Potentials and Limitations for Energy Efficiency Auto-Tuning

Size: px
Start display at page:

Download "Potentials and Limitations for Energy Efficiency Auto-Tuning"

Transcription

1 Center for Information Services and High Performance Computing (ZIH) Potentials and Limitations for Energy Efficiency Auto-Tuning Parco Symposium Application Autotuning for HPC (Architectures) Robert Schöne Andreas Knüpfer Daniel Molka

2 Outline Motivation Dynamic Voltage and Frequency Scaling Dynamic Concurrency Throttling x86_adapt Kernel Module and Prefetchers Adaption Library Evaluation Conclusion and Future Work Robert Schöne 2/24

3 Motivation Power consumption of HPC systems increases Models for energy efficient operation points available How do we use these models? Measure Performance Counters Sampling Instrumentation Performance analysis tools! Create profiles or traces Lack of the ability to change the hardware and software environment Energy efficiency optimization techniques have side effects Power optimization is worthless when runtime increases Robert Schöne 3/24

4 Performance Analysis Optimization Cycle Robert Schöne 4/24

5 Dynamic Voltage and Frequency Scaling DVFS Most common energy efficiency optimization P ~ V² * f Often applied when main memory bandwidth is bottleneck Assumptions: Reducing CPU voltage and frequency does not influence main memory performance Reducing CPU voltage and frequency reduces power consumption Frequency decisions can be written to sysfs, operating system changes hardware configuration libcpufreq provides interface to sysfs files (but libenopt is much nicer!) Robert Schöne 5/24

6 processor frequency Problems Frequency domains on processors Basic assumption is wrong Memory bandwidth depends on processor frequency Transition delay time between request and execution of frequency change In the order of microseconds time Robert Schöne 6/24

7 Problems Frequency domains on processors Basic assumption is wrong Memory bandwidth depends on processor frequency Transition delay time between request and execution of frequency change In the order of microseconds Westmere EP Processor Sandy Bridge EP Processor Robert Schöne, Daniel Hackenberg and Daniel Molka, Memory performance at reduced CPU clock speeds: an analysis of current x86_64 processors, in: Proceedings of the 2012 USENIX conference on Power-Aware Computing and Systems, Hollywood, CA, pages 9--9, USENIX Association, 2012 Robert Schöne 7/24

8 processor frequency Problems Frequency domains on processors Basic assumption is wrong Memory bandwidth depends on processor frequency Transition delay time between request and execution of frequency change In the order of tens of microseconds time Robert Schöne 8/24

9 processor frequency Problems Frequency domains on processors Basic assumption is wrong Memory bandwidth depends on processor frequency Transition delay time between request and execution of frequency change In the order of tens of microseconds time Robert Schöne 9/24

10 Dynamic Concurrency Throttling DCT Can be applied in thread parallel applications (OpenMP) If parallel regions do not scale with the number of threads, use less threads Software indicators: e.g. number of time spent in critical sections Hardware indicators: performance counters (false/true sharing, LLC-misses) Allows processor cores to go into idle states, which allows to clock gate or power gate the cores, saving energy Can also decrease runtime Robert Schöne 10/24

11 DCT Problems Caches are flushed Processor wakeup time can be high (depending on depth of idle state) OpenMP runtime defines behavior of idling threads Working sets are changed Example Thread active Parallel region ends: Threads go idle Caches are flushed Thread busy-wait New work: Wakeup cores/threads Reestablish cache set time Robert Schöne 11/24

12 DCT Problems Caches are flushed Processor wakeup time can be high (depending on depth of idle state) OpenMP runtime defines behavior of idling threads Working sets are changed Example Thread active Block time exceeded: Threads go idle Caches flushed Thread busy-wait New work: Wakeup threads Reestablish cache set time Robert Schöne 12/24

13 DCT Problems Caches are flushed Processor wakeup time can be high (depending on depth of idle state) OpenMP runtime defines behavior of idling threads Working sets are changed Example Thread active Thread busy-wait Change number of threads: Other working set for active threads Are unused threads idle? time Robert Schöne 13/24

14 Block Time Influence Block time prevents idle state Average power consumption 270 W Minimal power consumption 240 W Robert Schöne 14/24

15 Block Time Influence Reduced block time to 0 Average power consumption 225 W Minimal power consumption 170 W Robert Schöne 15/24

16 x86_adapt Kernel Module Provides interface for MSR and PCI based hardware configurations Establishes files per CPU/northbridge at /dev to change these configurations allows Linux file access permissions unlike msr kernel module it defines which parts of the MSRs can be accessed Provides additional files at /dev with the definition of available performance knobs E.g. prefetchers, loop predictors, Known knobs compiled to module, runtime checks which ones are available for current system Robert Schöne 16/24

17 Prefetcher Performance Evaluation Toggling overhead: 1115 cycles on SandyBridge EP Performance gain due to prefetchers depends on access stride /* on all cores do */ char * c = initialize(); for (i=0;i<n;i+=stride/16) /* load 16 bytes, starting at x[i] to XMM register */ movdqu(&(x[i])); Sandy Bridge EP DRAM-Bandwidth depending on Prefetcher Settings Robert Schöne 17/24

18 libadapt Uses configuration files which define adaptions Possible adaptions: Dynamic Voltage and Frequency Scaling Dynamic Concurrency Throttling x86_adapt Kernel Module Definitions for enter and exit of functions Can be linked to VampirTrace binary_0 : { name = "/home/user/my_app" ; function_0 : { # dct settings on the main thread # outside of a parallel region name = "my_function" ; # change number of threads before # entering the region dct_threads_before = 1; # reset it afterwards dct_threads_after = 0; }; function_1 : { # change non dct settings on all # threads name = "!$omp parallel@my_app.c:42" ; # change frequency before and after # entering the region dvfs_freq_before = ; dvfs_freq_after = ; # disabling prefetcher for this region adapt_amd_region_prefetch_disable_before =1; adapt_amd_region_prefetch_disable_after =0; }; }; Robert Schöne 18/24

19 Real World Evaluation Ivy Bridge HE system NAS Parallel Benchmarks (OpenMP) Except dc Sizes A, B, C OpenMP Wrapper library Run each benchmark at size B with instrumentation (wrapper+vt) Create performance profile, which contains runtime and performance metrics Based on the profile, create a configuration file with optimized DVFS settings for each parallel region Simple metric: Cache misses per second Run the benchmarks with different sizes and configurations Evaluate energy efficiency Robert Schöne 19/24

20 Evaluation Ivy Bridge HE DVFS Results Average energy saving: 6% Maximal energy saving: 23% With increasing problem size, overhead becomes less Sometimes significant increase of runtime Robert Schöne and Daniel Molka, Integrating performance analysis and energy efficiency optimizations in a unified environment (2013), in: Computer Science - Research and Development(1-9) Robert Schöne 20/24

21 Integrated Optimization Cycle Robert Schöne 21/24

22 Conclusion and Future Work Conclusion: Each optimization knob is difficult in its own way libadapt: allows DCT, DVFS and changing of hardware settings Extended performance measurement tool to include libadapt Future work: Establish optimization cycle MPI parallel optimization Sampling integration Integration in Score-P Robert Schöne 22/24

23 Acknowledgement: Cool Silicon Spitzencluster Funded via BMBF 13N10186 Robert Schöne 23/24

24 Thank you Questions? Robert Schöne 24/24

Detecting Memory-Boundedness with Hardware Performance Counters

Detecting Memory-Boundedness with Hardware Performance Counters Center for Information Services and High Performance Computing (ZIH) Detecting ory-boundedness with Hardware Performance Counters ICPE, Apr 24th 2017 (daniel.molka@tu-dresden.de) Robert Schöne (robert.schoene@tu-dresden.de)

More information

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System Center for Information ervices and High Performance Computing (ZIH) Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor ystem Parallel Architectures and Compiler Technologies

More information

Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-Core Systems

Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-Core Systems Powernightmares: The Challenge of Efficiently Using Sleep States on Multi-Core Systems Thomas Ilsche, Marcus Hähnel, Robert Schöne, Mario Bielert, and Daniel Hackenberg Technische Universität Dresden Observation

More information

Evaluating the Energy Consumption of OpenMP Applications on Haswell Processors

Evaluating the Energy Consumption of OpenMP Applications on Haswell Processors Evaluating the Energy Consumption of OpenMP Applications on Haswell Processors Bo Wang, Dirk Schmidl, and Matthias S. Müller IT Center, RWTH Aachen University, D - 5274 Aachen Chair for High Performance

More information

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks Center for Information Services and High Performance Computing (ZIH) Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks EnA-HPC, Sept 16 th 2010, Robert Schöne, Daniel Molka,

More information

POWER-AWARE SOFTWARE ON ARM. Paul Fox

POWER-AWARE SOFTWARE ON ARM. Paul Fox POWER-AWARE SOFTWARE ON ARM Paul Fox OUTLINE MOTIVATION LINUX POWER MANAGEMENT INTERFACES A UNIFIED POWER MANAGEMENT SYSTEM EXPERIMENTAL RESULTS AND FUTURE WORK 2 MOTIVATION MOTIVATION» ARM SoCs designed

More information

KNL tools. Dr. Fabio Baruffa

KNL tools. Dr. Fabio Baruffa KNL tools Dr. Fabio Baruffa fabio.baruffa@lrz.de 2 Which tool do I use? A roadmap to optimization We will focus on tools developed by Intel, available to users of the LRZ systems. Again, we will skip the

More information

Intel profiling tools and roofline model. Dr. Luigi Iapichino

Intel profiling tools and roofline model. Dr. Luigi Iapichino Intel profiling tools and roofline model Dr. Luigi Iapichino luigi.iapichino@lrz.de Which tool do I use in my project? A roadmap to optimization (and to the next hour) We will focus on tools developed

More information

Performance analysis tools: Intel VTuneTM Amplifier and Advisor. Dr. Luigi Iapichino

Performance analysis tools: Intel VTuneTM Amplifier and Advisor. Dr. Luigi Iapichino Performance analysis tools: Intel VTuneTM Amplifier and Advisor Dr. Luigi Iapichino luigi.iapichino@lrz.de Which tool do I use in my project? A roadmap to optimisation After having considered the MPI layer,

More information

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems

( ZIH ) Center for Information Services and High Performance Computing. Event Tracing and Visualization for Cell Broadband Engine Systems ( ZIH ) Center for Information Services and High Performance Computing Event Tracing and Visualization for Cell Broadband Engine Systems ( daniel.hackenberg@zih.tu-dresden.de ) Daniel Hackenberg Cell Broadband

More information

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM I5 AND I7 PROCESSORS Juan M. Cebrián 1 Lasse Natvig 1 Jan Christian Meyer 2 1 Depart. of Computer and Information

More information

Tracing and Visualization of Energy Related Metrics

Tracing and Visualization of Energy Related Metrics Tracing and Visualization of Energy Related Metrics 8th Workshop on High-Performance, Power-Aware Computing 2012, Shanghai Timo Minartz, Julian Kunkel, Thomas Ludwig timo.minartz@informatik.uni-hamburg.de

More information

Jackson Marusarz Intel Corporation

Jackson Marusarz Intel Corporation Jackson Marusarz Intel Corporation Intel VTune Amplifier Quick Introduction Get the Data You Need Hotspot (Statistical call tree), Call counts (Statistical) Thread Profiling Concurrency and Lock & Waits

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

Introduction to Performance Tuning & Optimization Tools

Introduction to Performance Tuning & Optimization Tools Introduction to Performance Tuning & Optimization Tools a[i] a[i+1] + a[i+2] a[i+3] b[i] b[i+1] b[i+2] b[i+3] = a[i]+b[i] a[i+1]+b[i+1] a[i+2]+b[i+2] a[i+3]+b[i+3] Ian A. Cosden, Ph.D. Manager, HPC Software

More information

VAMPIR & VAMPIRTRACE INTRODUCTION AND OVERVIEW

VAMPIR & VAMPIRTRACE INTRODUCTION AND OVERVIEW VAMPIR & VAMPIRTRACE INTRODUCTION AND OVERVIEW 8th VI-HPS Tuning Workshop at RWTH Aachen September, 2011 Tobias Hilbrich and Joachim Protze Slides by: Andreas Knüpfer, Jens Doleschal, ZIH, Technische Universität

More information

Analyzing Cache Bandwidth on the Intel Core 2 Architecture

Analyzing Cache Bandwidth on the Intel Core 2 Architecture John von Neumann Institute for Computing Analyzing Cache Bandwidth on the Intel Core 2 Architecture Robert Schöne, Wolfgang E. Nagel, Stefan Pflüger published in Parallel Computing: Architectures, Algorithms

More information

Interactive Performance Analysis with Vampir UCAR Software Engineering Assembly in Boulder/CO,

Interactive Performance Analysis with Vampir UCAR Software Engineering Assembly in Boulder/CO, Interactive Performance Analysis with Vampir UCAR Software Engineering Assembly in Boulder/CO, 2013-04-03 Andreas Knüpfer, Thomas William TU Dresden, Germany Overview Introduction Vampir displays GPGPU

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques

COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques Authors: Huazhe Zhang and Henry Hoffmann, Published: ASPLOS '16 Proceedings

More information

OpenMP at Sun. EWOMP 2000, Edinburgh September 14-15, 2000 Larry Meadows Sun Microsystems

OpenMP at Sun. EWOMP 2000, Edinburgh September 14-15, 2000 Larry Meadows Sun Microsystems OpenMP at Sun EWOMP 2000, Edinburgh September 14-15, 2000 Larry Meadows Sun Microsystems Outline Sun and Parallelism Implementation Compiler Runtime Performance Analyzer Collection of data Data analysis

More information

Energy Efficiency Tuning: READEX. Madhura Kumaraswamy Technische Universität München

Energy Efficiency Tuning: READEX. Madhura Kumaraswamy Technische Universität München Energy Efficiency Tuning: READEX Madhura Kumaraswamy Technische Universität München Project Overview READEX Starting date: 1. September 2015 Duration: 3 years Runtime Exploitation of Application Dynamism

More information

Introduction to Parallel Performance Engineering

Introduction to Parallel Performance Engineering Introduction to Parallel Performance Engineering Markus Geimer, Brian Wylie Jülich Supercomputing Centre (with content used with permission from tutorials by Bernd Mohr/JSC and Luiz DeRose/Cray) Performance:

More information

Toward Automated Application Profiling on Cray Systems

Toward Automated Application Profiling on Cray Systems Toward Automated Application Profiling on Cray Systems Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook NERSC at LBNL Samuel Williams CRD at LBNL I have a dream.. M.L.K. Collect performance data:

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

Scalable Critical Path Analysis for Hybrid MPI-CUDA Applications

Scalable Critical Path Analysis for Hybrid MPI-CUDA Applications Center for Information Services and High Performance Computing (ZIH) Scalable Critical Path Analysis for Hybrid MPI-CUDA Applications The Fourth International Workshop on Accelerators and Hybrid Exascale

More information

Resource-Conscious Scheduling for Energy Efficiency on Multicore Processors

Resource-Conscious Scheduling for Energy Efficiency on Multicore Processors Resource-Conscious Scheduling for Energy Efficiency on Andreas Merkel, Jan Stoess, Frank Bellosa System Architecture Group KIT The cooperation of Forschungszentrum Karlsruhe GmbH and Universität Karlsruhe

More information

Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems. Robert Grimm University of Washington

Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems. Robert Grimm University of Washington Separating Access Control Policy, Enforcement, and Functionality in Extensible Systems Robert Grimm University of Washington Extensions Added to running system Interact through low-latency interfaces Form

More information

Tracing the Cache Behavior of Data Structures in Fortran Applications

Tracing the Cache Behavior of Data Structures in Fortran Applications John von Neumann Institute for Computing Tracing the Cache Behavior of Data Structures in Fortran Applications L. Barabas, R. Müller-Pfefferkorn, W.E. Nagel, R. Neumann published in Parallel Computing:

More information

AutoTune Workshop. Michael Gerndt Technische Universität München

AutoTune Workshop. Michael Gerndt Technische Universität München AutoTune Workshop Michael Gerndt Technische Universität München AutoTune Project Automatic Online Tuning of HPC Applications High PERFORMANCE Computing HPC application developers Compute centers: Energy

More information

Profiling of Data-Parallel Processors

Profiling of Data-Parallel Processors Profiling of Data-Parallel Processors Daniel Kruck 09/02/2014 09/02/2014 Profiling Daniel Kruck 1 / 41 Outline 1 Motivation 2 Background - GPUs 3 Profiler NVIDIA Tools Lynx 4 Optimizations 5 Conclusion

More information

Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur. BenchIT. Project Overview

Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur. BenchIT. Project Overview Fakultät Informatik, Institut für Technische Informatik, Professur Rechnerarchitektur BenchIT Project Overview Nöthnitzer Straße 46 Raum INF 1041 Tel. +49 351-463 - 38458 (stefan.pflueger@tu-dresden.de)

More information

Static and Dynamic Frequency Scaling on Multicore CPUs

Static and Dynamic Frequency Scaling on Multicore CPUs Static and Dynamic Frequency Scaling on Multicore CPUs Wenlei Bao 1 Changwan Hong 1 Sudheer Chunduri 2 Sriram Krishnamoorthy 3 Louis-Noël Pouchet 4 Fabrice Rastello 5 P. Sadayappan 1 1 The Ohio State University

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Method-Level Phase Behavior in Java Workloads

Method-Level Phase Behavior in Java Workloads Method-Level Phase Behavior in Java Workloads Andy Georges, Dries Buytaert, Lieven Eeckhout and Koen De Bosschere Ghent University Presented by Bruno Dufour dufour@cs.rutgers.edu Rutgers University DCS

More information

Piecewise Holistic Autotuning of Compiler and Runtime Parameters

Piecewise Holistic Autotuning of Compiler and Runtime Parameters Piecewise Holistic Autotuning of Compiler and Runtime Parameters Mihail Popov, Chadi Akel, William Jalby, Pablo de Oliveira Castro University of Versailles Exascale Computing Research August 2016 C E R

More information

Profiling: Understand Your Application

Profiling: Understand Your Application Profiling: Understand Your Application Michal Merta michal.merta@vsb.cz 1st of March 2018 Agenda Hardware events based sampling Some fundamental bottlenecks Overview of profiling tools perf tools Intel

More information

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed Multicore Performance and Tools Part 1: Topology, affinity, clock speed Tools for Node-level Performance Engineering Gather Node Information hwloc, likwid-topology, likwid-powermeter Affinity control and

More information

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA

Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Performance Optimizations via Connect-IB and Dynamically Connected Transport Service for Maximum Performance on LS-DYNA Pak Lui, Gilad Shainer, Brian Klaff Mellanox Technologies Abstract From concept to

More information

Intel VTune Performance Analyzer 9.1 for Windows* In-Depth

Intel VTune Performance Analyzer 9.1 for Windows* In-Depth Intel VTune Performance Analyzer 9.1 for Windows* In-Depth Contents Deliver Faster Code...................................... 3 Optimize Multicore Performance...3 Highlights...............................................

More information

On the scalability of tracing mechanisms 1

On the scalability of tracing mechanisms 1 On the scalability of tracing mechanisms 1 Felix Freitag, Jordi Caubet, Jesus Labarta Departament d Arquitectura de Computadors (DAC) European Center for Parallelism of Barcelona (CEPBA) Universitat Politècnica

More information

Managing Hardware Power Saving Modes for High Performance Computing

Managing Hardware Power Saving Modes for High Performance Computing Managing Hardware Power Saving Modes for High Performance Computing Second International Green Computing Conference 2011, Orlando Timo Minartz, Michael Knobloch, Thomas Ludwig, Bernd Mohr timo.minartz@informatik.uni-hamburg.de

More information

Performance Analysis for Large Scale Simulation Codes with Periscope

Performance Analysis for Large Scale Simulation Codes with Periscope Performance Analysis for Large Scale Simulation Codes with Periscope M. Gerndt, Y. Oleynik, C. Pospiech, D. Gudu Technische Universität München IBM Deutschland GmbH May 2011 Outline Motivation Periscope

More information

Lecture #10 Context Switching & Performance Optimization

Lecture #10 Context Switching & Performance Optimization SPRING 2015 Integrated Technical Education Cluster At AlAmeeria E-626-A Real-Time Embedded Systems (RTES) Lecture #10 Context Switching & Performance Optimization Instructor: Dr. Ahmad El-Banna Agenda

More information

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads...

A common scenario... Most of us have probably been here. Where did my performance go? It disappeared into overheads... OPENMP PERFORMANCE 2 A common scenario... So I wrote my OpenMP program, and I checked it gave the right answers, so I ran some timing tests, and the speedup was, well, a bit disappointing really. Now what?.

More information

Performance analysis basics

Performance analysis basics Performance analysis basics Christian Iwainsky Iwainsky@rz.rwth-aachen.de 25.3.2010 1 Overview 1. Motivation 2. Performance analysis basics 3. Measurement Techniques 2 Why bother with performance analysis

More information

Automatic Tuning of HPC Applications with Periscope. Michael Gerndt, Michael Firbach, Isaias Compres Technische Universität München

Automatic Tuning of HPC Applications with Periscope. Michael Gerndt, Michael Firbach, Isaias Compres Technische Universität München Automatic Tuning of HPC Applications with Periscope Michael Gerndt, Michael Firbach, Isaias Compres Technische Universität München Agenda 15:00 15:30 Introduction to the Periscope Tuning Framework (PTF)

More information

VAMPIR & VAMPIRTRACE Hands On

VAMPIR & VAMPIRTRACE Hands On VAMPIR & VAMPIRTRACE Hands On PRACE Spring School 2012 in Krakow May, 2012 Holger Brunst Slides by: Andreas Knüpfer, Jens Doleschal, ZIH, Technische Universität Dresden Hands-on: NPB Build Copy NPB sources

More information

IX: A Protected Dataplane Operating System for High Throughput and Low Latency

IX: A Protected Dataplane Operating System for High Throughput and Low Latency IX: A Protected Dataplane Operating System for High Throughput and Low Latency Belay, A. et al. Proc. of the 11th USENIX Symp. on OSDI, pp. 49-65, 2014. Reviewed by Chun-Yu and Xinghao Li Summary In this

More information

Challenges in HPC I/O

Challenges in HPC I/O Challenges in HPC I/O Universität Basel Julian M. Kunkel German Climate Computing Center / Universität Hamburg 10. October 2014 Outline 1 High-Performance Computing 2 Parallel File Systems and Challenges

More information

Analyzing I/O Performance on a NEXTGenIO Class System

Analyzing I/O Performance on a NEXTGenIO Class System Analyzing I/O Performance on a NEXTGenIO Class System holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden LUG17, Indiana University, June 2 nd 2017 NEXTGenIO Fact Sheet Project Research & Innovation

More information

Scalasca performance properties The metrics tour

Scalasca performance properties The metrics tour Scalasca performance properties The metrics tour Markus Geimer m.geimer@fz-juelich.de Scalasca analysis result Generic metrics Generic metrics Time Total CPU allocation time Execution Overhead Visits Hardware

More information

Adaptive Power Profiling for Many-Core HPC Architectures

Adaptive Power Profiling for Many-Core HPC Architectures Adaptive Power Profiling for Many-Core HPC Architectures Jaimie Kelley, Christopher Stewart The Ohio State University Devesh Tiwari, Saurabh Gupta Oak Ridge National Laboratory State-of-the-Art Schedulers

More information

Leveraging Flash in HPC Systems

Leveraging Flash in HPC Systems Leveraging Flash in HPC Systems IEEE MSST June 3, 2015 This work was performed under the auspices of the U.S. Department of Energy by under Contract DE-AC52-07NA27344. Lawrence Livermore National Security,

More information

Performance Estimation of High Performance Computing Systems with Energy Efficient Ethernet Technology

Performance Estimation of High Performance Computing Systems with Energy Efficient Ethernet Technology Performance Estimation of High Performance Computing Systems with Energy Efficient Ethernet Technology Shinobu Miwa Sho Aita Hiroshi Nakamura The University of Tokyo {miwa, aita, nakamura}@hal.ipc.i.u-tokyo.ac.jp

More information

Performance Analysis of Parallel Scientific Applications In Eclipse

Performance Analysis of Parallel Scientific Applications In Eclipse Performance Analysis of Parallel Scientific Applications In Eclipse EclipseCon 2015 Wyatt Spear, University of Oregon wspear@cs.uoregon.edu Supercomputing Big systems solving big problems Performance gains

More information

Native Computing and Optimization. Hang Liu December 4 th, 2013

Native Computing and Optimization. Hang Liu December 4 th, 2013 Native Computing and Optimization Hang Liu December 4 th, 2013 Overview Why run native? What is a native application? Building a native application Running a native application Setting affinity and pinning

More information

A Case for High Performance Computing with Virtual Machines

A Case for High Performance Computing with Virtual Machines A Case for High Performance Computing with Virtual Machines Wei Huang*, Jiuxing Liu +, Bulent Abali +, and Dhabaleswar K. Panda* *The Ohio State University +IBM T. J. Waston Research Center Presentation

More information

Efficient Clustering and Scheduling for Task-Graph based Parallelization

Efficient Clustering and Scheduling for Task-Graph based Parallelization Center for Information Services and High Performance Computing TU Dresden Efficient Clustering and Scheduling for Task-Graph based Parallelization Marc Hartung 02. February 2015 E-Mail: marc.hartung@tu-dresden.de

More information

OpenACC Support in Score-P and Vampir

OpenACC Support in Score-P and Vampir Center for Information Services and High Performance Computing (ZIH) OpenACC Support in Score-P and Vampir Hands-On for the Taurus GPU Cluster February 2016 Robert Dietrich (robert.dietrich@tu-dresden.de)

More information

Portable Power/Performance Benchmarking and Analysis with WattProf

Portable Power/Performance Benchmarking and Analysis with WattProf Portable Power/Performance Benchmarking and Analysis with WattProf Amir Farzad, Boyana Norris University of Oregon Mohammad Rashti RNET Technologies, Inc. Motivation Energy efficiency is becoming increasingly

More information

Reducing Miss Penalty: Read Priority over Write on Miss. Improving Cache Performance. Non-blocking Caches to reduce stalls on misses

Reducing Miss Penalty: Read Priority over Write on Miss. Improving Cache Performance. Non-blocking Caches to reduce stalls on misses Improving Cache Performance 1. Reduce the miss rate, 2. Reduce the miss penalty, or 3. Reduce the time to hit in the. Reducing Miss Penalty: Read Priority over Write on Miss Write buffers may offer RAW

More information

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters

Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Designing Power-Aware Collective Communication Algorithms for InfiniBand Clusters Krishna Kandalla, Emilio P. Mancini, Sayantan Sur, and Dhabaleswar. K. Panda Department of Computer Science & Engineering,

More information

Multi-Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Usage

Multi-Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Usage Multi-Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Usage Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer University of Innsbruck, Institute

More information

XEEMU: An Improved XScale Power Simulator

XEEMU: An Improved XScale Power Simulator Department of Software Engineering (1), University of Szeged Department of Electrical Engineering (2), University of Kaiserslautern XEEMU: An Improved XScale Power Simulator Z. Herczeg(1), Á. Kiss (1),

More information

PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction

PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction PCERE: Fine-grained Parallel Benchmark Decomposition for Scalability Prediction Mihail Popov, Chadi kel, Florent Conti, William Jalby, Pablo de Oliveira Castro UVSQ - PRiSM - ECR Mai 28, 2015 Introduction

More information

OpenMP on the FDSM software distributed shared memory. Hiroya Matsuba Yutaka Ishikawa

OpenMP on the FDSM software distributed shared memory. Hiroya Matsuba Yutaka Ishikawa OpenMP on the FDSM software distributed shared memory Hiroya Matsuba Yutaka Ishikawa 1 2 Software DSM OpenMP programs usually run on the shared memory computers OpenMP programs work on the distributed

More information

Improving Virtual Machine Scheduling in NUMA Multicore Systems

Improving Virtual Machine Scheduling in NUMA Multicore Systems Improving Virtual Machine Scheduling in NUMA Multicore Systems Jia Rao, Xiaobo Zhou University of Colorado, Colorado Springs Kun Wang, Cheng-Zhong Xu Wayne State University http://cs.uccs.edu/~jrao/ Multicore

More information

Intel VTune Amplifier XE

Intel VTune Amplifier XE Intel VTune Amplifier XE Vladimir Tsymbal Performance, Analysis and Threading Lab 1 Agenda Intel VTune Amplifier XE Overview Features Data collectors Analysis types Key Concepts Collecting performance

More information

Energy Models for DVFS Processors

Energy Models for DVFS Processors Energy Models for DVFS Processors Thomas Rauber 1 Gudula Rünger 2 Michael Schwind 2 Haibin Xu 2 Simon Melzner 1 1) Universität Bayreuth 2) TU Chemnitz 9th Scheduling for Large Scale Systems Workshop July

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 7

ECE 571 Advanced Microprocessor-Based Design Lecture 7 ECE 571 Advanced Microprocessor-Based Design Lecture 7 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 9 February 2017 Announcements HW#4 will be posted, some readings 1 Measuring

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 16

ECE 571 Advanced Microprocessor-Based Design Lecture 16 ECE 571 Advanced Microprocessor-Based Design Lecture 16 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 21 March 2013 Project Reminder Topic Selection by Tuesday (March 26) Once

More information

Efficient Evaluation and Management of Temperature and Reliability for Multiprocessor Systems

Efficient Evaluation and Management of Temperature and Reliability for Multiprocessor Systems Efficient Evaluation and Management of Temperature and Reliability for Multiprocessor Systems Ayse K. Coskun Electrical and Computer Engineering Department Boston University http://people.bu.edu/acoskun

More information

READEX Runtime Exploitation of Application Dynamism for Energyefficient

READEX Runtime Exploitation of Application Dynamism for Energyefficient READEX Runtime Exploitation of Application Dynamism for Energyefficient exascale computing EnA-HPC @ ISC 17 Robert Schöne TUD Project Motivation Applications exhibit dynamic behaviour Changing resource

More information

A Cool Scheduler for Multi-Core Systems Exploiting Program Phases

A Cool Scheduler for Multi-Core Systems Exploiting Program Phases IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014 1061 A Cool Scheduler for Multi-Core Systems Exploiting Program Phases Zhiming Zhang and J. Morris Chang, Senior Member, IEEE Abstract Rapid growth

More information

COL862 Programming Assignment-1

COL862 Programming Assignment-1 Submitted By: Rajesh Kedia (214CSZ8383) COL862 Programming Assignment-1 Objective: Understand the power and energy behavior of various benchmarks on different types of x86 based systems. We explore a laptop,

More information

Do we need a crystal ball for task migration?

Do we need a crystal ball for task migration? Do we need a crystal ball for task migration? Brandon {Myers,Holt} University of Washington bdmyers@cs.washington.edu 1 Large data sets Data 2 Spread data Data.1 Data.2 Data.3 Data.4 Data.0 Data.1 Data.2

More information

Introduction to parallel Computing

Introduction to parallel Computing Introduction to parallel Computing VI-SEEM Training Paschalis Paschalis Korosoglou Korosoglou (pkoro@.gr) (pkoro@.gr) Outline Serial vs Parallel programming Hardware trends Why HPC matters HPC Concepts

More information

NEXTGenIO Performance Tools for In-Memory I/O

NEXTGenIO Performance Tools for In-Memory I/O NEXTGenIO Performance Tools for In- I/O holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden 22 nd -23 rd March 2017 Credits Intro slides by Adrian Jackson (EPCC) A new hierarchy New non-volatile

More information

How to Write Fast Numerical Code

How to Write Fast Numerical Code How to Write Fast Numerical Code Lecture: Performance Counters and applying the Roofline Model Slides and lecture by Georg Ofenbeck Instructor: Markus Püschel TA: Georg Ofenbeck & Daniele Spampinato Read

More information

Introduction to Energy-Efficient Software 2 nd life talk

Introduction to Energy-Efficient Software 2 nd life talk Introduction to Energy-Efficient Software 2 nd life talk Intel Software and Solutions Group Bob Steigerwald Nov 8, 2007 Taylor Kidd Nov 15, 2007 Agenda Demand for Mobile Computing Devices What is Energy-Efficient

More information

L41: Lab 2 - Kernel implications of IPC

L41: Lab 2 - Kernel implications of IPC L41: Lab 2 - Kernel implications of IPC Dr Robert N.M. Watson Michaelmas Term 2015 The goals of this lab are to: Continue to gain experience tracing user-kernel interactions via system calls Explore the

More information

Experimental Calibration and Validation of a Speed Scaling Simulator

Experimental Calibration and Validation of a Speed Scaling Simulator IEEE MASCOTS 2016 Experimental Calibration and Validation of a Speed Scaling Simulator Arsham Skrenes Carey Williamson Department of Computer Science University of Calgary Speed Scaling: Inherent Tradeoffs

More information

High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project

High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project OpenModelica Workshop 2015 High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project Linköping, 02/02/2015 HPC-OM www.hpc-om.de slide 2 Outline Outline 1. Parallelization Approaches

More information

VAMPIR & VAMPIRTRACE Hands On

VAMPIR & VAMPIRTRACE Hands On VAMPIR & VAMPIRTRACE Hands On 8th VI-HPS Tuning Workshop at RWTH Aachen September, 2011 Tobias Hilbrich and Joachim Protze Slides by: Andreas Knüpfer, Jens Doleschal, ZIH, Technische Universität Dresden

More information

FDS and Intel MPI. Verification Report. on the. FireNZE Linux IB Cluster

FDS and Intel MPI. Verification Report. on the. FireNZE Linux IB Cluster Consulting Fire Engineers 34 Satara Crescent Khandallah Wellington 6035 New Zealand FDS 6.7.0 and Intel MPI Verification Report on the FireNZE Linux IB Cluster Prepared by: FireNZE Dated: 11 August 2018

More information

Power and Energy Management. Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur

Power and Energy Management. Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur Power and Energy Management Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur etienne.lesueur@nicta.com.au Outline Introduction, Hardware mechanisms, Some interesting research, Linux,

More information

Power and Energy Management

Power and Energy Management Power and Energy Management Advanced Operating Systems, Semester 2, 2011, UNSW Etienne Le Sueur etienne.lesueur@nicta.com.au Outline Introduction, Hardware mechanisms, Some interesting research, Linux,

More information

Cache Memory and Performance

Cache Memory and Performance Cache Memory and Performance Cache Performance 1 Many of the following slides are taken with permission from Complete Powerpoint Lecture Notes for Computer Systems: A Programmer's Perspective (CS:APP)

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 24

ECE 571 Advanced Microprocessor-Based Design Lecture 24 ECE 571 Advanced Microprocessor-Based Design Lecture 24 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 25 April 2013 Project/HW Reminder Project Presentations. 15-20 minutes.

More information

ibench: Quantifying Interference in Datacenter Applications

ibench: Quantifying Interference in Datacenter Applications ibench: Quantifying Interference in Datacenter Applications Christina Delimitrou and Christos Kozyrakis Stanford University IISWC September 23 th 2013 Executive Summary Problem: Increasing utilization

More information

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications

Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Vertical Profiling: Understanding the Behavior of Object-Oriented Applications Matthias Hauswirth, Amer Diwan University of Colorado at Boulder Peter F. Sweeney, Michael Hind IBM Thomas J. Watson Research

More information

Principles in Computer Architecture I CSE 240A (Section ) CSE 240A Homework Three. November 18, 2008

Principles in Computer Architecture I CSE 240A (Section ) CSE 240A Homework Three. November 18, 2008 Principles in Computer Architecture I CSE 240A (Section 631684) CSE 240A Homework Three November 18, 2008 Only Problem Set Two will be graded. Turn in only Problem Set Two before December 4, 2008, 11:00am.

More information

Marching Memory マーチングメモリ. UCAS-6 6 > Stanford > Imperial > Verify 中村維男 Based on Patent Application by Tadao Nakamura and Michael J.

Marching Memory マーチングメモリ. UCAS-6 6 > Stanford > Imperial > Verify 中村維男 Based on Patent Application by Tadao Nakamura and Michael J. UCAS-6 6 > Stanford > Imperial > Verify 2011 Marching Memory マーチングメモリ Tadao Nakamura 中村維男 Based on Patent Application by Tadao Nakamura and Michael J. Flynn 1 Copyright 2010 Tadao Nakamura C-M-C Computer

More information

Best Practices for Setting BIOS Parameters for Performance

Best Practices for Setting BIOS Parameters for Performance White Paper Best Practices for Setting BIOS Parameters for Performance Cisco UCS E5-based M3 Servers May 2013 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 6

ECE 571 Advanced Microprocessor-Based Design Lecture 6 ECE 571 Advanced Microprocessor-Based Design Lecture 6 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 4 February 2016 HW#3 will be posted HW#1 was graded Announcements 1 First

More information

Measuring the impacts of the Preempt-RT patch

Measuring the impacts of the Preempt-RT patch Measuring the impacts of the Preempt-RT patch maxime.chevallier@smile.fr October 25, 2017 RT Linux projects Simulation platform : bi-xeon, lots ot RAM 200µs wakeup latency, networking Test bench : Intel

More information

Approaches to Performance Evaluation On Shared Memory and Cluster Architectures

Approaches to Performance Evaluation On Shared Memory and Cluster Architectures Approaches to Performance Evaluation On Shared Memory and Cluster Architectures Peter Strazdins (and the CC-NUMA Team), CC-NUMA Project, Department of Computer Science, The Australian National University

More information

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008

SHARCNET Workshop on Parallel Computing. Hugh Merz Laurentian University May 2008 SHARCNET Workshop on Parallel Computing Hugh Merz Laurentian University May 2008 What is Parallel Computing? A computational method that utilizes multiple processing elements to solve a problem in tandem

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information