# Exponential Numbers ID1050 Quantitative & Qualitative Reasoning

Size: px
Start display at page:

Download "Exponential Numbers ID1050 Quantitative & Qualitative Reasoning"

## Transcription

1 Exponential Numbers ID1050 Quantitative & Qualitative Reasoning

2 In what ways can you have \$2000? Just like fractions, you can have a number in some denomination Number Denomination Mantissa Power of 10 20,000 Dimes 20, Singles 2, Tens Hundreds Thousands Ten Thousands A number in this form has a mantissa (the number) and an exponent of 10 (the denomination) Notice the pattern: as the decimal moves left in the mantissa (decreasing its value), the exponent of 10 moves up (increasing its value), and vice versa.

3 Numbers in Exponential Notation Any number can be expressed in this type of exponential format. It is especially useful for really big and really small numbers. One trillion = 1,000,000,000,000 = 1.00 x One billionth = = 1.00 x 10-9 Scientific calculators allow you to enter numbers in this format. (see the calculator tutorial)

4 Numbers in Floating Point Notation This is our common way of expressing numbers. The number is written with the decimal point in whatever place is appropriate. There is no multiplication by a power of ten. Example: is in floating point notation. A number in floating point notation can be easily converted to exponential notation: The floating point number becomes the mantissa Multiply by ten to the zero power (which is, after all, equal to one) Example: in exponential notation becomes x 10 0

5 Numbers in Scientific Notation A particular form of exponential notation is called scientific notation In this form, the mantissa must be between 1 and 10. This results in a single, non-zero digit, followed by the decimal point, and then perhaps more digits. Examples: x 10 3 and 5.0 x 10-4 ( but not 0.65 x 10 1 ) Most calculators use scientific notation as their default way to express exponential numbers. A number in exponential format can have the decimal anywhere in the mantissa, but the calculator will convert this into scientific notation.

6 Precision and Rounding The number of digits in the mantissa is a measure of the number s precision. We call this the number of significant figures. We could require the mantissa to have only 3 digits of precision, for example. We would need to truncate (drop) any digits after the third one (the second digit after the decimal point) If the mantissa has fewer than three digits, fill in with zeros on the right. Before we drop the 4 th digit and beyond, we need to check to see if we should round the 3 rd digit first: If the 4 th digit is between 0 and 4, don t change the 3 rd digit If the 4 th digit is between 5 and 9, increase the 3 rd digit by one Example: x 10 3 becomes 1.23 x 10 3 Example: x 10-8 becomes 4.57 x 10-8 Example: 5.0 x 10 1 becomes 5.00 x 10 1

7 Addition/Subtraction in Exponential Format There is a simple method for adding numbers in exponential format: Get both number s exponents to be the same by adjusting the decimal point of one of them. Use the rules exponent up, decimal left or exponent down, decimal right Keeping this common exponent for the power of ten, add the mantissas. Adjust the decimal and exponent to put the answer into proper scientific notation, and round to 3 significant figures Example: 1.23x x x x x x x x10 3 Subtraction is done in exactly the same way, except you subtract the mantissas You can also just use a scientific calculator.

8 Multiplication/Division in Exponential Format Multiplication of numbers in exponential format is even simpler: Multiply the mantissas. The power of 10 in the answer is the sum of the powers of 10 of the two numbers. Adjust the decimal and exponent to put the answer into proper scientific notation, and round to 3 significant figures Example: 3.7 x x10 5 * 5.6 x x x x10 7 Division works exactly the same, except you divide mantissas and subtract the powers Example: 3.7 x x x x x x10 3

9 Conclusion Exponential notation is a form of expressing numbers, especially big and small numbers. Scientific notation is a particular type of exponential notation We can specify a precision in our answer and round to that precision The operations of addition, subtraction, multiplication, and division can be performed using a certain method, or using a calculator.

### Chapter 03: Computer Arithmetic. Lesson 09: Arithmetic using floating point numbers

Chapter 03: Computer Arithmetic Lesson 09: Arithmetic using floating point numbers Objective To understand arithmetic operations in case of floating point numbers 2 Multiplication of Floating Point Numbers

### Exponential Notation

Exponential Notation INTRODUCTION Chemistry as a science deals with the qualitative and quantitative aspects of substances. In the qualitative part, we deal with the general and specific properties of

### MA 1128: Lecture 02 1/22/2018

MA 1128: Lecture 02 1/22/2018 Exponents Scientific Notation 1 Exponents Exponents are used to indicate how many copies of a number are to be multiplied together. For example, I like to deal with the signs

### Divide: Paper & Pencil

Divide: Paper & Pencil 1001 Quotient Divisor 1000 1001010 Dividend -1000 10 101 1010 1000 10 Remainder See how big a number can be subtracted, creating quotient bit on each step Binary => 1 * divisor or

### Chapter 4 Section 2 Operations on Decimals

Chapter 4 Section 2 Operations on Decimals Addition and subtraction of decimals To add decimals, write the numbers so that the decimal points are on a vertical line. Add as you would with whole numbers.

### Rev Name Date. . Round-off error is the answer to the question How wrong is the rounded answer?

Name Date TI-84+ GC 7 Avoiding Round-off Error in Multiple Calculations Objectives: Recall the meaning of exact and approximate Observe round-off error and learn to avoid it Perform calculations using

### Introduction to Computers and Programming. Numeric Values

Introduction to Computers and Programming Prof. I. K. Lundqvist Lecture 5 Reading: B pp. 47-71 Sept 1 003 Numeric Values Storing the value of 5 10 using ASCII: 00110010 00110101 Binary notation: 00000000

### Place Value. Verbal Form: 30,542 = Thirty thousand, five hundred forty-two. (Notice we don t use the word and.)

WHOLE NUMBERS REVIEW A set is a collection of objects. The set of natural numbers is {1,2,3,4,5,.} The set of whole numbers is {0,1,2,3,4,5, } Whole numbers are used for counting objects (such as money,

### 1.1 Review of Place Value

1 1.1 Review of Place Value Our decimal number system is based upon powers of ten. In a given whole number, each digit has a place value, and each place value consists of a power of ten. Example 1 Identify

### Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Lecture 3

Floating-Point Data Representation and Manipulation 198:231 Introduction to Computer Organization Instructor: Nicole Hynes nicole.hynes@rutgers.edu 1 Fixed Point Numbers Fixed point number: integer part

### Example 2: Simplify each of the following. Round your answer to the nearest hundredth. a

Section 5.4 Division with Decimals 1. Dividing by a Whole Number: To divide a decimal number by a whole number Divide as you would if the decimal point was not there. If the decimal number has digits after

In this lesson you will learn: how to add and multiply positive binary integers how to work with signed binary numbers using two s complement how fixed and floating point numbers are used to represent

### Number Systems. Both numbers are positive

Number Systems Range of Numbers and Overflow When arithmetic operation such as Addition, Subtraction, Multiplication and Division are performed on numbers the results generated may exceed the range of

### Rules of Exponents Part 1[Algebra 1](In Class Version).notebook. August 22, 2017 WARM UP. Simplify using order of operations. SOLUTION.

WARM UP Simplify using order of operations. Aug 22 3:22 PM 1 Aug 22 4:09 PM 2 WARM UP a) The equation 3(4x) = (4x)3 illustrates which property? b) Which property of real numbers is illustrated by the equation

### Math Glossary Numbers and Arithmetic

Math Glossary Numbers and Arithmetic Version 0.1.1 September 1, 200 Next release: On or before September 0, 200. E-mail edu@ezlink.com for the latest version. Copyright 200 by Brad Jolly All Rights Reserved

### Module 2: Computer Arithmetic

Module 2: Computer Arithmetic 1 B O O K : C O M P U T E R O R G A N I Z A T I O N A N D D E S I G N, 3 E D, D A V I D L. P A T T E R S O N A N D J O H N L. H A N N E S S Y, M O R G A N K A U F M A N N

### TOPIC 2 DECIMALS (and INTRODUCTION TO FRACTIONS) WEEK 3

TOPIC DECIMALS (and INTRODUCTION TO FRACTIONS) WEEK 3 Association between Fractions and Decimals is a fraction. It means divided by. If we divide by the result is not a whole number. It is a half of whole

### Set up and use a proportion

Daily Do Question from last class Set up and use a proportion If you are driving 70 miles per hour and you have 280 miles to go on the highway part of your trip. How long will it take? adding, subtracting,

### add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)

I created these worksheets because I think it is useful to have regular practice of calculation methods away from the point of teaching. There are worksheets. Questions are aligned to the Year curriculum,

### Floating-point Arithmetic. where you sum up the integer to the left of the decimal point and the fraction to the right.

Floating-point Arithmetic Reading: pp. 312-328 Floating-Point Representation Non-scientific floating point numbers: A non-integer can be represented as: 2 4 2 3 2 2 2 1 2 0.2-1 2-2 2-3 2-4 where you sum

### FLOATING POINT NUMBERS

Exponential Notation FLOATING POINT NUMBERS Englander Ch. 5 The following are equivalent representations of 1,234 123,400.0 x 10-2 12,340.0 x 10-1 1,234.0 x 10 0 123.4 x 10 1 12.34 x 10 2 1.234 x 10 3

### Section 2.3 Rational Numbers. A rational number is a number that may be written in the form a b. for any integer a and any nonzero integer b.

Section 2.3 Rational Numbers A rational number is a number that may be written in the form a b for any integer a and any nonzero integer b. Why is division by zero undefined? For example, we know that

### Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4.

CHAPTER 8 Integers Problem. Prove that the square of any whole number n is a multiple of 4 or one more than a multiple of 4. Strategy 13 Use cases. This strategy may be appropriate when A problem can be

### Decimals Outcomes. Represent Q Using Decomposition

1 Decimals Outcomes Represent addition, subtraction, multiplication, and division in Q using number lines and decomposition. Perform addition, subtraction, multiplication, and division in Q. Convert between

### Number Systems and Binary Arithmetic. Quantitative Analysis II Professor Bob Orr

Number Systems and Binary Arithmetic Quantitative Analysis II Professor Bob Orr Introduction to Numbering Systems We are all familiar with the decimal number system (Base 10). Some other number systems

### FUNDAMENTAL ARITHMETIC

FUNDAMENTAL ARITHMETIC Prime Numbers Prime numbers are any whole numbers greater than that can only be divided by and itself. Below is the list of all prime numbers between and 00: Prime Factorization

### Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

### Lesson 1: THE DECIMAL SYSTEM

Lesson 1: THE DECIMAL SYSTEM The word DECIMAL comes from a Latin word, which means "ten. The Decimal system uses the following ten digits to write a number: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each time

### Mark Important Points in Margin. Significant Figures. Determine which digits in a number are significant.

Knowledge/Understanding: How and why measurements are rounded. Date: How rounding and significant figures relate to precision and uncertainty. When significant figures do not apply. Skills: Determine which

### DesCartes: A Continuum of Learning

Ratios and Proportional Relationships Ratios and Proportional Relationships Ratios and Proportional Relationships Solves simple problems involving miles/kilometers per hour Converts between cups, pints,

### Number Systems CHAPTER Positional Number Systems

CHAPTER 2 Number Systems Inside computers, information is encoded as patterns of bits because it is easy to construct electronic circuits that exhibit the two alternative states, 0 and 1. The meaning of

### Calculations with Sig Figs

Calculations with Sig Figs When you make calculations using data with a specific level of uncertainty, it is important that you also report your answer with the appropriate level of uncertainty (i.e.,

### Number Systems. Decimal numbers. Binary numbers. Chapter 1 <1> 8's column. 1000's column. 2's column. 4's column

1's column 10's column 100's column 1000's column 1's column 2's column 4's column 8's column Number Systems Decimal numbers 5374 10 = Binary numbers 1101 2 = Chapter 1 1's column 10's column 100's

### Decimals. Chapter Five

Chapter Five Decimals 5.1 Introductions to Decimals 5.2 Adding & Subtracting Decimals 5.3 Multiplying Decimals & Circumference of a Circle 5.4 Dividing Decimals 5.5 Fractions, Decimals, & Order of Operations

### 10.1. Unit 10. Signed Representation Systems Binary Arithmetic

0. Unit 0 Signed Representation Systems Binary Arithmetic 0.2 BINARY REPRESENTATION SYSTEMS REVIEW 0.3 Interpreting Binary Strings Given a string of s and 0 s, you need to know the representation system

### Only to be used for arranged hours. Order of Operations

Math 84 Activity # 1 Your name: Order of Operations Goals: 1) Evaluate Real numbers with Exponents. ) Use the Order of Operations to Evaluate Expressions. ) Review Exponents and Powers of Ten Integer exponents

### 6.1 Evaluate Roots and Rational Exponents

VOCABULARY:. Evaluate Roots and Rational Exponents Radical: We know radicals as square roots. But really, radicals can be used to express any root: 0 8, 8, Index: The index tells us exactly what type of

### The. Binary. Number System

The Binary Number System Why is Binary important? Everything on a computer (or other digital device) is represented by Binary Numbers One to Five in various systems 1 2 3 4 5 I II III IV V 1 10 11 100

### Fifth Grade Math Rubric

Operations and Algebraic Thinking Support Needed Progressing Meets Writes, solves, and interprets numerical expressions guidance with and/or inconsistently writes, solves, and interprets numerical expressions.

### Revision on fractions and decimals

Revision on fractions and decimals Fractions 1. Addition and subtraction of fractions (i) For same denominator, only need to add the numerators, then simplify the fraction Example 1: " + \$ " = &\$ " (they

### Numeric Variable Storage Pattern

Numeric Variable Storage Pattern Sreekanth Middela Srinivas Vanam Rahul Baddula Percept Pharma Services, Bridgewater, NJ ABSTRACT This paper presents the Storage pattern of Numeric Variables within the

### Chapter 3: Arithmetic for Computers

Chapter 3: Arithmetic for Computers Objectives Signed and Unsigned Numbers Addition and Subtraction Multiplication and Division Floating Point Computer Architecture CS 35101-002 2 The Binary Numbering

### DesCartes: A Continuum of Learning

Ratios and Proportional Relationships Ratios and Proportional Relationships Ratios and Proportional Relationships Completes arithmetic growth patterns in number tables by identifying the missing elements

### SECTION 3. ROUNDING, ESTIMATING, AND USING A CALCULATOR

SECTION 3. ROUNDING, ESTIMATING, AND USING A CALCULATOR Exact numbers are not always necessary or desirable. Sometimes it may be necessary to express the number which is a result of a calculation to a

### COSC 243. Data Representation 3. Lecture 3 - Data Representation 3 1. COSC 243 (Computer Architecture)

COSC 243 Data Representation 3 Lecture 3 - Data Representation 3 1 Data Representation Test Material Lectures 1, 2, and 3 Tutorials 1b, 2a, and 2b During Tutorial a Next Week 12 th and 13 th March If you

### Gateway Regional School District VERTICAL ARTICULATION OF MATHEMATICS STANDARDS Grades K-4

NUMBER SENSE & OPERATIONS K.N.1 Count by ones to at least 20. When you count, the last number word you say tells the number of items in the set. Counting a set of objects in a different order does not

### CS321. Introduction to Numerical Methods

CS31 Introduction to Numerical Methods Lecture 1 Number Representations and Errors Professor Jun Zhang Department of Computer Science University of Kentucky Lexington, KY 40506 0633 August 5, 017 Number

### SINGAPORE CORE COMMON CORE STATE STANDARDS BOY ASSESSMENT UNIT 1: BILLIONS. -recognize place value up to billions

5 TH GRADE MATH CURRICULUM MAP Approximate Month AUG. SEPT. SINGAPORE CORE COMMON CORE STATE STANDARDS BOY ASSESSMENT UNIT 1: BILLIONS -Write very large s in -read and write s (in digits and Standard 1.1,

### 1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM

1. NUMBER SYSTEMS USED IN COMPUTING: THE BINARY NUMBER SYSTEM 1.1 Introduction Given that digital logic and memory devices are based on two electrical states (on and off), it is natural to use a number

### Signed Multiplication Multiply the positives Negate result if signs of operand are different

Another Improvement Save on space: Put multiplier in product saves on speed: only single shift needed Figure: Improved hardware for multiplication Signed Multiplication Multiply the positives Negate result

### Introduction to Scientific Computing Lecture 1

Introduction to Scientific Computing Lecture 1 Professor Hanno Rein Last updated: September 10, 2017 1 Number Representations In this lecture, we will cover two concept that are important to understand

### 8/30/2016. In Binary, We Have A Binary Point. ECE 120: Introduction to Computing. Fixed-Point Representations Support Fractions

University of Illinois at Urbana-Champaign Dept. of Electrical and Computer Engineering ECE 120: Introduction to Computing Fixed- and Floating-Point Representations In Binary, We Have A Binary Point Let

### Errors in Computation

Theory of Errors Content Errors in computation Absolute Error Relative Error Roundoff Errors Truncation Errors Floating Point Numbers Normalized Floating Point Numbers Roundoff Error in Floating Point

### Chapter 1 & 2 Calculator Test Study Guide

Chapter 1 & 2 Calculator Test Study Guide Powers and Exponents 1) To put a number to the second power, simply hit the x 2 key, then enter. 2) To put a number to the third or a higher power, key in base,

### Lesson 9: Decimal Expansions of Fractions, Part 1

Classwork Opening Exercises 1 2 1. a. We know that the fraction can be written as a finite decimal because its denominator is a product of 2 s. Which power of 10 will allow us to easily write the fraction

### CHAPTER 5: Representing Numerical Data

CHAPTER 5: Representing Numerical Data The Architecture of Computer Hardware and Systems Software & Networking: An Information Technology Approach 4th Edition, Irv Englander John Wiley and Sons 2010 PowerPoint

### Medical Dosage Calculations

Medical Dosage Calculations Ninth Edition Chapter 1 Review of Arithmetic for Medical Dosage Calculations Learning Outcomes 1. Convert decimal numbers to fractions. 2. Convert fractions to decimal numbers.

### 1.3.B Significant Figures

1.3.B Significant Figures The Scientific Method starts with making observations = precise and accurate measurements 1.3.3. Significant Figures (Significant Digits) 1.3.4. Round Off Error Measurement and

### What is a Fraction? Fractions. One Way To Remember Numerator = North / 16. Example. What Fraction is Shaded? 9/16/16. Fraction = Part of a Whole

// Fractions Pages What is a Fraction? Fraction Part of a Whole Top Number? Bottom Number? Page Numerator tells how many parts you have Denominator tells how many parts are in the whole Note: the fraction

### ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design Lecture 11: Floating Point & Floating Point Addition Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Last time: Single Precision Format

### On a 64-bit CPU. Size/Range vary by CPU model and Word size.

On a 64-bit CPU. Size/Range vary by CPU model and Word size. unsigned short x; //range 0 to 65553 signed short x; //range ± 32767 short x; //assumed signed There are (usually) no unsigned floats or doubles.

### MATH LEVEL 2 LESSON PLAN 5 DECIMAL FRACTIONS Copyright Vinay Agarwala, Checked: 1/22/18

Section 1: The Decimal Number MATH LEVEL 2 LESSON PLAN 5 DECIMAL FRACTIONS 2018 Copyright Vinay Agarwala, Checked: 1/22/18 1. The word DECIMAL comes from a Latin word, which means "ten. The Decimal system

### To be able to count up and down in tenths

Progression Grid: Year Year 2 Year 3 Year Year Year 6 Counting in Fractional steps To be able to count in fractions up to 0, starting from any number and using the/2 and 2/ equivalence on the number line

### HOW TO DIVIDE: MCC6.NS.2 Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE

MCC6.NS. Fluently divide multi-digit numbers using the standard algorithm. WORD DEFINITION IN YOUR WORDS EXAMPLE Dividend A number that is divided by another number. Divisor A number by which another number

### 3.5 Floating Point: Overview

3.5 Floating Point: Overview Floating point (FP) numbers Scientific notation Decimal scientific notation Binary scientific notation IEEE 754 FP Standard Floating point representation inside a computer

### fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation

Floating Point Arithmetic fractional quantities are typically represented in computers using floating point format this approach is very much similar to scientific notation for example, fixed point number

### A. Incorrect! To simplify this expression you need to find the product of 7 and 4, not the sum.

Problem Solving Drill 05: Exponents and Radicals Question No. 1 of 10 Question 1. Simplify: 7u v 4u 3 v 6 Question #01 (A) 11u 5 v 7 (B) 8u 6 v 6 (C) 8u 5 v 7 (D) 8u 3 v 9 To simplify this expression you

### Converting Fractions to Decimals

Converting Fractions to Decimals There is a close relationship between fractions and decimals. In fact, fractions and decimals are just two different ways of writing numbers. For example, consider and

### 1.- DECIMAL PLACE VALUE: tenths, hundredths, thousandths. 1.1 Ordering decimals. 1.2 Rounding CALCULATIONS. 2.- ADDITION AND SUBTRACTION OF DECIMALS

1 1.- DECIMAL PLACE VALUE: tenths, hundredths, thousandths. 1.1 Ordering decimals. 1.2 Rounding CALCULATIONS. 2.- ADDITION AND SUBTRACTION OF DECIMALS 3.- MULTIPLICATION AND DIVISION. 3.1 Multiplication

### Content Design Structure, Scope & Sequence of Mathematics Content Addressed Within Numbers Up! Volcanic Panic

4-6 1-2 Number Range 1-5 Compares equivalent and non-equivalent sets by matching there are more bees than hives Uses ordinal language first to fifth 3-4 Number Range 1-10 Compares equivalent and non-equivalent

### EE 109 Unit 19. IEEE 754 Floating Point Representation Floating Point Arithmetic

1 EE 109 Unit 19 IEEE 754 Floating Point Representation Floating Point Arithmetic 2 Floating Point Used to represent very small numbers (fractions) and very large numbers Avogadro s Number: +6.0247 * 10

### Step 1 The number name given in the question is five and sixty-eight-hundredths. We know that

Answers (1) 5.68 The number name given in the question is five and sixty-eight-hundredths. We know that hundredths can be represented as 1. So, we can write five and sixty-eight-hundredths as 5 and 68

### Math Content

2013-2014 Math Content PATHWAY TO ALGEBRA I Hundreds and Tens Tens and Ones Comparing Whole Numbers Adding and Subtracting 10 and 100 Ten More, Ten Less Adding with Tens and Ones Subtracting with Tens

### Number Systems and Computer Arithmetic

Number Systems and Computer Arithmetic Counting to four billion two fingers at a time What do all those bits mean now? bits (011011011100010...01) instruction R-format I-format... integer data number text

### EXAMPLE 1. Change each of the following fractions into decimals.

CHAPTER 1. THE ARITHMETIC OF NUMBERS 1.4 Decimal Notation Every rational number can be expressed using decimal notation. To change a fraction into its decimal equivalent, divide the numerator of the fraction

### Abacus 5 and 6: Autumn term 1st half UNIT TOPIC ABACUS 5 UNITS ABACUS 6 UNITS 1 Place-value, ordering and rounding

Abacus 5 and 6: Autumn term 1st half 1 Place-value, ordering and rounding N2 Place-value To round any number up to 10 000 to the nearest ten, hundred or thousand N1 Place-value To rehearse rounding a number

### CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. 1 Part 1: Data Representation Our goal: revisit and re-establish fundamental of mathematics for the computer architecture course Overview: what are bits

### FLOATING POINT NUMBERS

FLOATING POINT NUMBERS Robert P. Webber, Longwood University We have seen how decimal fractions can be converted to binary. For instance, we can write 6.25 10 as 4 + 2 + ¼ = 2 2 + 2 1 + 2-2 = 1*2 2 + 1*2

### 50 MATHCOUNTS LECTURES (6) OPERATIONS WITH DECIMALS

BASIC KNOWLEDGE 1. Decimal representation: A decimal is used to represent a portion of whole. It contains three parts: an integer (which indicates the number of wholes), a decimal point (which separates

### Math 340 Fall 2014, Victor Matveev. Binary system, round-off errors, loss of significance, and double precision accuracy.

Math 340 Fall 2014, Victor Matveev Binary system, round-off errors, loss of significance, and double precision accuracy. 1. Bits and the binary number system A bit is one digit in a binary representation

### Computer Arithmetic Floating Point

Computer Arithmetic Floating Point Chapter 3.6 EEC7 FQ 25 About Floating Point Arithmetic Arithmetic basic operations on floating point numbers are: Add, Subtract, Multiply, Divide Transcendental operations

### Burnley Brow Year 5 Mathematics Overview

Burnley Brow Year 5 Mathematics Overview 2016-2017 Inspire Maths 5 Long-term Plan Unit title Key concepts 1 Whole Numbers (1) Numbers to 10 million Place and value Comparing numbers within 10 million Rounding

### Notes for Unit 1 Part A: Rational vs. Irrational

Notes for Unit 1 Part A: Rational vs. Irrational Natural Number: Whole Number: Integer: Rational Number: Irrational Number: Rational Numbers All are Real Numbers Integers Whole Numbers Irrational Numbers

### Section A Arithmetic ( 5) Exercise A

Section A Arithmetic In the non-calculator section of the examination there might be times when you need to work with quite awkward numbers quickly and accurately. In particular you must be very familiar

### Signed umbers. Sign/Magnitude otation

Signed umbers So far we have discussed unsigned number representations. In particular, we have looked at the binary number system and shorthand methods in representing binary codes. With m binary digits,

### 1.3 Floating Point Form

Section 1.3 Floating Point Form 29 1.3 Floating Point Form Floating point numbers are used by computers to approximate real numbers. On the surface, the question is a simple one. There are an infinite

### Floating Point. The World is Not Just Integers. Programming languages support numbers with fraction

1 Floating Point The World is Not Just Integers Programming languages support numbers with fraction Called floating-point numbers Examples: 3.14159265 (π) 2.71828 (e) 0.000000001 or 1.0 10 9 (seconds in

### ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design Lecture 10: Multiplication & Floating Point Representation Adapted from Computer Organization and Design, Patterson & Hennessy, UCB MIPS Division Two 32-bit registers

### Abacus 4 and 5: Autumn term 1st half UNIT TOPIC ABACUS 4 UNITS ABACUS 5 UNITS 1 Place value, ordering and rounding

Abacus 4 and 5: Autumn term 1st half 1 Place value, ordering and rounding Reading from scales Using a calculator N1 Place-value To partition a 4-digit number into thousands, hundreds, tens and units To

### Floating Point. EE 109 Unit 20. Floating Point Representation. Fixed Point

2.1 Floating Point 2.2 EE 19 Unit 2 IEEE 754 Floating Point Representation Floating Point Arithmetic Used to represent very numbers (fractions) and very numbers Avogadro s Number: +6.247 * 1 23 Planck

### A.4 Rationalizing the Denominator

A.4 Rationalizing the Denominator RATIONALIZING THE DENOMINATOR A.4 Rationalizing the Denominator If a radical expression contains an irrational denominator, such as,, or 0, then it is not considered to

### KNOWLEDGE OF NUMBER SENSE, CONCEPTS, AND OPERATIONS

DOMAIN I. COMPETENCY 1.0 MATHEMATICS KNOWLEDGE OF NUMBER SENSE, CONCEPTS, AND OPERATIONS Skill 1.1 Compare the relative value of real numbers (e.g., integers, fractions, decimals, percents, irrational

### Significant Figures. For example. Let s try this one. Introduction to Significant Figures & Scientific Notation

Significant Figures Introduction to Significant Figures & Scientific Notation Scientist use to determine how a measurement is. Significant digits in a measurement include all of the plus one. For example

### Kindergarten Math Priorities

Kindergarten Math Priorities o Count, read, write #1-20 o Compare whole numbers o Recognize words to 10 o Represent numbers using physical models o Represent number facts to 20 o Add o Count by 2 s, 10

### Introduction to Computer Systems Recitation 2 May 29, Marjorie Carlson Aditya Gupta Shailin Desai

Introduction to Computer Systems Recitation 2 May 29, 2014 Marjorie Carlson Aditya Gupta Shailin Desai 1 Agenda! Goal: translate any real number (plus some!) into and out of machine representation.! Integers!

### Learning Log Title: CHAPTER 3: ARITHMETIC PROPERTIES. Date: Lesson: Chapter 3: Arithmetic Properties

Chapter 3: Arithmetic Properties CHAPTER 3: ARITHMETIC PROPERTIES Date: Lesson: Learning Log Title: Date: Lesson: Learning Log Title: Chapter 3: Arithmetic Properties Date: Lesson: Learning Log Title:

### Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems

Number Systems Using and Converting Between Decimal, Binary, Octal and Hexadecimal Number Systems In everyday life, we humans most often count using decimal or base-10 numbers. In computer science, it

### National Curriculum Objectives Maths Number - number and place value

Number - number and place value count in multiples of 6, 7, 9, 25 and 1000 find 1000 more or less than a given number count backwards through zero to include negative numbers recognise the place value