ECE 645: Lecture 5 Number Representation

Size: px
Start display at page:

Download "ECE 645: Lecture 5 Number Representation"

Transcription

1 ECE 645: Lecture 5 Number Representation Part 2 Little-Endian vs. Big-Endian Representations Floating Point Representations Rounding Representation of the Galois Field elements

2 Required Reading Endianness, from Wikipedia, the free encyclopedia Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 17, Floating-Point Representations

3 Little-Endian vs. Big-Endian Representation of Integers

4 Little-Endian vs. Big-Endian Representation A0 B1 C2 D3 E4 F MSB Big-Endian LSB Little-Endian MSB = A0 B1 C2 D3 E4 F5 67 LSB = 89 0 address MAX LSB = F5 E4 D3 C2 B1 MSB = A0

5 Little-Endian vs. Big-Endian Camps MSB... LSB Big-Endian 0 address MAX LSB... MSB Little-Endian Motorola 68xx, 680x0 IBM Hewlett-Packard Sun SuperSPARC Internet TCP/IP Bi-Endian Motorola Power PC Silicon Graphics MIPS Intel AMD DEC VAX RS 232

6 Little-Endian vs. Big-Endian Origin of the terms Jonathan Swift, Gulliver s Travels A law requiring all citizens of Lilliput to break their soft-eggs at the little ends only A civil war breaking between the Little Endians and the Big-Endians, resulting in the Big Endians taking refuge on a nearby island, the kingdom of Blefuscu Satire over holy wars between Protestant Church of England and the Catholic Church of France

7

8 Little-Endian vs. Big-Endian Advantages and Disadvantages Big-Endian easier to determine a sign of the number Little-Endian easier addition and multiplication of multiprecision numbers easier to compare two numbers easier to divide two numbers easier to print

9 Pointers (1) Big-Endian Little-Endian 0 address MAX F5 E4 D3 C2 B1 A0 int * iptr; (* iptr) = 8967; (* iptr) = 6789; iptr+1

10 Pointers (2) Big-Endian Little-Endian 0 address MAX F5 E4 D3 C2 B1 A0 long int * lptr; (* lptr) = 8967F5E4; (* lptr) = E4F56789; lptr + 1

11 Floating Point Representations

12

13

14

15

16 The ANSI/IEEE standard floatingpoint number representation formats Short (32-bit) format Originally IEEE Superseded by IEEE Standard. 8 bits, bias = 127, ñ126 to 127 Sign Exponent 23 bits for fractional part (plus hidden 1 in integer part) Significand 11 bits, bias = 1023, ñ1022 to bits for fractional part (plus hidden 1 in integer part) Long (64-bit) format

17

18

19 Table 17.1 Some features of the ANSI/IEEE standard floatingpoint number representation formats

20 Exponent Encoding Exponent encoding in 8 bits for the single/short (32-bit) ANSI/IEEE format Decimal code Hex code E 7F 80 FE FF Exponent value f 2 e f = 0: Representation of ±0 f 0: Representation of denormals, 0.f f = 0: Representation of ± f 0: Representation of NaNs

21 Fig Denormals in the IEEE single-precision format.

22

23

24

25 New IEEE Standard Basic Formats

26 New IEEE Standard Binary Interchange Formats

27 Requirements for Arithmetic Results of the 4 basic arithmetic operations (+, -,, ) as well as squarerooting must match those obtained if all intermediate computations were infinitely precise That is, a floating-point arithmetic operation should introduce no more imprecision than the error attributable to the final rounding of a result that has no exact representation (this is the best possible) Example: ( ) ( ) Exact result Rounded result Error = ½ ulp

28 Rounding 101

29 Rounding Modes The IEEE standard includes five rounding modes: Default: Round to nearest, ties to even (rtne) Optional: Round to nearest, ties away from 0 (rtna) Round toward zero (inward) Round toward + Round toward (upward) (downward)

30 Required Reading Parhami, Chapter 17.5, Rounding schemes Rounding Algorithms

31 Rounding Rounding occurs when we want to approximate a more precise number (i.e. more fractional bits L) with a less precise number (i.e. fewer fractional bits L') Example 1: old: (K=6, L=8) new: (K'=6, L'=2) Example 2: old: (K=6, L=8) new: (K'=6, L'=0) The following pages show rounding from L>0 fractional bits to L'=0 bits, but the mathematics hold true for any L' < L Usually, keep the number of integral bits the same K'=K 31

32 Rounding Equation Whole part Fractional part x k 1 x k 2... x 1 x 0. x 1 x 2... x Round l y k 1 y k 2... y 1 y 0 y = round(x) 32

33 Rounding Techniques There are different rounding techniques: 1) truncation results in round towards zero in signed magnitude results in round towards - in two's complement 2) round to nearest number 3) round to nearest even number (or odd number) 4) round towards + Other rounding techniques 5) jamming or von Neumann 6) ROM rounding Each of these techniques will differ in their error depending on representation of numbers i.e. signed magnitude versus two's complement Error = round(x) x 33

34 1) Truncation The simplest possible rounding scheme: chopping or truncation x k 1 x k 2... x 1 x 0. x 1 x 2... x trunc l x k 1 x k 2... x 1 x 0 ulp Truncation in signed-magnitude results in a number chop(x) that is always of smaller magnitude than x. This is called round towards zero or inward rounding (3.5) 10 à 011 (3) 10 Error = (-3.5) 10 à 111 (-3) 10 Error = +0.5 Truncation in two's complement results in a number chop(x) that is always smaller than x. This is called round towards - or downward-directed rounding (3.5) 10 à 011 (3) 10 Error = (-3.5) 10 à 100 (-4) 10 Error =

35 Truncation Function Graph: chop(x) chop( x ) Fig Truncation or chopping of a signed-magnitude number (same as round toward 0). x chop( x ) Fig Truncation or chopping of a 2 s-complement number (same as round to - ). x 35

36 Bias in two's complement truncation X (binary) X (decimal) chop(x) (binary) chop(x) (decimal) Error (decimal) Assuming all combinations of positive and negative values of x equally possible, average error is In general, average error = -(2 -L' -2 -L )/2, where L' = new number of fractional bits 36

37 Implementation truncation in hardware Easy, just ignore (i.e. truncate) the fractional digits from L to L'+1 x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L = y k-1 y k-2.. y 1 y 0. ignore (i.e. truncate the rest) 37

38 2) Round to nearest number Rounding to nearest number what we normally think of when say round (2.25) 10 à 010 (2) 10 Error = (2.75) 10 à 011 (3) 10 Error = (2.00) 10 à 010 (2) 10 Error = (2.5) 10 à 011 (3) 10 Error = +0.5 [round-half-up (arithmetic rounding)] (2.5) 10 à 010 (2) 10 Error = -0.5 [round-half-down] 38

39 Round-half-up: dealing with negative numbers Rounding to nearest number what we normally think of when say round (-2.25) 10 à 110 (-2) 10 Error = (-2.75) 10 à 101 (-3) 10 Error = (-2.00) 10 à 110 (-2) 10 Error = (-2.5) 10 à 110 (-2) 10 Error = +0.5 [asymmetric implementation] (-2.5) 10 à 101 (-3) 10 Error = -0.5 [symmetric implementation] 39

40 Round to Nearest Function Graph: rtn(x) Round-half-up version Asymmetric implementation Symmetric implementation rtn(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 x rtn(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 x 40

41 Bias in two's complement round to nearest Round-half-up asymmetric implementation X (binary) X (decimal) rtn(x) (binary) rtn(x) (decimal) Error (decimal) Assuming all combinations of positive and negative values of x equally possible, average error is Smaller average error than truncation, but still not symmetric error We have a problem with the midway value, i.e. exactly at 2.5 or -2.5 leads to positive error bias always Also have the problem that you can get overflow if only allocate K' = K integral bits Example: rtn(011.10) à overflow This overflow only occurs on positive numbers near the maximum positive value, not on negative numbers 41

42 Implementing round to nearest (rtn) in hardware Round-half-up asymmetric implementation Two methods Method 1: Add '1' in position one digit right of new LSB (i.e. digit L'+1) and keep only L' fractional bits x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L + 1 = y k-1 y k-2.. y 1 y 0. y -1 Method 2: Add the value of the digit one position to right of new LSB (i.e. digit L'+1) into the new LSB digit (i.e. digit L) and keep only L' fractional bits x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L + x -1 y k-1 y k-2.. y 1 y 0. ignore (i.e. truncate the rest) ignore (i.e truncate the rest) 42

43 Round to Nearest Even Function Graph: rtne(x) To solve the problem with the midway value we implement round to nearest-even number (or can round to nearest odd number) rtne(x) R*(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 Fig Rounding to the nearest even number x ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 Fig R* rounding or rounding to the nearest odd number. x 43

44 Bias in two's complement round to nearest even (rtne) X (binary) X (decimal ) rtne(x) (binary) rtne(x) (decimal) Error (decimal) (overfl) average error is now 0 (ignoring the overflow) cost: more hardware 44

45 4) Rounding towards infinity We may need computation errors to be in a known direction Example: in computing upper bounds, larger results are acceptable, but results that are smaller than correct values could invalidate upper bound Use upward-directed rounding (round toward + ) up(x) always larger than or equal to x Similarly for lower bounds, use downward-directed rounding (round toward - ) down(x) always smaller than or equal to x We have already seen that round toward - in two's complement can be implemented by truncation 45

46 Rounding Toward Infinity Function Graph: up(x) and down(x) up(x) down(x) down(x) can be implemented by chop(x) in two's complement 46

47 Two's Complement Round to Zero Two's complement round to zero (inward rounding) also exists inward( x ) x 47

48 Other Methods Note that in two's complement round to nearest (rtn) involves an addition which may have a carry propagation from LSB to MSB Rounding may take as long as an adder takes Can break the adder chain using the following two techniques: Jamming or von Neumann ROM-based 48

49 5) Jamming or von Neumann jam(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 x Chop and force the LSB of the result to 1 Simplicity of chopping, with the near-symmetry or ordinary rounding Max error is comparable to chopping (double that of rounding) ñ4 49

50 6) ROM Rounding ROM(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 x Fig ROM rounding with an 8 2 table. Example: Rounding with a 32 4 table Rounding result is the same as that of the round to nearest scheme in 31 of the 32 possible cases, but a larger error is introduced when x 3 = x 2 = x 1 = x 0 = x 1 = 1 x k 1... x 4 x 3 x 2 x 1 x 0. x 1 x 2... x l ROM x k 1... x 4 y 3 y 2 y 1 y 0 ROM address ROM data 50

51 Representation of the Galois Field elements

52 Evariste Galois ( )

53 Evariste Galois ( ) Studied the problem of finding algebraic solutions for the general equations of the degree 5, e.g., f(x) = a 5 x 5 + a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0 Answered definitely the question which specific equations of a given degree have algebraic solutions. On the way, he developed group theory, one of the most important branches of modern mathematics.

54 Evariste Galois ( ) 1829 Galois submits his results for the first time to the French Academy of Sciences Reviewer 1 Augustin-Luis Cauchy forgot or lost the communication Galois submits the revised version of his manuscript, hoping to enter the competition for the Grand Prize in mathematics Reviewer 2 Joseph Fourier died shortly after receiving the manuscript Third submission to the French Academy of Sciences Reviewer 3 Simeon-Denis Poisson did not understand the manuscript and rejected it.

55 Evariste Galois ( ) May 1832 Galois provoked into a duel The night before the duel he wrote a letter to his friend containing the summary of his discoveries. The letter ended with a plea: Eventually there will be, I hope, some people who will find it profitable to decipher this mess. May 30, 1832 Galois was grievously wounded in the duel and died in the hospital the following day Galois manuscript rediscovered by Joseph Liouville 1846 Galois manuscript published for the first time in a mathematical journal.

56

57 Field Set F, and two operations typically denoted by (but not necessarily equivalent to) + and * Set F, and definitions of these two operations must fulfill special conditions.

58 Infinite fields Finite fields Examples of fields { R= set of real numbers, + addition of real numbers * multiplication of real numbers } { set Zp={0, 1, 2,, p-1}, + (mod p): addition modulo p, * (mod p): multiplication modulo p }

59 Finite Fields = Galois Fields GF(p m ) p prime p m number of elements in the field Arithmetic operations present in many libraries GF(p) GF(2 m ) Polynomial basis representation Most significant special cases Normal basis representation Fast in hardware Fast squaring

60 Quotient and remainder Given integers a and n, n>0! q, r Z such that a = q n + r and 0 r < n q quotient r remainder (of a divided by n) q = a n = a div n r = a - q n = a = a mod n a n n =

61 32 mod 5 = -32 mod 5 =

62 Integers coungruent modulo n Two integers a and b are congruent modulo n (equivalent modulo n) written a b iff a mod n = b mod n or a = b + kn, k Z or n a - b

63 Laws of modular arithmetic

64 Rules of addition, subtraction and multiplication modulo n a + b mod n = ((a mod n) + (b mod n)) mod n a - b mod n = ((a mod n) - (b mod n)) mod n a b mod n = ((a mod n) (b mod n)) mod n

65 9 13 mod 5 = mod 26 =

66 Laws of modular arithmetic Regular addition a+b = a+c iff b=c Regular multiplication If a b = a c and a 0 then b = c Modular addition a+b a+c (mod n) iff b c (mod n) Modular multiplication If a b a c (mod n) and gcd (a, n) = 1 then b c (mod n)

67 Modular Multiplication: Example (mod 8) (mod 8) 3 7 (mod 8) x 6 x mod x 5 x mod

68 Finite Fields = Galois Fields GF(p m ) p prime p m number of elements in the field Arithmetic operations present in many libraries GF(p) GF(2 m ) Polynomial basis representation Most significant special cases Normal basis representation Fast in hardware Fast squaring

69 Elements of the Galois Field GF(2 m ) Binary representation (used for storing and processing in computer systems): A = (a m-1, a m-2,, a 2, a 1, a 0 ) a i {0, 1} Polynomial representation (used for the definition of basic arithmetic operations): m-1 A(x) = a i x i = a m-1 x m-1 + a m-2 x m a 2 x 2 + a 1 x+a 0 i=0 multiplication + addition modulo 2 (XOR)

70 Addition and Multiplication in the Galois Field GF(2 m ) Inputs A = (a m-1, a m-2,, a 2, a 1, a 0 ) B = (b m-1, b m-2,, b 2, b 1, b 0 ) a i, b i {0, 1} Output C = (c m-1, c m-2,, c 2, c 1, c 0 ) c i {0, 1}

71 Addition Addition in the Galois Field GF(2 m ) A A(x) B B(x) C C(x) = A(x) + B(x) = = (a m-1 +b m-1 ) x m-1 + (a m-2 +b m-2 ) x m (a 2 +b 2 ) x 2 + (a 1 +b 1 ) x + (a 0 +b 0 ) = = c m-1 x m-1 + c m-2 x m c 2 x 2 + c 1 x+c 0 multiplication + addition modulo 2 (XOR) c i = a i + b i = a i XOR b i C = A XOR B

72 Multiplication in the Galois Field GF(2 m ) Multiplication A A(x) B B(x) C C(x) = A(x) B(x) mod P(X) = c m-1 x m-1 + c m-2 x m c 2 x 2 + c 1 x+c 0 P(x) - irreducible polynomial of the degree m P(x) = p m x m + p m-1 x m p 2 x 2 + p 1 x+p 0

73

Number Representation

Number Representation ECE 645: Lecture 5 Number Representation Part 2 Floating Point Representations Rounding Representation of the Galois Field elements Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and

More information

Lecture 3: Basic Adders and Counters

Lecture 3: Basic Adders and Counters Lecture 3: Basic Adders and Counters ECE 645 Computer Arithmetic /5/8 ECE 645 Computer Arithmetic Lecture Roadmap Revisiting Addition and Overflow Rounding Techniques Basic Adders and Counters Required

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-B Floating-Point Arithmetic - II Israel Koren ECE666/Koren Part.4b.1 The IEEE Floating-Point

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 4-B Floating-Point Arithmetic - II Spring 2017 Koren Part.4b.1 The IEEE Floating-Point Standard Four formats for floating-point

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information

Part V Real Arithmetic

Part V Real Arithmetic Part V Real Arithmetic Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations II. III.

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

More information

Part V Real Arithmetic

Part V Real Arithmetic Part V Real Arithmetic Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations II. III.

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 15: Midterm 1 Review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Basics Midterm to cover Book Sections (inclusive) 1.1 1.5

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers

Computer Science 324 Computer Architecture Mount Holyoke College Fall Topic Notes: Bits and Bytes and Numbers Computer Science 324 Computer Architecture Mount Holyoke College Fall 2007 Topic Notes: Bits and Bytes and Numbers Number Systems Much of this is review, given the 221 prerequisite Question: how high can

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-C Floating-Point Arithmetic - III Israel Koren ECE666/Koren Part.4c.1 Floating-Point Adders

More information

M1 Computers and Data

M1 Computers and Data M1 Computers and Data Module Outline Architecture vs. Organization. Computer system and its submodules. Concept of frequency. Processor performance equation. Representation of information characters, signed

More information

CS 33. Data Representation (Part 3) CS33 Intro to Computer Systems VIII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved.

CS 33. Data Representation (Part 3) CS33 Intro to Computer Systems VIII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. CS 33 Data Representation (Part 3) CS33 Intro to Computer Systems VIII 1 Copyright 2018 Thomas W. Doeppner. All rights reserved. Byte-Oriented Memory Organization 00 0 FF F Programs refer to data by address

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE23: Introduction to Computer Systems, Spring 218,

More information

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

More information

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states).

Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). Representing numbers on the computer. Computer memory/processors consist of items that exist in one of two possible states (binary states). These states are usually labeled 0 and 1. Each item in memory

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued CS 6210 Fall 2016 Bei Wang Lecture 4 Floating Point Systems Continued Take home message 1. Floating point rounding 2. Rounding unit 3. 64 bit word: double precision (IEEE standard word) 4. Exact rounding

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. https://xkcd.com/217/

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. https://xkcd.com/217/ CS 261 Fall 2017 Mike Lam, Professor https://xkcd.com/217/ Floating-Point Numbers Floating-point Topics Binary fractions Floating-point representation Conversions and rounding error Binary fractions Now

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY

More information

By, Ajinkya Karande Adarsh Yoga

By, Ajinkya Karande Adarsh Yoga By, Ajinkya Karande Adarsh Yoga Introduction Early computer designers believed saving computer time and memory were more important than programmer time. Bug in the divide algorithm used in Intel chips.

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor.

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/217/ Floating-Point Numbers Floating-point Topics Binary fractions Floating-point representation Conversions and rounding error Binary fractions Now

More information

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

Part III The Arithmetic/Logic Unit. Oct Computer Architecture, The Arithmetic/Logic Unit Slide 1

Part III The Arithmetic/Logic Unit. Oct Computer Architecture, The Arithmetic/Logic Unit Slide 1 Part III The Arithmetic/Logic Unit Oct. 214 Computer Architecture, The Arithmetic/Logic Unit Slide 1 About This Presentation This presentation is intended to support the use of the textbook Computer Architecture:

More information

Written Homework 3. Floating-Point Example (1/2)

Written Homework 3. Floating-Point Example (1/2) Written Homework 3 Assigned on Tuesday, Feb 19 Due Time: 11:59pm, Feb 26 on Tuesday Problems: 3.22, 3.23, 3.24, 3.41, 3.43 Note: You have 1 week to work on homework 3. 3 Floating-Point Example (1/2) Q:

More information

IEEE-754 floating-point

IEEE-754 floating-point IEEE-754 floating-point Real and floating-point numbers Real numbers R form a continuum - Rational numbers are a subset of the reals - Some numbers are irrational, e.g. π Floating-point numbers are an

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Number Representations

Number Representations Number Representations times XVII LIX CLXX -XVII D(CCL)LL DCCC LLLL X-X X-VII = DCCC CC III = MIII X-VII = VIIIII-VII = III 1/25/02 Memory Organization Viewed as a large, single-dimension array, with an

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

Floating-Point Arithmetic

Floating-Point Arithmetic ENEE446---Lectures-4/10-15/08 A. Yavuz Oruç Professor, UMD, College Park Copyright 2007 A. Yavuz Oruç. All rights reserved. Floating-Point Arithmetic Integer or fixed-point arithmetic provides a complete

More information

The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive. IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Accuracy versus precision

Accuracy versus precision Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere

More information

Floating Point Numbers

Floating Point Numbers Floating Point Floating Point Numbers Mathematical background: tional binary numbers Representation on computers: IEEE floating point standard Rounding, addition, multiplication Kai Shen 1 2 Fractional

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state Chapter 4 xi yi Carry in ci Sum s i Carry out c i+ At the ith stage: Input: ci is the carry-in Output: si is the sum ci+ carry-out to (i+)st state si = xi yi ci + xi yi ci + xi yi ci + xi yi ci = x i yi

More information

Topic Notes: Bits and Bytes and Numbers

Topic Notes: Bits and Bytes and Numbers Computer Science 220 Assembly Language & Comp Architecture Siena College Fall 2010 Topic Notes: Bits and Bytes and Numbers Binary Basics At least some of this will be review, but we will go over it for

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

MIPS Integer ALU Requirements

MIPS Integer ALU Requirements MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

H5H4, H5E7 lecture 5 Fixed point arithmetic. Overview

H5H4, H5E7 lecture 5 Fixed point arithmetic. Overview H5H4, H5E7 lecture 5 Fixed point arithmetic I. Verbauwhede Acknowledgements: H. DeMan, V. Öwall, D. Hwang, 007-008 K.U.Leuven 1 Overview Lecture 1: what is a system-on-chip Lecture : terminology for the

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 3. L12 Multiplication 1 Approximating Real Numbers on Computers Thus far, we ve entirely ignored one of the most

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-A Floating-Point Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries - Representation

More information

Computer arithmetics: integers, binary floating-point, and decimal floating-point

Computer arithmetics: integers, binary floating-point, and decimal floating-point n!= 0 && -n == n z+1 == z Computer arithmetics: integers, binary floating-point, and decimal floating-point v+w-w!= v x+1 < x Peter Sestoft 2010-02-16 y!= y p == n && 1/p!= 1/n 1 Computer arithmetics Computer

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j Floating Point 15 213: Introduction to Computer Systems 4 th Lecture, Jan 24, 2013 Instructors: Seth Copen Goldstein, Anthony Rowe, Greg Kesden 2 Fractional binary numbers What is 1011.101 2? Fractional

More information

Introduction to the new AES Standard: Rijndael

Introduction to the new AES Standard: Rijndael Introduction to the new AES Standard: Rijndael Paul Donis This paper will explain how the Rijndael Cipher Reference Code in C works. Rijndael is a block cipher that encrypts and decrypts 128, 192, and

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012

CMSC 313 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 02, FALL 2012 CMSC 33 COMPUTER ORGANIZATION & ASSEMBLY LANGUAGE PROGRAMMING LECTURE 2, FALL 22 TOPICS TODAY Bits of Memory Data formats for negative numbers Modulo arithmetic & two s complement Floating point formats

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time. Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

More information

l l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers

l l l l l l l Base 2; each digit is 0 or 1 l Each bit in place i has value 2 i l Binary representation is used in computers 198:211 Computer Architecture Topics: Lecture 8 (W5) Fall 2012 Data representation 2.1 and 2.2 of the book Floating point 2.4 of the book Computer Architecture What do computers do? Manipulate stored information

More information

Arithmetic for Computers. Hwansoo Han

Arithmetic for Computers. Hwansoo Han Arithmetic for Computers Hwansoo Han Arithmetic for Computers Operations on integers Addition and subtraction Multiplication and division Dealing with overflow Floating-point real numbers Representation

More information

ARM. Assembly Language and Machine Code. Goal: Blink an LED

ARM. Assembly Language and Machine Code. Goal: Blink an LED ARM Assembly Language and Machine Code Goal: Blink an LED Review Turning on an LED Connect LED to GPIO 20 3.3V 1k GND 1 -> 3.3V 0 -> 0.0V (GND) Two Steps 1. Configure GPIO20 to be an OUTPUT 2. "Set" GPIO20

More information

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic 1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

More information

±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j

±M R ±E, S M CHARACTERISTIC MANTISSA 1 k j ENEE 350 c C. B. Silio, Jan., 2010 FLOATING POINT REPRESENTATIONS It is assumed that the student is familiar with the discussion in Appendix B of the text by A. Tanenbaum, Structured Computer Organization,

More information

Floating Point. CSE 351 Autumn Instructor: Justin Hsia

Floating Point. CSE 351 Autumn Instructor: Justin Hsia Floating Point CSE 351 Autumn 2016 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun http://xkcd.com/899/

More information

EC 413 Computer Organization

EC 413 Computer Organization EC 413 Computer Organization Review I Prof. Michel A. Kinsy Computing: The Art of Abstraction Application Algorithm Programming Language Operating System/Virtual Machine Instruction Set Architecture (ISA)

More information

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Floating-Point Numbers IEEE 754 Floating-Point

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

Floating Point. CSE 351 Autumn Instructor: Justin Hsia

Floating Point. CSE 351 Autumn Instructor: Justin Hsia Floating Point CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan Administrivia Lab

More information

Topic Notes: Bits and Bytes and Numbers

Topic Notes: Bits and Bytes and Numbers Computer Science 220 Assembly Language & Comp Architecture Siena College Fall 2011 Topic Notes: Bits and Bytes and Numbers Binary Basics At least some of this will be review for most of you, but we start

More information

ARM. Assembly Language and Machine Code. Goal: Blink an LED

ARM. Assembly Language and Machine Code. Goal: Blink an LED ARM Assembly Language and Machine Code Goal: Blink an LED Memory Map 100000000 16 4 GB Peripheral registers are mapped into address space Memory-Mapped IO (MMIO) MMIO space is above physical memory 020000000

More information

Giving credit where credit is due

Giving credit where credit is due CSCE 230J Computer Organization Floating Point Dr. Steve Goddard goddard@cse.unl.edu http://cse.unl.edu/~goddard/courses/csce230j Giving credit where credit is due Most of slides for this lecture are based

More information

CMSC 313 Lecture 03 Multiple-byte data big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes

CMSC 313 Lecture 03 Multiple-byte data big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes Multiple-byte data CMSC 313 Lecture 03 big-endian vs little-endian sign extension Multiplication and division Floating point formats Character Codes UMBC, CMSC313, Richard Chang 4-5 Chapter

More information