Number Representation

Size: px
Start display at page:

Download "Number Representation"

Transcription

1 ECE 645: Lecture 5 Number Representation Part 2 Floating Point Representations Rounding Representation of the Galois Field elements

2 Required Reading Behrooz Parhami, Computer Arithmetic: Algorithms and Hardware Design Chapter 17, Floating-Point Representations Chapter 17.5, Rounding schemes Rounding Algorithms 101

3 Floating Point Representations

4

5

6

7

8 The ANSI/IEEE standard floatingpoint number representation formats Short (32-bit) format Originally IEEE Superseded by IEEE Standard. 8 bits, bias = 127, ñ126 - to 127 Sign Exponent 23 bits for fractional part (plus hidden 1 in integer part) Significand 11 bits, bias = 1023, ñ to bits for fractional part (plus hidden 1 in integer part) Long (64-bit) format

9

10

11 Table 17.1 Some features of the ANSI/IEEE standard floatingpoint number representation formats

12 Exponent Encoding Exponent encoding in 8 bits for the single/short (32-bit) ANSI/IEEE format Decimal code Hex code E 7F 80 FE FF Exponent value f 2 e f = 0: Representation of ±0 f 0: Representation of denormals, 0.f f = 0: Representation of ± f 0: Representation of NaNs

13 Fig Denormals in the IEEE single-precision format.

14

15

16

17 New IEEE Standard Basic Formats

18 New IEEE Standard Binary Interchange Formats

19 Requirements for Arithmetic Results of the 4 basic arithmetic operations (+, -,, ) as well as squarerooting must match those obtained if all intermediate computations were infinitely precise That is, a floating-point arithmetic operation should introduce no more imprecision than the error attributable to the final rounding of a result that has no exact representation (this is the best possible) Example: ( ) ( ) Exact result Rounded result Error = ½ ulp

20 Rounding 101

21 Rounding Modes The IEEE standard includes five rounding modes: Default: Round to nearest, ties to even (rtne) Optional: Round to nearest, ties away from 0 (rtna) Round toward zero (inward) Round toward + Round toward (upward) (downward)

22 Rounding Rounding occurs when we want to approximate a more precise number (i.e. more fractional bits L) with a less precise number (i.e. fewer fractional bits L') Example 1: old: (K=6, L=8) new: (K'=6, L'=2) Example 2: old: (K=6, L=8) new: (K'=6, L'=0) The following pages show rounding from L>0 fractional bits to L'=0 bits, but the mathematics hold true for any L' < L Usually, keep the number of integral bits the same K'=K 22

23 Rounding Equation Whole part Fractional part x k 1 x k 2... x 1 x 0. x 1 x 2... x Round l y k 1 y k 2... y 1 y 0 y = round(x) 23

24 Rounding Techniques There are different rounding techniques: 1) truncation results in round towards zero in signed magnitude results in round towards - in two's complement 2) round to nearest number 3) round to nearest even number (or odd number) 4) round towards + Other rounding techniques 5) jamming or von Neumann 6) ROM rounding Each of these techniques will differ in their error depending on representation of numbers i.e. signed magnitude versus two's complement Error = round(x) x 24

25 1) Truncation The simplest possible rounding scheme: chopping or truncation x k 1 x k 2... x 1 x 0. x 1 x 2... x trunc l x k 1 x k 2... x 1 x 0 ulp Truncation in signed-magnitude results in a number chop(x) that is always of smaller magnitude than x. This is called round towards zero or inward rounding (3.5) 10 à 011 (3) 10 Error = (-3.5) 10 à 111 (-3) 10 Error = +0.5 Truncation in two's complement results in a number chop(x) that is always smaller than x. This is called round towards - or downward-directed rounding (3.5) 10 à 011 (3) 10 Error = (-3.5) 10 à 100 (-4) 10 Error =

26 Truncation Function Graph: chop(x) chop( x ) Fig Truncation or chopping of a signed-magnitude number (same as round toward 0). x chop( x ) Fig Truncation or chopping of a 2 s-complement number (same as round to - ). x 26

27 Bias in two's complement truncation X (binary) X (decimal) chop(x) (binary) chop(x) (decimal) Error (decimal) Assuming all combinations of positive and negative values of x equally possible, average error is In general, average error = -(2 -L' -2 -L )/2, where L' = new number of fractional bits 27

28 Implementation truncation in hardware Easy, just ignore (i.e. truncate) the fractional digits from L to L'+1 x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L = y k-1 y k-2.. y 1 y 0. ignore (i.e. truncate the rest) 28

29 2) Round to nearest number Rounding to nearest number what we normally think of when say round (2.25) 10 à 010 (2) 10 Error = (2.75) 10 à 011 (3) 10 Error = (2.00) 10 à 010 (2) 10 Error = (2.5) 10 à 011 (3) 10 Error = +0.5 [round-half-up (arithmetic rounding)] (2.5) 10 à 010 (2) 10 Error = -0.5 [round-half-down] 29

30 Round-half-up: dealing with negative numbers Rounding to nearest number what we normally think of when say round (-2.25) 10 à 110 (-2) 10 Error = (-2.75) 10 à 101 (-3) 10 Error = (-2.00) 10 à 110 (-2) 10 Error = (-2.5) 10 à 110 (-2) 10 Error = +0.5 [asymmetric implementation] (-2.5) 10 à 101 (-3) 10 Error = -0.5 [symmetric implementation] 30

31 Round to Nearest Function Graph: rtn(x) Round-half-up version Asymmetric implementation Symmetric implementation rtn(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 x rtn(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 x 31

32 Bias in two's complement round to nearest Round-half-up asymmetric implementation X (binary) X (decimal) rtn(x) (binary) rtn(x) (decimal) Error (decimal) Assuming all combinations of positive and negative values of x equally possible, average error is Smaller average error than truncation, but still not symmetric error We have a problem with the midway value, i.e. exactly at 2.5 or -2.5 leads to positive error bias always Also have the problem that you can get overflow if only allocate K' = K integral bits Example: rtn(011.10) à overflow This overflow only occurs on positive numbers near the maximum positive value, not on negative numbers 32

33 Implementing round to nearest (rtn) in hardware Round-half-up asymmetric implementation Two methods Method 1: Add '1' in position one digit right of new LSB (i.e. digit L'+1) and keep only L' fractional bits x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L + 1 = y k-1 y k-2.. y 1 y 0. y -1 Method 2: Add the value of the digit one position to right of new LSB (i.e. digit L'+1) into the new LSB digit (i.e. digit L) and keep only L' fractional bits x k-1 x k-2.. x 1 x 0. x -1 x -2.. x -L + x -1 y k-1 y k-2.. y 1 y 0. ignore (i.e. truncate the rest) ignore (i.e truncate the rest) 33

34 Round to Nearest Even Function Graph: rtne(x) To solve the problem with the midway value we implement round to nearest-even number (or can round to nearest odd number) rtne(x) R*(x) ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 Fig Rounding to the nearest even number x ñ4 ñ3 ñ2 ñ ñ1 ñ2 ñ3 ñ4 Fig R* rounding or rounding to the nearest odd number. x 34

35 Bias in two's complement round to nearest even (rtne) X (binary) X (decimal ) rtne(x) (binary) rtne(x) (decimal) Error (decimal) (overfl) average error is now 0 (ignoring the overflow) cost: more hardware 35

36 4) Rounding towards infinity We may need computation errors to be in a known direction Example: in computing upper bounds, larger results are acceptable, but results that are smaller than correct values could invalidate upper bound Use upward-directed rounding (round toward + ) up(x) always larger than or equal to x Similarly for lower bounds, use downward-directed rounding (round toward - ) down(x) always smaller than or equal to x We have already seen that round toward - in two's complement can be implemented by truncation 36

37 Rounding Toward Infinity Function Graph: up(x) and down(x) up(x) down(x) down(x) can be implemented by chop(x) in two's complement 37

38 Two's Complement Round to Zero Two's complement round to zero (inward rounding) also exists inward( x ) x 38

39 Other Methods Note that in two's complement round to nearest (rtn) involves an addition which may have a carry propagation from LSB to MSB Rounding may take as long as an adder takes Can break the adder chain using the following two techniques: Jamming or von Neumann ROM-based 39

40 5) Jamming or von Neumann jam(x) ñ4 ñ3 ñ2 ñ ñ1 - ñ2 - ñ3 - ñ4 x Chop and force the LSB of the result to 1 Simplicity of chopping, with the near-symmetry or ordinary rounding Max error is comparable to chopping (double that of rounding) 40

41 6) ROM Rounding ROM(x) ñ4 ñ3 ñ2 ñ ñ1 - ñ2 - ñ3 - ñ4 x Fig ROM rounding with an 8 2 table. Example: Rounding with a 32 4 table Rounding result is the same as that of the round to nearest scheme in 31 of the 32 possible cases, but a larger error is introduced when x 3 = x 2 = x 1 = x 0 = x 1 = 1 x k 1... x 4 x 3 x 2 x 1 x 0. x 1 x 2... x l ROM x k 1... x 4 y 3 y 2 y 1 y 0 ROM address ROM data 41

42 Representation of the Galois Field elements

43 Evariste Galois ( )

44 Evariste Galois ( ) Studied the problem of finding algebraic solutions for the general equations of the degree 5, e.g., f(x) = a 5 x 5 + a 4 x 4 + a 3 x 3 + a 2 x 2 + a 1 x+ a 0 = 0 Answered definitely the question which specific equations of a given degree have algebraic solutions. On the way, he developed group theory, one of the most important branches of modern mathematics.

45 Evariste Galois ( ) 1829 Galois submits his results for the first time to the French Academy of Sciences Reviewer 1 Augustin-Luis Cauchy forgot or lost the communication Galois submits the revised version of his manuscript, hoping to enter the competition for the Grand Prize in mathematics Reviewer 2 Joseph Fourier died shortly after receiving the manuscript Third submission to the French Academy of Sciences Reviewer 3 Simeon-Denis Poisson did not understand the manuscript and rejected it.

46 Evariste Galois ( ) May 1832 Galois provoked into a duel The night before the duel he wrote a letter to his friend containing the summary of his discoveries. The letter ended with a plea: Eventually there will be, I hope, some people who will find it profitable to decipher this mess. May 30, 1832 Galois was grievously wounded in the duel and died in the hospital the following day Galois manuscript rediscovered by Joseph Liouville 1846 Galois manuscript published for the first time in a mathematical journal.

47

48 Field Set F, and two operations typically denoted by (but not necessarily equivalent to) + and * Set F, and definitions of these two operations must fulfill special conditions.

49 Infinite fields Finite fields Examples of fields { R= set of real numbers, + addition of real numbers * multiplication of real numbers } { set Zp={0, 1, 2,, p-1}, + (mod p): addition modulo p, * (mod p): multiplication modulo p }

50 Finite Fields = Galois Fields GF(p m ) p prime p m number of elements in the field Arithmetic operations present in many libraries GF(p) GF(2 m ) Polynomial basis representation Most significant special cases Normal basis representation Fast in hardware Fast squaring

51 Quotient and remainder Given integers a and n, n>0! q, r Z such that a = q n + r and 0 r < n q quotient r remainder (of a divided by n) q = a n = a div n r = a - q n = a = a mod n a n n =

52 32 mod 5 = -32 mod 5 =

53 Integers coungruent modulo n Two integers a and b are congruent modulo n (equivalent modulo n) written a b iff a mod n = b mod n or a = b + kn, k Z or n a - b

54 Laws of modular arithmetic

55 Rules of addition, subtraction and multiplication modulo n a + b mod n = ((a mod n) + (b mod n)) mod n a - b mod n = ((a mod n) - (b mod n)) mod n a b mod n = ((a mod n) (b mod n)) mod n

56 9 13 mod 5 = mod 26 =

57 Laws of modular arithmetic Regular addition a+b = a+c iff b=c Regular multiplication If a b = a c and a 0 then b = c Modular addition a+b a+c (mod n) iff b c (mod n) Modular multiplication If a b a c (mod n) and gcd (a, n) = 1 then b c (mod n)

58 Modular Multiplication: Example (mod 8) (mod 8) 3 7 (mod 8) x 6 x mod x 5 x mod

59 Finite Fields = Galois Fields GF(p m ) p prime p m number of elements in the field Arithmetic operations present in many libraries GF(p) GF(2 m ) Polynomial basis representation Most significant special cases Normal basis representation Fast in hardware Fast squaring

60 Elements of the Galois Field GF(2 m ) Binary representation (used for storing and processing in computer systems): A = (a m-1, a m-2,, a 2, a 1, a 0 ) a i {0, 1} Polynomial representation (used for the definition of basic arithmetic operations): m-1 A(x) = a i x i = a m-1 x m-1 + a m-2 x m a 2 x 2 + a 1 x+a 0 i=0 multiplication + addition modulo 2 (XOR)

61 Addition and Multiplication in the Galois Field GF(2 m ) Inputs A = (a m-1, a m-2,, a 2, a 1, a 0 ) B = (b m-1, b m-2,, b 2, b 1, b 0 ) a i, b i {0, 1} Output C = (c m-1, c m-2,, c 2, c 1, c 0 ) c i {0, 1}

62 Addition Addition in the Galois Field GF(2 m ) A A(x) B B(x) C C(x) = A(x) + B(x) = = (a m-1 +b m-1 ) x m-1 + (a m-2 +b m-2 ) x m (a 2 +b 2 ) x 2 + (a 1 +b 1 ) x + (a 0 +b 0 ) = = c m-1 x m-1 + c m-2 x m c 2 x 2 + c 1 x+c 0 multiplication + addition modulo 2 (XOR) c i = a i + b i = a i XOR b i C = A XOR B

63 Multiplication in the Galois Field GF(2 m ) Multiplication A A(x) B B(x) C C(x) = A(x) B(x) mod P(X) = c m-1 x m-1 + c m-2 x m c 2 x 2 + c 1 x+c 0 P(x) - irreducible polynomial of the degree m P(x) = p m x m + p m-1 x m p 2 x 2 + p 1 x+p 0

64

ECE 645: Lecture 5 Number Representation

ECE 645: Lecture 5 Number Representation ECE 645: Lecture 5 Number Representation Part 2 Little-Endian vs. Big-Endian Representations Floating Point Representations Rounding Representation of the Galois Field elements Required Reading Endianness,

More information

Lecture 3: Basic Adders and Counters

Lecture 3: Basic Adders and Counters Lecture 3: Basic Adders and Counters ECE 645 Computer Arithmetic /5/8 ECE 645 Computer Arithmetic Lecture Roadmap Revisiting Addition and Overflow Rounding Techniques Basic Adders and Counters Required

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

More information

Part V Real Arithmetic

Part V Real Arithmetic Part V Real Arithmetic Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations II. III.

More information

Part V Real Arithmetic

Part V Real Arithmetic Part V Real Arithmetic Parts Chapters I. Number Representation 1. 2. 3. 4. Numbers and Arithmetic Representing Signed Numbers Redundant Number Systems Residue Number Systems Elementary Operations II. III.

More information

Numeric Encodings Prof. James L. Frankel Harvard University

Numeric Encodings Prof. James L. Frankel Harvard University Numeric Encodings Prof. James L. Frankel Harvard University Version of 10:19 PM 12-Sep-2017 Copyright 2017, 2016 James L. Frankel. All rights reserved. Representation of Positive & Negative Integral and

More information

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK

Computer (Literacy) Skills. Number representations and memory. Lubomír Bulej KDSS MFF UK Computer (Literacy Skills Number representations and memory Lubomír Bulej KDSS MFF UK Number representations? What for? Recall: computer works with binary numbers Groups of zeroes and ones 8 bits (byte,

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-B Floating-Point Arithmetic - II Israel Koren ECE666/Koren Part.4b.1 The IEEE Floating-Point

More information

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing

EE878 Special Topics in VLSI. Computer Arithmetic for Digital Signal Processing EE878 Special Topics in VLSI Computer Arithmetic for Digital Signal Processing Part 4-B Floating-Point Arithmetic - II Spring 2017 Koren Part.4b.1 The IEEE Floating-Point Standard Four formats for floating-point

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Floating-point representations

Floating-point representations Lecture 10 Floating-point representations Methods of representing real numbers (1) 1. Fixed-point number system limited range and/or limited precision results must be scaled 100101010 1111010 100101010.1111010

More information

Foundations of Computer Systems

Foundations of Computer Systems 18-600 Foundations of Computer Systems Lecture 4: Floating Point Required Reading Assignment: Chapter 2 of CS:APP (3 rd edition) by Randy Bryant & Dave O Hallaron Assignments for This Week: Lab 1 18-600

More information

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3 Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-C Floating-Point Arithmetic - III Israel Koren ECE666/Koren Part.4c.1 Floating-Point Adders

More information

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued

CS 6210 Fall 2016 Bei Wang. Lecture 4 Floating Point Systems Continued CS 6210 Fall 2016 Bei Wang Lecture 4 Floating Point Systems Continued Take home message 1. Floating point rounding 2. Rounding unit 3. 64 bit word: double precision (IEEE standard word) 4. Exact rounding

More information

Inf2C - Computer Systems Lecture 2 Data Representation

Inf2C - Computer Systems Lecture 2 Data Representation Inf2C - Computer Systems Lecture 2 Data Representation Boris Grot School of Informatics University of Edinburgh Last lecture Moore s law Types of computer systems Computer components Computer system stack

More information

COMP2611: Computer Organization. Data Representation

COMP2611: Computer Organization. Data Representation COMP2611: Computer Organization Comp2611 Fall 2015 2 1. Binary numbers and 2 s Complement Numbers 3 Bits: are the basis for binary number representation in digital computers What you will learn here: How

More information

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction 1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

Finite arithmetic and error analysis

Finite arithmetic and error analysis Finite arithmetic and error analysis Escuela de Ingeniería Informática de Oviedo (Dpto de Matemáticas-UniOvi) Numerical Computation Finite arithmetic and error analysis 1 / 45 Outline 1 Number representation:

More information

The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive.

The Sign consists of a single bit. If this bit is '1', then the number is negative. If this bit is '0', then the number is positive. IEEE 754 Standard - Overview Frozen Content Modified by on 13-Sep-2017 Before discussing the actual WB_FPU - Wishbone Floating Point Unit peripheral in detail, it is worth spending some time to look at

More information

Part III The Arithmetic/Logic Unit. Oct Computer Architecture, The Arithmetic/Logic Unit Slide 1

Part III The Arithmetic/Logic Unit. Oct Computer Architecture, The Arithmetic/Logic Unit Slide 1 Part III The Arithmetic/Logic Unit Oct. 214 Computer Architecture, The Arithmetic/Logic Unit Slide 1 About This Presentation This presentation is intended to support the use of the textbook Computer Architecture:

More information

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state

At the ith stage: Input: ci is the carry-in Output: si is the sum ci+1 carry-out to (i+1)st state Chapter 4 xi yi Carry in ci Sum s i Carry out c i+ At the ith stage: Input: ci is the carry-in Output: si is the sum ci+ carry-out to (i+)st state si = xi yi ci + xi yi ci + xi yi ci + xi yi ci = x i yi

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-09-07 1. We are still at 50. If you are still waiting and are not interested in knowing if a slot frees up, let me know. 2. There is a correction to HW 1, problem 4; the condition

More information

Floating-Point Numbers in Digital Computers

Floating-Point Numbers in Digital Computers POLYTECHNIC UNIVERSITY Department of Computer and Information Science Floating-Point Numbers in Digital Computers K. Ming Leung Abstract: We explain how floating-point numbers are represented and stored

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

H5H4, H5E7 lecture 5 Fixed point arithmetic. Overview

H5H4, H5E7 lecture 5 Fixed point arithmetic. Overview H5H4, H5E7 lecture 5 Fixed point arithmetic I. Verbauwhede Acknowledgements: H. DeMan, V. Öwall, D. Hwang, 007-008 K.U.Leuven 1 Overview Lecture 1: what is a system-on-chip Lecture : terminology for the

More information

CO212 Lecture 10: Arithmetic & Logical Unit

CO212 Lecture 10: Arithmetic & Logical Unit CO212 Lecture 10: Arithmetic & Logical Unit Shobhanjana Kalita, Dept. of CSE, Tezpur University Slides courtesy: Computer Architecture and Organization, 9 th Ed, W. Stallings Integer Representation For

More information

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as:

Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: N Number Systems Standard positional representation of numbers: An unsigned number with whole and fraction portions is represented as: a n a a a The value of this number is given by: = a n Ka a a a a a

More information

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS

CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS CPE 323 REVIEW DATA TYPES AND NUMBER REPRESENTATIONS IN MODERN COMPUTERS Aleksandar Milenković The LaCASA Laboratory, ECE Department, The University of Alabama in Huntsville Email: milenka@uah.edu Web:

More information

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. !

Floating point. Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties. Next time. ! Floating point Today! IEEE Floating Point Standard! Rounding! Floating Point Operations! Mathematical properties Next time! The machine model Chris Riesbeck, Fall 2011 Checkpoint IEEE Floating point Floating

More information

Accuracy versus precision

Accuracy versus precision Accuracy versus precision Accuracy is a consistent error from the true value, but not necessarily a good or precise error Precision is a consistent result within a small error, but not necessarily anywhere

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE23: Introduction to Computer Systems, Spring 218,

More information

Roundoff Errors and Computer Arithmetic

Roundoff Errors and Computer Arithmetic Jim Lambers Math 105A Summer Session I 2003-04 Lecture 2 Notes These notes correspond to Section 1.2 in the text. Roundoff Errors and Computer Arithmetic In computing the solution to any mathematical problem,

More information

Floating Point January 24, 2008

Floating Point January 24, 2008 15-213 The course that gives CMU its Zip! Floating Point January 24, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties class04.ppt 15-213, S 08 Floating

More information

MACHINE LEVEL REPRESENTATION OF DATA

MACHINE LEVEL REPRESENTATION OF DATA MACHINE LEVEL REPRESENTATION OF DATA CHAPTER 2 1 Objectives Understand how integers and fractional numbers are represented in binary Explore the relationship between decimal number system and number systems

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Floating-point numbers. Phys 420/580 Lecture 6

Floating-point numbers. Phys 420/580 Lecture 6 Floating-point numbers Phys 420/580 Lecture 6 Random walk CA Activate a single cell at site i = 0 For all subsequent times steps, let the active site wander to i := i ± 1 with equal probability Random

More information

Number Systems CHAPTER Positional Number Systems

Number Systems CHAPTER Positional Number Systems CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

More information

Representing and Manipulating Floating Points

Representing and Manipulating Floating Points Representing and Manipulating Floating Points Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu The Problem How to represent fractional values with

More information

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. https://xkcd.com/217/

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. https://xkcd.com/217/ CS 261 Fall 2017 Mike Lam, Professor https://xkcd.com/217/ Floating-Point Numbers Floating-point Topics Binary fractions Floating-point representation Conversions and rounding error Binary fractions Now

More information

Floating-point representation

Floating-point representation Lecture 3-4: Floating-point representation and arithmetic Floating-point representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However,

More information

By, Ajinkya Karande Adarsh Yoga

By, Ajinkya Karande Adarsh Yoga By, Ajinkya Karande Adarsh Yoga Introduction Early computer designers believed saving computer time and memory were more important than programmer time. Bug in the divide algorithm used in Intel chips.

More information

Introduction to the new AES Standard: Rijndael

Introduction to the new AES Standard: Rijndael Introduction to the new AES Standard: Rijndael Paul Donis This paper will explain how the Rijndael Cipher Reference Code in C works. Rijndael is a block cipher that encrypts and decrypts 128, 192, and

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation

Chapter 2 Float Point Arithmetic. Real Numbers in Decimal Notation. Real Numbers in Decimal Notation Chapter 2 Float Point Arithmetic Topics IEEE Floating Point Standard Fractional Binary Numbers Rounding Floating Point Operations Mathematical properties Real Numbers in Decimal Notation Representation

More information

Numerical computing. How computers store real numbers and the problems that result

Numerical computing. How computers store real numbers and the problems that result Numerical computing How computers store real numbers and the problems that result The scientific method Theory: Mathematical equations provide a description or model Experiment Inference from data Test

More information

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science)

Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point (with contributions from Dr. Bin Ren, William & Mary Computer Science) Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition Example and properties

More information

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor.

CS 261 Fall Floating-Point Numbers. Mike Lam, Professor. CS 261 Fall 2018 Mike Lam, Professor https://xkcd.com/217/ Floating-Point Numbers Floating-point Topics Binary fractions Floating-point representation Conversions and rounding error Binary fractions Now

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

Floating-Point Arithmetic

Floating-Point Arithmetic ENEE446---Lectures-4/10-15/08 A. Yavuz Oruç Professor, UMD, College Park Copyright 2007 A. Yavuz Oruç. All rights reserved. Floating-Point Arithmetic Integer or fixed-point arithmetic provides a complete

More information

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions

Operations On Data CHAPTER 4. (Solutions to Odd-Numbered Problems) Review Questions CHAPTER 4 Operations On Data (Solutions to Odd-Numbered Problems) Review Questions 1. Arithmetic operations interpret bit patterns as numbers. Logical operations interpret each bit as a logical values

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 4. L12 Multiplication 1 Why Floating Point? Aren t Integers enough? Many applications require numbers with a VERY

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 4 Notes These notes correspond to Sections 1.1 1.2 in the text. Review of Calculus, cont d Taylor s Theorem, cont d We conclude our discussion of Taylor

More information

2 Computation with Floating-Point Numbers

2 Computation with Floating-Point Numbers 2 Computation with Floating-Point Numbers 2.1 Floating-Point Representation The notion of real numbers in mathematics is convenient for hand computations and formula manipulations. However, real numbers

More information

Divide: Paper & Pencil

Divide: Paper & Pencil Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

More information

COMP Overview of Tutorial #2

COMP Overview of Tutorial #2 COMP 1402 Winter 2008 Tutorial #2 Overview of Tutorial #2 Number representation basics Binary conversions Octal conversions Hexadecimal conversions Signed numbers (signed magnitude, one s and two s complement,

More information

Chapter 4. Operations on Data

Chapter 4. Operations on Data Chapter 4 Operations on Data 1 OBJECTIVES After reading this chapter, the reader should be able to: List the three categories of operations performed on data. Perform unary and binary logic operations

More information

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University

Computer Architecture Chapter 3. Fall 2005 Department of Computer Science Kent State University Computer Architecture Chapter 3 Fall 2005 Department of Computer Science Kent State University Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point

More information

CPE300: Digital System Architecture and Design

CPE300: Digital System Architecture and Design CPE300: Digital System Architecture and Design Fall 2011 MW 17:30-18:45 CBC C316 Arithmetic Unit 10122011 http://www.egr.unlv.edu/~b1morris/cpe300/ 2 Outline Recap Fixed Point Arithmetic Addition/Subtraction

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Digital Computer Arithmetic ECE 666 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Digital Computer Arithmetic ECE 666 Part 4-A Floating-Point Arithmetic Israel Koren ECE666/Koren Part.4a.1 Preliminaries - Representation

More information

Scientific Computing. Error Analysis

Scientific Computing. Error Analysis ECE257 Numerical Methods and Scientific Computing Error Analysis Today s s class: Introduction to error analysis Approximations Round-Off Errors Introduction Error is the difference between the exact solution

More information

Floating Point Representation in Computers

Floating Point Representation in Computers Floating Point Representation in Computers Floating Point Numbers - What are they? Floating Point Representation Floating Point Operations Where Things can go wrong What are Floating Point Numbers? Any

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers Real Numbers We have been studying integer arithmetic up to this point. We have discovered that a standard computer can represent a finite subset of the infinite set of integers. The range is determined

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

More information

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time.

Floating point. Today. IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time. Floating point Today IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Next time The machine model Fabián E. Bustamante, Spring 2010 IEEE Floating point Floating point

More information

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754

Floating Point Puzzles. Lecture 3B Floating Point. IEEE Floating Point. Fractional Binary Numbers. Topics. IEEE Standard 754 Floating Point Puzzles Topics Lecture 3B Floating Point IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties For each of the following C expressions, either: Argue that

More information

Computer Architecture. Chapter 3: Arithmetic for Computers

Computer Architecture. Chapter 3: Arithmetic for Computers 182.092 Computer Architecture Chapter 3: Arithmetic for Computers Adapted from Computer Organization and Design, 4 th Edition, Patterson & Hennessy, 2008, Morgan Kaufmann Publishers and Mary Jane Irwin

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Arithmetic (a) The four possible cases Carry (b) Truth table x y Arithmetic A basic operation in all digital computers is the addition and subtraction of two numbers They are implemented, along with the basic logic functions such as AND,OR, NOT,EX- OR in the ALU subsystem

More information

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right. Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

More information

MIPS Integer ALU Requirements

MIPS Integer ALU Requirements MIPS Integer ALU Requirements Add, AddU, Sub, SubU, AddI, AddIU: 2 s complement adder/sub with overflow detection. And, Or, Andi, Ori, Xor, Xori, Nor: Logical AND, logical OR, XOR, nor. SLTI, SLTIU (set

More information

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon

Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition. Carnegie Mellon Carnegie Mellon Floating Point 15-213/18-213/14-513/15-513: Introduction to Computer Systems 4 th Lecture, Sept. 6, 2018 Today: Floating Point Background: Fractional binary numbers IEEE floating point

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } Reading: Study Chapter 3. L12 Multiplication 1 Approximating Real Numbers on Computers Thus far, we ve entirely ignored one of the most

More information

15213 Recitation 2: Floating Point

15213 Recitation 2: Floating Point 15213 Recitation 2: Floating Point 1 Introduction This handout will introduce and test your knowledge of the floating point representation of real numbers, as defined by the IEEE standard. This information

More information

System Programming CISC 360. Floating Point September 16, 2008

System Programming CISC 360. Floating Point September 16, 2008 System Programming CISC 360 Floating Point September 16, 2008 Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Powerpoint Lecture Notes for Computer Systems:

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU) Mohamed Zahran

More information

Floating Point Numbers

Floating Point Numbers Floating Point Numbers Computer Systems Organization (Spring 2016) CSCI-UA 201, Section 2 Fractions in Binary Instructor: Joanna Klukowska Slides adapted from Randal E. Bryant and David R. O Hallaron (CMU)

More information

Lecture 10: Floating Point, Digital Design

Lecture 10: Floating Point, Digital Design Lecture 10: Floating Point, Digital Design Today s topics: FP arithmetic Intro to Boolean functions 1 Examples Final representation: (-1) S x (1 + Fraction) x 2 (Exponent Bias) Represent -0.75 ten in single

More information

Chapter 10 Binary Arithmetics

Chapter 10 Binary Arithmetics 27..27 Chapter Binary Arithmetics Dr.-Ing. Stefan Werner Table of content Chapter : Switching Algebra Chapter 2: Logical Levels, Timing & Delays Chapter 3: Karnaugh-Veitch-Maps Chapter 4: Combinational

More information

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties

Systems I. Floating Point. Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties Systems I Floating Point Topics IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties IEEE Floating Point IEEE Standard 754 Established in 1985 as uniform standard for

More information

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic

EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic 1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

More information

Written Homework 3. Floating-Point Example (1/2)

Written Homework 3. Floating-Point Example (1/2) Written Homework 3 Assigned on Tuesday, Feb 19 Due Time: 11:59pm, Feb 26 on Tuesday Problems: 3.22, 3.23, 3.24, 3.41, 3.43 Note: You have 1 week to work on homework 3. 3 Floating-Point Example (1/2) Q:

More information

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

More information

World Inside a Computer is Binary

World Inside a Computer is Binary C Programming 1 Representation of int data World Inside a Computer is Binary C Programming 2 Decimal Number System Basic symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Radix-10 positional number system. The radix

More information

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude

Chapter 2. Positional number systems. 2.1 Signed number representations Signed magnitude Chapter 2 Positional number systems A positional number system represents numeric values as sequences of one or more digits. Each digit in the representation is weighted according to its position in the

More information

Up next. Midterm. Today s lecture. To follow

Up next. Midterm. Today s lecture. To follow Up next Midterm Next Friday in class Exams page on web site has info + practice problems Excited for you to rock the exams like you have been the assignments! Today s lecture Back to numbers, bits, data

More information

Measuring Improvement When Using HUB Formats to Implement Floating-Point Systems under Round-to- Nearest

Measuring Improvement When Using HUB Formats to Implement Floating-Point Systems under Round-to- Nearest Measuring Improvement When Using HUB Formats to Implement Floating-Point Systems under Round-to- Nearest Abstract: This paper analyzes the benefits of using half-unitbiased (HUB) formats to implement floatingpoint

More information

Computer arithmetics: integers, binary floating-point, and decimal floating-point

Computer arithmetics: integers, binary floating-point, and decimal floating-point n!= 0 && -n == n z+1 == z Computer arithmetics: integers, binary floating-point, and decimal floating-point v+w-w!= v x+1 < x Peter Sestoft 2010-02-16 y!= y p == n && 1/p!= 1/n 1 Computer arithmetics Computer

More information

Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

More information

Floating Point. CSE 351 Autumn Instructor: Justin Hsia

Floating Point. CSE 351 Autumn Instructor: Justin Hsia Floating Point CSE 351 Autumn 2017 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan Administrivia Lab

More information

Review: MIPS Organization

Review: MIPS Organization 1 MIPS Arithmetic Review: MIPS Organization Processor Memory src1 addr 5 src2 addr 5 dst addr 5 write data Register File registers ($zero - $ra) bits src1 data src2 data read/write addr 1 1100 2 30 words

More information

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j

Today: Floating Point. Floating Point. Fractional Binary Numbers. Fractional binary numbers. bi bi 1 b2 b1 b0 b 1 b 2 b 3 b j Floating Point 15 213: Introduction to Computer Systems 4 th Lecture, Jan 24, 2013 Instructors: Seth Copen Goldstein, Anthony Rowe, Greg Kesden 2 Fractional binary numbers What is 1011.101 2? Fractional

More information

Floating-Point Arithmetic

Floating-Point Arithmetic Floating-Point Arithmetic if ((A + A) - A == A) { SelfDestruct() } L11 Floating Point 1 What is the problem? Many numeric applications require numbers over a VERY large range. (e.g. nanoseconds to centuries)

More information

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals

Floating Point COE 308. Computer Architecture Prof. Muhamed Mudawar. Computer Engineering Department King Fahd University of Petroleum and Minerals Floating Point COE 38 Computer Architecture Prof. Muhamed Mudawar Computer Engineering Department King Fahd University of Petroleum and Minerals Presentation Outline Floating-Point Numbers IEEE 754 Floating-Point

More information

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon

Floating Point : Introduction to Computer Systems 4 th Lecture, May 25, Instructor: Brian Railing. Carnegie Mellon Floating Point 15-213: Introduction to Computer Systems 4 th Lecture, May 25, 2018 Instructor: Brian Railing Today: Floating Point Background: Fractional binary numbers IEEE floating point standard: Definition

More information

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers

Real Numbers finite subset real numbers floating point numbers Scientific Notation fixed point numbers Real Numbers We have been studying integer arithmetic up to this point. We have discovered that a standard computer can represent a finite subset of the infinite set of integers. The range is determined

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Data Representation Floating Point

Data Representation Floating Point Data Representation Floating Point CSCI 2400 / ECE 3217: Computer Architecture Instructor: David Ferry Slides adapted from Bryant & O Hallaron s slides via Jason Fritts Today: Floating Point Background:

More information

CHAPTER 2 Data Representation in Computer Systems

CHAPTER 2 Data Representation in Computer Systems CHAPTER 2 Data Representation in Computer Systems 2.1 Introduction 37 2.2 Positional Numbering Systems 38 2.3 Decimal to Binary Conversions 38 2.3.1 Converting Unsigned Whole Numbers 39 2.3.2 Converting

More information