. CS164 11:00-12:30 TT 10 Evans. UPRM ICOM 4029 (Adapted from: Prof. Necula UCB CS 164) Introduction to Programming Languages and Compilers CS164 11:00-12:30 TT 10 Evans 1 ICOM 4036 - Outline Prontuario Course Outline Brief History of PLs Programming Language Design Criteria Programming Language

More information

Chapter 1. Preview. Reason for Studying OPL. Language Evaluation Criteria. Programming Domains

Chapter 1. Preview. Reason for Studying OPL. Language Evaluation Criteria. Programming Domains Chapter 1. Preview Reason for Studying OPL Reason for Studying OPL? Programming Domains Language Evaluation Criteria Language Categories Language Design Trade-Offs Implementation Methods Programming Environments

More information

CpE 442 Introduction To Computer Architecture Lecture 1

CpE 442 Introduction To Computer Architecture Lecture 1 CpE 442 Introduction To Computer Architecture Lecture 1 Instructor: H. H. Ammar These slides are based on the lecture slides provided with the course text book specified in the course syllabus The original

More information

Chapter 7 The Potential of Special-Purpose Hardware

Chapter 7 The Potential of Special-Purpose Hardware Chapter 7 The Potential of Special-Purpose Hardware The preceding chapters have described various implementation methods and performance data for TIGRE. This chapter uses those data points to propose architecture

More information

Requirements to models: goals and methods

Requirements to models: goals and methods Requirements to models: goals and methods Considering Garlan (2000), Kruchen (1996), Gruunbacher et al (2005) and Alter (2006-08) CIS Department Professor Duane Truex III Wojtek Kozaczynski The domain

More information

Requirements Validation and Negotiation (cont d)

Requirements Validation and Negotiation (cont d) REQUIREMENTS ENGINEERING LECTURE 2017/2018 Joerg Doerr Requirements Validation and Negotiation (cont d) REQUIREMENTS VALIDATION AND NEGOTIATION Requirements Validation Techniques 2 Techniques Overview

More information

Lecture 12: Memory hierarchy & caches

Lecture 12: Memory hierarchy & caches Lecture 12: Memory hierarchy & caches A modern memory subsystem combines fast small memory, slower larger memories This lecture looks at why and how Focus today mostly on electronic memories. Next lecture

More information

Programming Languages 2nd edition Tucker and Noonan"

Programming Languages 2nd edition Tucker and Noonan Programming Languages 2nd edition Tucker and Noonan" " Chapter 1" Overview" " A good programming language is a conceptual universe for thinking about programming. " " " " " " " " " " " " "A. Perlis" "

More information

1. In waterfall model, output of one phase is input to next phase. True or false.

1. In waterfall model, output of one phase is input to next phase. True or false. 1. In waterfall model, output of one phase is input to next phase. True or false. a) True b) False ANSWER: a) True Comment: The output of requirement gathering is creation of URS (User requirement specification)

More information

Chapter 2 Overview of the Design Methodology

Chapter 2 Overview of the Design Methodology Chapter 2 Overview of the Design Methodology This chapter presents an overview of the design methodology which is developed in this thesis, by identifying global abstraction levels at which a distributed

More information

1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation

1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation 1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation Administrivia Lecturer: Kostis Sagonas (kostis@it.uu.se) Course home page: http://www.it.uu.se/edu/course/homepage/komp/h18

More information

6.001 Notes: Section 15.1

6.001 Notes: Section 15.1 6.001 Notes: Section 15.1 Slide 15.1.1 Our goal over the next few lectures is to build an interpreter, which in a very basic sense is the ultimate in programming, since doing so will allow us to define

More information

1DL321: Kompilatorteknik I (Compiler Design 1)

1DL321: Kompilatorteknik I (Compiler Design 1) Administrivia 1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation Lecturer: Kostis Sagonas (kostis@it.uu.se) Course home page: http://www.it.uu.se/edu/course/homepage/komp/ht16

More information

Unit 2: High-Level Synthesis

Unit 2: High-Level Synthesis Course contents Unit 2: High-Level Synthesis Hardware modeling Data flow Scheduling/allocation/assignment Reading Chapter 11 Unit 2 1 High-Level Synthesis (HLS) Hardware-description language (HDL) synthesis

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 1

CS321 Languages and Compiler Design I. Winter 2012 Lecture 1 CS321 Languages and Compiler Design I Winter 2012 Lecture 1 1 COURSE GOALS Improve understanding of languages and machines. Learn practicalities of translation. Learn anatomy of programming languages.

More information

Dynamic Models - A case study in developing curriculum regulation and conformity using Protege

Dynamic Models - A case study in developing curriculum regulation and conformity using Protege Dynamic Models - Document driven information system for policy implementation A case study in developing curriculum regulation and conformity using Protege Dr. Mike Hobbs & Dominic Myers Department of

More information

Run Time Environment. Procedure Abstraction. The Procedure as a Control Abstraction. The Procedure as a Control Abstraction

Run Time Environment. Procedure Abstraction. The Procedure as a Control Abstraction. The Procedure as a Control Abstraction Procedure Abstraction Run Time Environment Records Procedure Linkage Name Translation and Variable Access Copyright 2010, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at

More information

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions)

CIS 1.5 Course Objectives. a. Understand the concept of a program (i.e., a computer following a series of instructions) By the end of this course, students should CIS 1.5 Course Objectives a. Understand the concept of a program (i.e., a computer following a series of instructions) b. Understand the concept of a variable

More information

Architectural-Level Synthesis. Giovanni De Micheli Integrated Systems Centre EPF Lausanne

Architectural-Level Synthesis. Giovanni De Micheli Integrated Systems Centre EPF Lausanne Architectural-Level Synthesis Giovanni De Micheli Integrated Systems Centre EPF Lausanne This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not

More information

Overview. EE 4504 Computer Organization. Much of the computer s architecture / organization is hidden from a HLL programmer

Overview. EE 4504 Computer Organization. Much of the computer s architecture / organization is hidden from a HLL programmer Overview EE 4504 Computer Organization Section 7 The Instruction Set Much of the computer s architecture / organization is hidden from a HLL programmer In the abstract sense, the programmer should not

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

NOTE: Answer ANY FOUR of the following 6 sections:

NOTE: Answer ANY FOUR of the following 6 sections: A-PDF MERGER DEMO Philadelphia University Lecturer: Dr. Nadia Y. Yousif Coordinator: Dr. Nadia Y. Yousif Internal Examiner: Dr. Raad Fadhel Examination Paper... Programming Languages Paradigms (750321)

More information

Major Advances (continued)

Major Advances (continued) CSCI 4717/5717 Computer Architecture Topic: RISC Processors Reading: Stallings, Chapter 13 Major Advances A number of advances have occurred since the von Neumann architecture was proposed: Family concept

More information

Compiler Generation Method from ADL for ASIP Integrated Development Environment

Compiler Generation Method from ADL for ASIP Integrated Development Environment R1-12 SASIMI 2012 Proceedings Compiler Generation Method from ADL for ASIP Integrated Development Environment Yusuke Hyodo, Kensuke Murata, Takuji Hieda, Keishi Sakanushi, Yoshinori Takeuchi, Masaharu

More information

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File

Agenda. EE 260: Introduction to Digital Design Memory. Naive Register File. Agenda. Memory Arrays: SRAM. Memory Arrays: Register File EE 260: Introduction to Digital Design Technology Yao Zheng Department of Electrical Engineering University of Hawaiʻi at Mānoa 2 Technology Naive Register File Write Read clk Decoder Read Write 3 4 Arrays:

More information

OBJECTIVES DEFINITIONS CHAPTER 1: THE DATABASE ENVIRONMENT AND DEVELOPMENT PROCESS. Figure 1-1a Data in context

OBJECTIVES DEFINITIONS CHAPTER 1: THE DATABASE ENVIRONMENT AND DEVELOPMENT PROCESS. Figure 1-1a Data in context OBJECTIVES CHAPTER 1: THE DATABASE ENVIRONMENT AND DEVELOPMENT PROCESS Modern Database Management 11 th Edition Jeffrey A. Hoffer, V. Ramesh, Heikki Topi! Define terms! Name limitations of conventional

More information

HDL. Operations and dependencies. FSMs Logic functions HDL. Interconnected logic blocks HDL BEHAVIORAL VIEW LOGIC LEVEL ARCHITECTURAL LEVEL

HDL. Operations and dependencies. FSMs Logic functions HDL. Interconnected logic blocks HDL BEHAVIORAL VIEW LOGIC LEVEL ARCHITECTURAL LEVEL ARCHITECTURAL-LEVEL SYNTHESIS Motivation. Outline cgiovanni De Micheli Stanford University Compiling language models into abstract models. Behavioral-level optimization and program-level transformations.

More information

SYSTEMS PROGRAMMING. Srimanta Pal. Associate Professor Indian Statistical Institute Kolkata OXFORD UNIVERSITY PRESS

SYSTEMS PROGRAMMING. Srimanta Pal. Associate Professor Indian Statistical Institute Kolkata OXFORD UNIVERSITY PRESS SYSTEMS PROGRAMMING Srimanta Pal Associate Professor Indian Statistical Institute Kolkata OXFORD UNIVERSITY PRESS Contents Preface v 1. Scope of Systems Programming 1 1.1 Introduction 7 1.2 Computers and

More information

Compiler Design 1. Introduction to Programming Language Design and to Compilation

Compiler Design 1. Introduction to Programming Language Design and to Compilation Compiler Design 1 Introduction to Programming Language Design and to Compilation Administrivia Lecturer: Kostis Sagonas (Hus 1, 352) Course home page: http://user.it.uu.se/~kostis/teaching/kt1-11 If you

More information

Why do we have to know all that? The stored program concept (the procedural paradigm) Memory

Why do we have to know all that? The stored program concept (the procedural paradigm) Memory Session 1b: Background & Preliminaries What is computer programming? The stored-program concept. The procedural paradigm. What is a programming language? The object-oriented paradigm C#: ancestors & origins

More information

Assignment 1 due Mon (Feb 4pm

Assignment 1 due Mon (Feb 4pm Announcements Assignment 1 due Mon (Feb 19) @ 4pm Next week: no classes Inf3 Computer Architecture - 2017-2018 1 The Memory Gap 1.2x-1.5x 1.07x H&P 5/e, Fig. 2.2 Memory subsystem design increasingly important!

More information

Conventional Computer Architecture. Abstraction

Conventional Computer Architecture. Abstraction Conventional Computer Architecture Conventional = Sequential or Single Processor Single Processor Abstraction Conventional computer architecture has two aspects: 1 The definition of critical abstraction

More information

Barcode is a machine readable strip for automatic identification of items, by means of printed bars of different widths

Barcode is a machine readable strip for automatic identification of items, by means of printed bars of different widths 5 Patterns 5.1 Identification Pattern Barcode is a machine readable strip for automatic identification of items, by means of printed bars of different widths Context People refer to real or imaginary things

More information

Part II - B. Answer sheet and marks allocated

Part II - B. Answer sheet and marks allocated Part II - B Answer sheet and marks allocated (1) (a). i. RAM (0.5 marks) Store operating system as long as the computer is working. Temporary stores data, instructions, information and application software

More information

Architecture or Parallel Computers CSC / ECE 506

Architecture or Parallel Computers CSC / ECE 506 Architecture or Parallel Computers CSC / ECE 506 Summer 2006 Scalable Programming Models 6/19/2006 Dr Steve Hunter Back to Basics Parallel Architecture = Computer Architecture + Communication Architecture

More information

Module 29: Operating System Memory Protection

Module 29: Operating System Memory Protection Module 29: Operating System Memory Protection An operating system is the multiprogramming system allowing multiple users to use concurrently. Operating system is designed in such a way that one user's

More information

1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation

1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation 1DL321: Kompilatorteknik I (Compiler Design 1) Introduction to Programming Language Design and to Compilation Administrivia Lecturer: Kostis Sagonas (kostis@it.uu.se) Course home page (of previous year):

More information

General Concepts. Abstraction Computational Paradigms Implementation Application Domains Influence on Success Influences on Design

General Concepts. Abstraction Computational Paradigms Implementation Application Domains Influence on Success Influences on Design General Concepts Abstraction Computational Paradigms Implementation Application Domains Influence on Success Influences on Design 1 Abstractions in Programming Languages Abstractions hide details that

More information

Just-In-Time Compilation

Just-In-Time Compilation Just-In-Time Compilation Thiemo Bucciarelli Institute for Software Engineering and Programming Languages 18. Januar 2016 T. Bucciarelli 18. Januar 2016 1/25 Agenda Definitions Just-In-Time Compilation

More information

Logical Diagram of a Set-associative Cache Accessing a Cache

Logical Diagram of a Set-associative Cache Accessing a Cache Introduction Memory Hierarchy Why memory subsystem design is important CPU speeds increase 25%-30% per year DRAM speeds increase 2%-11% per year Levels of memory with different sizes & speeds close to

More information

AVL 4 4 PDV DECLARE 7 _NEW_

AVL 4 4 PDV DECLARE 7 _NEW_ Glossary Program Control... 2 SAS Variable... 2 Program Data Vector (PDV)... 2 SAS Expression... 2 Data Type... 3 Scalar... 3 Non-Scalar... 3 Big O Notation... 3 Hash Table... 3 Hash Algorithm... 4 Hash

More information

Introduction. Memory Hierarchy

Introduction. Memory Hierarchy Introduction Why memory subsystem design is important CPU speeds increase 25%-30% per year DRAM speeds increase 2%-11% per year 1 Memory Hierarchy Levels of memory with different sizes & speeds close to

More information

Request for Comments: 171. Categories: D.4, D.5, and D.7

Request for Comments: 171. Categories: D.4, D.5, and D.7 Network Working Group Request for Comments: 171 NIC 6793 Categories: D.4, D.5, and D.7 Updates: 114 Obsolete: None Abhay Bhushan MIT Bob Braden UCLA Will Crowther Alex McKenzie BBN Eric Harslem John Heafner

More information

names names identifiers variables subroutines constants

names names identifiers variables subroutines constants names (source: Louden, "Programming Languages, Principles and Practices", 2nd Edition, Ch. 5, pp. 125-134)!p. 126: "A fundamental abstraction mechanism in a programming language is the use of names, or

More information

DAB/MOT Data Carousel System Support Library Interface Definition

DAB/MOT Data Carousel System Support Library Interface Definition DAB/MOT Data Carousel System Support Library Interface Definition D. Knox & O. Gardiner 98-0003-001/1.3 5th Jul 1999 ENSIGMA Ltd Turing House Station Road Chepstow GWENT NP6 5PB Ensigma Ltd. Page 2 of

More information

LANGUAGE PROCESSORS. Presented By: Prof. S.J. Soni, SPCE Visnagar.

LANGUAGE PROCESSORS. Presented By: Prof. S.J. Soni, SPCE Visnagar. LANGUAGE PROCESSORS Presented By: Prof. S.J. Soni, SPCE Visnagar. Introduction Language Processing activities arise due to the differences between the manner in which a software designer describes the

More information

TECH. 9. Code Scheduling for ILP-Processors. Levels of static scheduling. -Eligible Instructions are

TECH. 9. Code Scheduling for ILP-Processors. Levels of static scheduling. -Eligible Instructions are 9. Code Scheduling for ILP-Processors Typical layout of compiler: traditional, optimizing, pre-pass parallel, post-pass parallel {Software! compilers optimizing code for ILP-processors, including VLIW}

More information

UNIT V SYSTEM SOFTWARE TOOLS

UNIT V SYSTEM SOFTWARE TOOLS 5.1 Text editors UNIT V SYSTEM SOFTWARE TOOLS A text editor is a type of program used for editing plain text files. Text editors are often provided with operating systems or software development packages,

More information

Computer Architecture Today (I)

Computer Architecture Today (I) Fundamental Concepts and ISA Computer Architecture Today (I) Today is a very exciting time to study computer architecture Industry is in a large paradigm shift (to multi-core and beyond) many different

More information

Engineering Optimization

Engineering Optimization Engineering Optimization Most engineering design involves using optimization software which minimizes or maximizes a merit or objective function while satisfying functional constraints (such as stress

More information

Dixita Kagathara Page 1

Dixita Kagathara Page 1 2014 Sem - VII Introduction 1) Explain Phases of compiler or Analysis synthesis model of compilation. The compiler is designed into two parts. The first phase is the analysis phase while the second phase

More information

Toward an Execution Model for Component Software

Toward an Execution Model for Component Software Toward an Execution Model for Component Software 1 Toward an Execution Model for Component Software Michael Franz Department of Information and Computer Science, University of California, Irvine, CA 92697-3425

More information

A CELLULAR, LANGUAGE DIRECTED COMPUTER ARCHITECTURE. (Extended Abstract) Gyula A. Mag6. University of North Carolina at Chapel Hill

A CELLULAR, LANGUAGE DIRECTED COMPUTER ARCHITECTURE. (Extended Abstract) Gyula A. Mag6. University of North Carolina at Chapel Hill 447 A CELLULAR, LANGUAGE DIRECTED COMPUTER ARCHITECTURE (Extended Abstract) Gyula A. Mag6 University of North Carolina at Chapel Hill Abstract If a VLSI computer architecture is to influence the field

More information

Run Time Environment. Activation Records Procedure Linkage Name Translation and Variable Access

Run Time Environment. Activation Records Procedure Linkage Name Translation and Variable Access Run Time Environment Activation Records Procedure Linkage Name Translation and Variable Access Copyright 2015, Pedro C. Diniz, all rights reserved. Students enrolled in the Compilers class at the University

More information

EA10: System Checkout, Test, and Startup Pre-Instructional Survey

EA10: System Checkout, Test, and Startup Pre-Instructional Survey EA10: System Checkout, Test, and Startup Pre-Instructional Survey Name Date 1. 29 CFR 1910.119 describes a change as: a. Any action that constitutes a serious event b. Any action that could create an injury

More information

The A ssembly Assembly Language Level Chapter 7 1

The A ssembly Assembly Language Level Chapter 7 1 The Assembly Language Level Chapter 7 1 Contemporary Multilevel Machines A six-level l computer. The support method for each level is indicated below it.2 Assembly Language Level a) It is implemented by

More information

Component-Based Software Engineering TIP

Component-Based Software Engineering TIP Component-Based Software Engineering TIP X LIU, School of Computing, Napier University This chapter will present a complete picture of how to develop software systems with components and system integration.

More information

High-Level Synthesis (HLS)

High-Level Synthesis (HLS) Course contents Unit 11: High-Level Synthesis Hardware modeling Data flow Scheduling/allocation/assignment Reading Chapter 11 Unit 11 1 High-Level Synthesis (HLS) Hardware-description language (HDL) synthesis

More information

Programming Languages

Programming Languages Chapter 1 :: Introduction Programming Language Pragmatics Michael L. Scott Programming Languages What programming languages can you name? Which do you know? 1 Introduction Why are there so many programming

More information

ECE 468 Computer Architecture and Organization Lecture 1

ECE 468 Computer Architecture and Organization Lecture 1 ECE 468 Computer Architecture and Organization Lecture 1 September 7, 1999 ece 468 Intro.1 What is "Computer Architecture" Co-ordination of levels of abstraction Application Compiler Instr. Set Proc. Operating

More information

THE MICROPROCESSOR Von Neumann s Architecture Model

THE MICROPROCESSOR Von Neumann s Architecture Model THE ICROPROCESSOR Von Neumann s Architecture odel Input/Output unit Provides instructions and data emory unit Stores both instructions and data Arithmetic and logic unit Processes everything Control unit

More information

Topics/Assignments. Class 10: Big Picture. What s Coming Next? Perspectives. So Far Mostly Programmer Perspective. Where are We? Where are We Going?

Topics/Assignments. Class 10: Big Picture. What s Coming Next? Perspectives. So Far Mostly Programmer Perspective. Where are We? Where are We Going? Fall 2006 CS333: Computer Architecture University of Virginia Computer Science Michele Co Topics/Assignments Class 10: Big Picture Survey Homework 1 Read Compilers and Computer Architecture Principles/factors

More information

AMASS. Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems

AMASS. Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems AMASS Architecture-driven, Multi-concern and Seamless Assurance and Architecture-driven, Multi-concern and Seamless Assurance and Certification of Cyber-Physical Systems AMASS: Technical Vision First EAB

More information

High Performance Computing

High Performance Computing The Need for Parallelism High Performance Computing David McCaughan, HPC Analyst SHARCNET, University of Guelph dbm@sharcnet.ca Scientific investigation traditionally takes two forms theoretical empirical

More information

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C

Introduction to C. Why C? Difference between Python and C C compiler stages Basic syntax in C Final Review CS304 Introduction to C Why C? Difference between Python and C C compiler stages Basic syntax in C Pointers What is a pointer? declaration, &, dereference... Pointer & dynamic memory allocation

More information

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics

Computer and Hardware Architecture I. Benny Thörnberg Associate Professor in Electronics Computer and Hardware Architecture I Benny Thörnberg Associate Professor in Electronics Hardware architecture Computer architecture The functionality of a modern computer is so complex that no human can

More information

Reflective Java and A Reflective Component-Based Transaction Architecture

Reflective Java and A Reflective Component-Based Transaction Architecture Reflective Java and A Reflective Component-Based Transaction Architecture Zhixue Wu APM Ltd., Poseidon House, Castle Park, Cambridge CB3 0RD UK +44 1223 568930 zhixue.wu@citrix.com ABSTRACT In this paper,

More information

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table

Introduction. IP Datagrams. Internet Service Paradigm. Routers and Routing Tables. Datagram Forwarding. Example Internet and Conceptual Routing Table Introduction Datagram Forwarding Gail Hopkins Service paradigm IP datagrams Routing Encapsulation Fragmentation Reassembly Internet Service Paradigm IP Datagrams supports both connectionless and connection-oriented

More information

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance 6.823, L11--1 Cache Performance and Memory Management: From Absolute Addresses to Demand Paging Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Performance 6.823,

More information

Programming Languages

Programming Languages Programming Languages Recitation Summer 2014 Recitation Leader Joanna Gilberti Email: jlg204@cs.nyu.edu Office: WWH, Room 328 Web site: http://cims.nyu.edu/~jlg204/courses/pl/index.html Homework Submission

More information

Data Objectives. The same process can be applied to determine how much simplification is appropriate when describing a geochemical system.

Data Objectives. The same process can be applied to determine how much simplification is appropriate when describing a geochemical system. Data Objectives Objectives you identify at the outset of an experiment or scientific study to help determine the nature, amount, and quality of the data you (or someone else) need to collect to answer

More information

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling

ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling ECE 587 Hardware/Software Co-Design Spring 2018 1/20 ECE 587 Hardware/Software Co-Design Lecture 12 Verification II, System Modeling Professor Jia Wang Department of Electrical and Computer Engineering

More information

A PROPOSAL FOR MODELING THE CONTROL SYSTEM FOR THE SPANISH LIGHT SOURCE IN UML

A PROPOSAL FOR MODELING THE CONTROL SYSTEM FOR THE SPANISH LIGHT SOURCE IN UML A PROPOSAL FOR MODELING THE CONTROL SYSTEM FOR THE SPANISH LIGHT SOURCE IN UML D. Beltran*, LLS, Barcelona, Spain M. Gonzalez, CERN, Geneva, Switzerlan Abstract CELLS (Consorcio para la construcción, equipamiento

More information

Fabric Interfaces Architecture. Sean Hefty - Intel Corporation

Fabric Interfaces Architecture. Sean Hefty - Intel Corporation Fabric Interfaces Architecture Sean Hefty - Intel Corporation Changes v2 Remove interface object Add open interface as base object Add SRQ object Add EQ group object www.openfabrics.org 2 Overview Object

More information

Introduction to Compiler Construction

Introduction to Compiler Construction Introduction to Compiler Construction ALSU Textbook Chapter 1.1 1.5 Tsan-sheng Hsu tshsu@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~tshsu 1 What is a compiler? Definitions: a recognizer ; a translator.

More information

DBMS and its Architecture

DBMS and its Architecture DBMS and its Architecture DCS COMSATS Institute of Information Technology Rab Nawaz Jadoon Assistant Professor COMSATS IIT, Abbottabad Pakistan Management Information Systems (MIS) Lecture Agenda DBMS

More information

Organization of Programming Languages (CSE452) Why are there so many programming languages? What makes a language successful?

Organization of Programming Languages (CSE452) Why are there so many programming languages? What makes a language successful? Organization of Programming Languages (CSE452) Instructor: Dr. B. Cheng Fall 2004 1 Why are there so many programming languages? Evolution -- we've learned better ways of doing things over time Socio-economic

More information

Fundamentals of Programming Languages. PL quality factors Lecture 01 sl. dr. ing. Ciprian-Bogdan Chirila

Fundamentals of Programming Languages. PL quality factors Lecture 01 sl. dr. ing. Ciprian-Bogdan Chirila Fundamentals of Programming Languages PL quality factors Lecture 01 sl. dr. ing. Ciprian-Bogdan Chirila Lecture and lab Ciprian-Bogdan Chirila PhD Senior lecturer PhD UPT + Univ. Nice Sophia Antipolis,

More information

CHAPTER 2: HOW DOES THE COMPUTER REALLY WORK

CHAPTER 2: HOW DOES THE COMPUTER REALLY WORK Basic Nomenclature & Components of a Computer System A computer system has: A main computer A set of peripheral devices A digital computer has three main parts: Central Processing Unit(s), or CPU(s) Memory

More information

Computational Methods of Scientific Programming. Lecturers Thomas A Herring Chris Hill

Computational Methods of Scientific Programming. Lecturers Thomas A Herring Chris Hill 12.010 Computational Methods of Scientific Programming Lecturers Thomas A Herring Chris Hill Review of Lecture 5 Looked at Fortran commands in more detail Control through if and do statements. Logical

More information

A Finite Element Analysis Workflow in Biomechanics. Define the problem and identify FEA as the favorable modeling & simulation strategy

A Finite Element Analysis Workflow in Biomechanics. Define the problem and identify FEA as the favorable modeling & simulation strategy Before you start Understand the Premise of FEA Finite element analysis is a computational modeling & simulation strategy; specifically, a numerical procedure for solving field problems, e.g., stress, by

More information

Algorithm: 1. Introduction

Algorithm: 1. Introduction Algorithm 1 Algorithm: a finite set of instructions that specify a sequence of operations to be carried out in order to solve a specific problem or class of problems. [Zwass] Properties of algorithms:

More information

Granularity of Documentation

Granularity of Documentation - compound Hasbergsvei 36 P.O. Box 235, NO-3603 Kongsberg Norway gaudisite@gmail.com This paper has been integrated in the book Systems Architecting: A Business Perspective", http://www.gaudisite.nl/sabp.html,

More information

X-Tags: Efficient Data Processing using Cross Layer Hints

X-Tags: Efficient Data Processing using Cross Layer Hints X-s: Efficient Data Processing using Cross Layer Hints Suman Banerjee, Ashok Agrawala MIND Lab, UMIACS and Department of Computer Science University of Maryland, College Park, MD 074, USA Email: fsuman,agrawalag@cs.md.edu

More information

Minsoo Ryu. College of Information and Communications Hanyang University.

Minsoo Ryu. College of Information and Communications Hanyang University. Software Reuse and Component-Based Software Engineering Minsoo Ryu College of Information and Communications Hanyang University msryu@hanyang.ac.kr Software Reuse Contents Components CBSE (Component-Based

More information

C++ for System Developers with Design Pattern

C++ for System Developers with Design Pattern C++ for System Developers with Design Pattern Introduction: This course introduces the C++ language for use on real time and embedded applications. The first part of the course focuses on the language

More information

Princeton University Computer Science 217: Introduction to Programming Systems The C Programming Language Part 1

Princeton University Computer Science 217: Introduction to Programming Systems The C Programming Language Part 1 Princeton University Computer Science 217: Introduction to Programming Systems The C Programming Language Part 1 C is quirky, flawed, and an enormous success. While accidents of history surely helped,

More information

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties

Great Reality #2: You ve Got to Know Assembly Does not generate random values Arithmetic operations have important mathematical properties Overview Course Overview Course theme Five realities Computer Systems 1 2 Course Theme: Abstraction Is Good But Don t Forget Reality Most CS courses emphasize abstraction Abstract data types Asymptotic

More information