Efficient Clustering and Scheduling for Task-Graph based Parallelization

Size: px
Start display at page:

Download "Efficient Clustering and Scheduling for Task-Graph based Parallelization"

Transcription

1 Center for Information Services and High Performance Computing TU Dresden Efficient Clustering and Scheduling for Task-Graph based Parallelization Marc Hartung 02. February

2 HPC-OM 2/23

3 Content 1 Motivation 2 Scheduling 3 TGSim - Framework 4 Results 3/23

4 Outline 1 Motivation 2 Scheduling 3 TGSim - Framework 4 Results 4/23

5 Motivation Achieve speed-up through parallel execution of the ODE-system s tasks OM-Simulation Start Values ODE-System Time Integration 5/23

6 Motivation Achieve speed-up through parallel execution of the ODE-system s tasks OM-Simulation Start Values ODE-System Time Integration Assigning tasks to more than one CPU reduces simulation time Improvement depends on model 5/23

7 Motivation Task Graph visualizes right-hand side evaluation Contains computation costs, dependencies and communication costs T1 70 T2 T T4 T5 0 TX strongly connected component computation costs dependency with communication costs 6/23

8 Motivation Task Graph visualizes right-hand side evaluation Contains computation costs, dependencies and communication costs T1 Core 1 Core 2 T2 T3 T T2 T3 50 T4 T T4 T5 TX strongly connected component 1 0 computation costs dependency with communication costs 6/23

9 Motivation Task Graph visualizes right-hand side evaluation Contains computation costs, dependencies and communication costs T1 Core 1 Core 2 T2 T3 T T2 T3 50 T4 T T4 T5 TX strongly connected component 1 0 computation costs dependency with communication costs Algorithms for task-to-core mapping and ordering are needed! 6/23

10 Motivation Task Graph based Parallelization + Heterogeneous data dependencies + Allows nested parallelism + Numerical stable + Universal parallel solution (in theory) 7/23

11 Motivation Task Graph based Parallelization + Heterogeneous data dependencies + Allows nested parallelism + Numerical stable + Universal parallel solution (in theory) Obstacles Compile time Parallel efficiency Model dependent 7/23

12 Outline 1 Motivation 2 Scheduling 3 TGSim - Framework 4 Results 8/23

13 Scheduling Scheduling is a NP-complete decision problem Many greedy algorithms available Complexity between O(n) and O(n 4 ) (n... number of tasks) 9/23

14 Scheduling Scheduling is a NP-complete decision problem Many greedy algorithms available Complexity between O(n) and O(n 4 ) (n... number of tasks) Low cost algorithms achieve usable solutions But: No speed up guaranty 9/23

15 Scheduling - Taxonomy /23

16 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

17 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

18 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

19 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

20 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

21 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

22 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

23 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) 11/23

24 Scheduling - ETF Earliest Time First - Algorithm List scheduler (for bounded number of processors) Checks every ready task for earliest start time Draws solved by highest bottom level Complexity: O(p n 2 ) (p... number of cores) Other list scheduler: LVL... Level Scheduler DLS... Dynamical Level Scheduling MCP... Modified Critical Path 11/23

25 Scheduling - Status Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel i7-3930k 6x 3.20 GHz, Linux Theoretical-Speed-Up Cpp-Runtime_Level_OpenMP speed-up 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 2,38 2,80 1,59 1, number of cores 12/23

26 Scheduling - Status Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel i7-3930k 6x 3.20 GHz, Linux Theoretical-Speed-Up Cpp-Runtime_Level_OpenMP speed-up 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00 2,38 2,80 1,59 1, number of cores Approach: Analyse scheduler and parallelization methods to close gaps 12/23

27 Outline 1 Motivation 2 Scheduling 3 TGSim - Framework 4 Results 13/23

28 TGSim-Framework Task Graph Simulation Framework Analyse and evaluate scheduling and clustering algorithms Benchmark different parallelization methods Parallel runtime prediction for OM simulations and other traceable programs 14/23

29 TGSim-Framework Task Graph Simulation Framework Analyse and evaluate scheduling and clustering algorithms Benchmark different parallelization methods Parallel runtime prediction for OM simulations and other traceable programs Implementation: Written in C++ using OOP Easy to expand and user-friendly Creates OM-simulation alike programs with low overhead tracing mechanisms ODE-tasks replaced by wait tasks to reduce unintended influences 14/23

30 TGSim workflow MOS Profiled CppRuntime-simulation creates GraphML-file TGSim uses GraphML-File as input OMC GraphML TGSim Scheduling Runtime Analysis Analytical evaluation of scheduled task graphs Execution of scheduled simulations to benchmark parallel methods Statistic 15/23

31 Outline 1 Motivation 2 Scheduling 3 TGSim - Framework 4 Results 16/23

32 Results - Outline 1 TGSim runtime simulation vs. OM-Cpp-Runtime simulation Comparable? 2 Compare parallelization methods Dynamic scheduling and static scheduling 3 Compare TGSim scheduler Scheduling algorithms: MCP, DLS, ETF, LVL 17/23

33 Results - TGSim vs. Cpp-Runtime Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP speed-up 3,00 2,50 2,00 1,50 1,00 0,50 0, number of cores 18/23

34 Results - TGSim vs. Cpp-Runtime Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP speed-up 3,00 2,50 2,00 1,50 1,00 0,50 0, number of cores TGSim simulates OM-simulation work flow very well 18/23

35 Results - TGSim vs. Cpp-Runtime Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux TGSim_Level_OpenMP Cpp-Runtime_Level_OpenMP speed-up 3,00 2,50 2,00 1,50 1,00 0,50 0, number of cores TGSim simulates OM-simulation work flow very well To simplify comparing, the OpenMP-OM-Cpp-Runtime results will be in every diagram 18/23

36 Results - Benchmark Dynamic Methods Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux TGSim_IntelTBB TGSim_OpenMP Cpp-Runtime_OpenMP speed-up 3,50 3,00 2,50 2,00 1,50 1,00 0,50 0, number of cores IntelTBB is comparable to OpenMP Small disadvantage: Initialization time of IntelTBB ist 3700µs and of OpenMP 4µs 19/23

37 Results - Benchmark Static Methods Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux 3,00 2,50 TGSim_Pthread TGSim_MPI Cpp-Runtime_OpenMP speed-up 2,00 1,50 1,00 0,50 0, number of cores PThread Performance in the first test cases better Static parallelization depends on scheduling 20/23

38 Results - Benchmark Scheduling Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux MCP DLS ETF LVL Cpp-Runtime speed-up number of cores 21/23

39 Results - Benchmark Scheduling Model: Modelica.Fluid.Examples.BranchingDynamicPipes System: Intel Xeon E x 2.90GHz, Linux speed-up MCP DLS ETF LVL Cpp-Runtime Theoretical_Speed-Up number of cores Proper scheduling leads to high improvements 21/23

40 Summary & Future Work Summary With increasing number of cores static scheduling performs better than dynamic Scheduler which consider communication costs comparable in performance and much better than other PThreads fastest parallelization method, OpenMP and IntelTBB comparable 22/23

41 Summary & Future Work Summary With increasing number of cores static scheduling performs better than dynamic Scheduler which consider communication costs comparable in performance and much better than other PThreads fastest parallelization method, OpenMP and IntelTBB comparable Future Work Extend HPCOM OpenModelica library including TGSim optimizations 22/23

42 Thank you for your attention. 23/23

43 Test Framework TGSim II MPI example 1 // core // task 1 4 wait ( costs1 ); 5 MPI \ _Isend ( data1,..., core2,...); 6 7 // task 2 8 wait ( costs2 ); 9 // task4 11 MPI \ _Irecv ( data3,..., core2,...); 12 wait ( costs4 ); 1 // core // task MPIIrecv ( data1,..., core1,...); wait ( costs3 ); 9 11 MPIsend ( data3,..., core1,...); 23/23

Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations

Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations Center for Information Services and High Performance Computing TU Dresden Design Approach for a Generic and Scalable Framework for Parallel FMU Simulations Martin Flehmig, Marc Hartung, Marcus Walther

More information

High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project

High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project OpenModelica Workshop 2015 High-Performance-Computing meets OpenModelica: Achievements in the HPC-OM Project Linköping, 02/02/2015 HPC-OM www.hpc-om.de slide 2 Outline Outline 1. Parallelization Approaches

More information

Task-Graph-Based Parallelization of Modelica-Simulations. Tutorial on the Usage of the HPCOM-Module

Task-Graph-Based Parallelization of Modelica-Simulations. Tutorial on the Usage of the HPCOM-Module Task-Graph-Based Parallelization of Modelica-Simulations Tutorial on the Usage of the HPCOM-Module 2 Introduction Prerequisites https://openmodelica.org/download/nightlybuildsdownload a multi-core cpu

More information

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks

Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks Center for Information Services and High Performance Computing (ZIH) Quantifying power consumption variations of HPC systems using SPEC MPI benchmarks EnA-HPC, Sept 16 th 2010, Robert Schöne, Daniel Molka,

More information

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work

Outline 1 Motivation 2 Theory of a non-blocking benchmark 3 The benchmark and results 4 Future work Using Non-blocking Operations in HPC to Reduce Execution Times David Buettner, Julian Kunkel, Thomas Ludwig Euro PVM/MPI September 8th, 2009 Outline 1 Motivation 2 Theory of a non-blocking benchmark 3

More information

MPI Profile (mpip) on IRS BenchMark Application

MPI Profile (mpip) on IRS BenchMark Application MPI Profile (mpip) on IRS BenchMark Application MPI with ZRAD8 -np=2 -np=6 -np=1 Call App% MPI% App% MPI% App% MPI% App% MPI% App% MPI% any.62 3.94.79 28.22 26.23 73. 1.72 1.67 1.46 6.28.12 1.1.24 8.44

More information

Introduction to Performance Tuning & Optimization Tools

Introduction to Performance Tuning & Optimization Tools Introduction to Performance Tuning & Optimization Tools a[i] a[i+1] + a[i+2] a[i+3] b[i] b[i+1] b[i+2] b[i+3] = a[i]+b[i] a[i+1]+b[i+1] a[i+2]+b[i+2] a[i+3]+b[i+3] Ian A. Cosden, Ph.D. Manager, HPC Software

More information

Parallel Systems. Project topics

Parallel Systems. Project topics Parallel Systems Project topics 2016-2017 1. Scheduling Scheduling is a common problem which however is NP-complete, so that we are never sure about the optimality of the solution. Parallelisation is a

More information

High Performance Computing Systems

High Performance Computing Systems High Performance Computing Systems Multikernels Doug Shook Multikernels Two predominant approaches to OS: Full weight kernel Lightweight kernel Why not both? How does implementation affect usage and performance?

More information

Runtime Function Instrumentation with EZTrace

Runtime Function Instrumentation with EZTrace Runtime Function Instrumentation with EZTrace Charles Aulagnon, Damien Martin-Guillerez, François Rué and François Trahay 5 th Workshop on Productivity and Performance (PROPER 2012) INTRODUCTION Modern

More information

Bei Wang, Dmitry Prohorov and Carlos Rosales

Bei Wang, Dmitry Prohorov and Carlos Rosales Bei Wang, Dmitry Prohorov and Carlos Rosales Aspects of Application Performance What are the Aspects of Performance Intel Hardware Features Omni-Path Architecture MCDRAM 3D XPoint Many-core Xeon Phi AVX-512

More information

A Characterization of Shared Data Access Patterns in UPC Programs

A Characterization of Shared Data Access Patterns in UPC Programs IBM T.J. Watson Research Center A Characterization of Shared Data Access Patterns in UPC Programs Christopher Barton, Calin Cascaval, Jose Nelson Amaral LCPC `06 November 2, 2006 Outline Motivation Overview

More information

Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes

Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes Agnieszka Debudaj-Grabysz 1 and Rolf Rabenseifner 2 1 Silesian University of Technology, Gliwice, Poland; 2 High-Performance Computing

More information

Potentials and Limitations for Energy Efficiency Auto-Tuning

Potentials and Limitations for Energy Efficiency Auto-Tuning Center for Information Services and High Performance Computing (ZIH) Potentials and Limitations for Energy Efficiency Auto-Tuning Parco Symposium Application Autotuning for HPC (Architectures) Robert Schöne

More information

High Performance Computing Implementation on a Risk Assessment Problem

High Performance Computing Implementation on a Risk Assessment Problem High Performance Computing Implementation on a Risk Assessment Problem Carlos A. Acosta 1 and Juan D. Ocampo 2 University of Texas at San Antonio, San Antonio, TX, 78249 Harry Millwater, Jr. 3 University

More information

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries.

Munara Tolubaeva Technical Consulting Engineer. 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. Munara Tolubaeva Technical Consulting Engineer 3D XPoint is a trademark of Intel Corporation in the U.S. and/or other countries. notices and disclaimers Intel technologies features and benefits depend

More information

CUDA GPGPU Workshop 2012

CUDA GPGPU Workshop 2012 CUDA GPGPU Workshop 2012 Parallel Programming: C thread, Open MP, and Open MPI Presenter: Nasrin Sultana Wichita State University 07/10/2012 Parallel Programming: Open MP, MPI, Open MPI & CUDA Outline

More information

OCTOPUS Performance Benchmark and Profiling. June 2015

OCTOPUS Performance Benchmark and Profiling. June 2015 OCTOPUS Performance Benchmark and Profiling June 2015 2 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the

More information

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory

Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Generating Efficient Data Movement Code for Heterogeneous Architectures with Distributed-Memory Roshan Dathathri Thejas Ramashekar Chandan Reddy Uday Bondhugula Department of Computer Science and Automation

More information

AutoTune Workshop. Michael Gerndt Technische Universität München

AutoTune Workshop. Michael Gerndt Technische Universität München AutoTune Workshop Michael Gerndt Technische Universität München AutoTune Project Automatic Online Tuning of HPC Applications High PERFORMANCE Computing HPC application developers Compute centers: Energy

More information

SSS: An Implementation of Key-value Store based MapReduce Framework. Hirotaka Ogawa (AIST, Japan) Hidemoto Nakada Ryousei Takano Tomohiro Kudoh

SSS: An Implementation of Key-value Store based MapReduce Framework. Hirotaka Ogawa (AIST, Japan) Hidemoto Nakada Ryousei Takano Tomohiro Kudoh SSS: An Implementation of Key-value Store based MapReduce Framework Hirotaka Ogawa (AIST, Japan) Hidemoto Nakada Ryousei Takano Tomohiro Kudoh MapReduce A promising programming tool for implementing largescale

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

Integrating Parallel Application Development with Performance Analysis in Periscope

Integrating Parallel Application Development with Performance Analysis in Periscope Technische Universität München Integrating Parallel Application Development with Performance Analysis in Periscope V. Petkov, M. Gerndt Technische Universität München 19 April 2010 Atlanta, GA, USA Motivation

More information

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok

Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Scheduling FFT Computation on SMP and Multicore Systems Ayaz Ali, Lennart Johnsson & Jaspal Subhlok Texas Learning and Computation Center Department of Computer Science University of Houston Outline Motivation

More information

Enabling Legacy Applications on Service Grids. Asvija B, C-DAC, Bangalore

Enabling Legacy Applications on Service Grids. Asvija B, C-DAC, Bangalore Enabling Legacy Applications on Service Grids Asvija B, C-DAC, 1 Legacy Applications Service enablement of existing legacy applications is difficult No source code available Proprietary code fragments

More information

Tuning Alya with READEX for Energy-Efficiency

Tuning Alya with READEX for Energy-Efficiency Tuning Alya with READEX for Energy-Efficiency Venkatesh Kannan 1, Ricard Borrell 2, Myles Doyle 1, Guillaume Houzeaux 2 1 Irish Centre for High-End Computing (ICHEC) 2 Barcelona Supercomputing Centre (BSC)

More information

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization

Duksu Kim. Professional Experience Senior researcher, KISTI High performance visualization Duksu Kim Assistant professor, KORATEHC Education Ph.D. Computer Science, KAIST Parallel Proximity Computation on Heterogeneous Computing Systems for Graphics Applications Professional Experience Senior

More information

Adaptive Power Profiling for Many-Core HPC Architectures

Adaptive Power Profiling for Many-Core HPC Architectures Adaptive Power Profiling for Many-Core HPC Architectures Jaimie Kelley, Christopher Stewart The Ohio State University Devesh Tiwari, Saurabh Gupta Oak Ridge National Laboratory State-of-the-Art Schedulers

More information

Introduction to parallel Computing

Introduction to parallel Computing Introduction to parallel Computing VI-SEEM Training Paschalis Paschalis Korosoglou Korosoglou (pkoro@.gr) (pkoro@.gr) Outline Serial vs Parallel programming Hardware trends Why HPC matters HPC Concepts

More information

GROMACS Performance Benchmark and Profiling. August 2011

GROMACS Performance Benchmark and Profiling. August 2011 GROMACS Performance Benchmark and Profiling August 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters

Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters Junaid Nomani and Jakub Szefer Computer Architecture and Security Laboratory Yale University junaid.nomani@yale.edu

More information

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan & Matt Larsen (University of Oregon), Hank Childs (Lawrence Berkeley National Laboratory) 26

More information

Simulation using MIC co-processor on Helios

Simulation using MIC co-processor on Helios Simulation using MIC co-processor on Helios Serhiy Mochalskyy, Roman Hatzky PRACE PATC Course: Intel MIC Programming Workshop High Level Support Team Max-Planck-Institut für Plasmaphysik Boltzmannstr.

More information

Down selecting suitable manycore technologies for the ELT AO RTC. David Barr, Alastair Basden, Nigel Dipper and Noah Schwartz

Down selecting suitable manycore technologies for the ELT AO RTC. David Barr, Alastair Basden, Nigel Dipper and Noah Schwartz Down selecting suitable manycore technologies for the ELT AO RTC David Barr, Alastair Basden, Nigel Dipper and Noah Schwartz GFLOPS RTC for AO workshop 27/01/2016 AO RTC Complexity 1.E+05 1.E+04 E-ELT

More information

Performance Tools for Technical Computing

Performance Tools for Technical Computing Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University Intel Software Conference 2010 April 13th, Barcelona, Spain Agenda o Motivation and Methodology

More information

Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems

Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems V Brazilian Symposium on Computing Systems Engineering Applying Multi-Core Model Checking to Hardware-Software Partitioning in Embedded Systems Alessandro Trindade, Hussama Ismail, and Lucas Cordeiro Foz

More information

April 2 nd, Bob Burroughs Director, HPC Solution Sales

April 2 nd, Bob Burroughs Director, HPC Solution Sales April 2 nd, 2019 Bob Burroughs Director, HPC Solution Sales Today - Introducing 2 nd Generation Intel Xeon Scalable Processors how Intel Speeds HPC performance Work Time System Peak Efficiency Software

More information

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP**

CMAQ PARALLEL PERFORMANCE WITH MPI AND OPENMP** CMAQ 5.2.1 PARALLEL PERFORMANCE WITH MPI AND OPENMP** George Delic* HiPERiSM Consulting, LLC, P.O. Box 569, Chapel Hill, NC 27514, USA 1. INTRODUCTION This presentation reports on implementation of the

More information

Toward Automated Application Profiling on Cray Systems

Toward Automated Application Profiling on Cray Systems Toward Automated Application Profiling on Cray Systems Charlene Yang, Brian Friesen, Thorsten Kurth, Brandon Cook NERSC at LBNL Samuel Williams CRD at LBNL I have a dream.. M.L.K. Collect performance data:

More information

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System

Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor System Center for Information ervices and High Performance Computing (ZIH) Memory Performance and Cache Coherency Effects on an Intel Nehalem Multiprocessor ystem Parallel Architectures and Compiler Technologies

More information

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters

PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters PLB-HeC: A Profile-based Load-Balancing Algorithm for Heterogeneous CPU-GPU Clusters IEEE CLUSTER 2015 Chicago, IL, USA Luis Sant Ana 1, Daniel Cordeiro 2, Raphael Camargo 1 1 Federal University of ABC,

More information

IBM High Performance Computing Toolkit

IBM High Performance Computing Toolkit IBM High Performance Computing Toolkit Pidad D'Souza (pidsouza@in.ibm.com) IBM, India Software Labs Top 500 : Application areas (November 2011) Systems Performance Source : http://www.top500.org/charts/list/34/apparea

More information

HPC Tools on Windows. Christian Terboven Center for Computing and Communication RWTH Aachen University.

HPC Tools on Windows. Christian Terboven Center for Computing and Communication RWTH Aachen University. - Excerpt - Christian Terboven terboven@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University PPCES March 25th, RWTH Aachen University Agenda o Intel Trace Analyzer and Collector

More information

Agenda. Optimization Notice Copyright 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda. Optimization Notice Copyright 2017, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Agenda VTune Amplifier XE OpenMP* Analysis: answering on customers questions about performance in the same language a program was written in Concepts, metrics and technology inside VTune Amplifier XE OpenMP

More information

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula, Antonia Zhai, Pen-Chung Yew Department of Computer Science & Engineering University of Minnesota

Shengyue Wang, Xiaoru Dai, Kiran S. Yellajyosula, Antonia Zhai, Pen-Chung Yew Department of Computer Science & Engineering University of Minnesota Loop Selection for Thread-Level Speculation, Xiaoru Dai, Kiran S. Yellajyosula, Antonia Zhai, Pen-Chung Yew Department of Computer Science & Engineering University of Minnesota Chip Multiprocessors (CMPs)

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

HPC code modernization with Intel development tools

HPC code modernization with Intel development tools HPC code modernization with Intel development tools Bayncore, Ltd. Intel HPC Software Workshop Series 2016 HPC Code Modernization for Intel Xeon and Xeon Phi February 17 th 2016, Barcelona Microprocessor

More information

VIProf: A Vertically Integrated Full-System Profiler

VIProf: A Vertically Integrated Full-System Profiler VIProf: A Vertically Integrated Full-System Profiler NGS Workshop, April 2007 Hussam Mousa Chandra Krintz Lamia Youseff Rich Wolski RACELab Research Dynamic software adaptation As program behavior or resource

More information

Dynamic Load Balancing in Parallelization of Equation-based Models

Dynamic Load Balancing in Parallelization of Equation-based Models Dynamic Load Balancing in Parallelization of Equation-based Models Mahder Gebremedhin Programing Environments Laboratory (PELAB), IDA Linköping University mahder.gebremedhin@liu.se Annual OpenModelica

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

Intel Parallel Studio XE 2015

Intel Parallel Studio XE 2015 2015 Create faster code faster with this comprehensive parallel software development suite. Faster code: Boost applications performance that scales on today s and next-gen processors Create code faster:

More information

xsim The Extreme-Scale Simulator

xsim The Extreme-Scale Simulator www.bsc.es xsim The Extreme-Scale Simulator Janko Strassburg Severo Ochoa Seminar @ BSC, 28 Feb 2014 Motivation Future exascale systems are predicted to have hundreds of thousands of nodes, thousands of

More information

RIGHTNOW A C E

RIGHTNOW A C E RIGHTNOW A C E 2 0 1 4 2014 Aras 1 A C E 2 0 1 4 Scalability Test Projects Understanding the results 2014 Aras Overview Original Use Case Scalability vs Performance Scale to? Scaling the Database Server

More information

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace

Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace Determining Optimal MPI Process Placement for Large- Scale Meteorology Simulations with SGI MPIplace James Southern, Jim Tuccillo SGI 25 October 2016 0 Motivation Trend in HPC continues to be towards more

More information

Introduction Attributed Graphs Rule Specification Implementation Conclusion. AGG and PROGRES. Bernhard Scholz. 27th January 2006.

Introduction Attributed Graphs Rule Specification Implementation Conclusion. AGG and PROGRES. Bernhard Scholz. 27th January 2006. AGG and PROGRES 27th January 2006 AGG and PROGRES 1 Motivation AGG Attributed Graph Grammar System TU Berlin PROGRES PROgrammed Graph REwriting Systems RTWH Aachen How do these systems work? Graph model

More information

Improved Event Generation at NLO and NNLO. or Extending MCFM to include NNLO processes

Improved Event Generation at NLO and NNLO. or Extending MCFM to include NNLO processes Improved Event Generation at NLO and NNLO or Extending MCFM to include NNLO processes W. Giele, RadCor 2015 NNLO in MCFM: Jettiness approach: Using already well tested NLO MCFM as the double real and virtual-real

More information

Scalasca support for Intel Xeon Phi. Brian Wylie & Wolfgang Frings Jülich Supercomputing Centre Forschungszentrum Jülich, Germany

Scalasca support for Intel Xeon Phi. Brian Wylie & Wolfgang Frings Jülich Supercomputing Centre Forschungszentrum Jülich, Germany Scalasca support for Intel Xeon Phi Brian Wylie & Wolfgang Frings Jülich Supercomputing Centre Forschungszentrum Jülich, Germany Overview Scalasca performance analysis toolset support for MPI & OpenMP

More information

An Introduction to Balder An OpenMP Run-time Library for Clusters of SMPs

An Introduction to Balder An OpenMP Run-time Library for Clusters of SMPs An Introduction to Balder An Run-time Library for Clusters of SMPs Sven Karlsson Department of Microelectronics and Information Technology, KTH, Sweden Institute of Computer Science (ICS), Foundation for

More information

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance

LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance 11 th International LS-DYNA Users Conference Computing Technology LS-DYNA Best-Practices: Networking, MPI and Parallel File System Effect on LS-DYNA Performance Gilad Shainer 1, Tong Liu 2, Jeff Layton

More information

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far.

ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Midterm Exam Reviews ALL the assignments (A1, A2, A3) and Projects (P0, P1, P2) we have done so far. Particular attentions on the following: System call, system kernel Thread/process, thread vs process

More information

FUJITSU PHI Turnkey Solution

FUJITSU PHI Turnkey Solution FUJITSU PHI Turnkey Solution Integrated ready to use XEON-PHI based platform Dr. Pierre Lagier ISC2014 - Leipzig PHI Turnkey Solution challenges System performance challenges Parallel IO best architecture

More information

Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters ANSYS, Inc. All rights reserved. 1 ANSYS, Inc.

Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Computer Aided Engineering with Today's Multicore, InfiniBand-Based Clusters 2006 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Our Business Simulation Driven Product Development Deliver superior

More information

SPEC MPI2007 Benchmarks for HPC Systems

SPEC MPI2007 Benchmarks for HPC Systems SPEC MPI2007 Benchmarks for HPC Systems Ron Lieberman Chair, SPEC HPG HP-MPI Performance Hewlett-Packard Company Dr. Tom Elken Manager, Performance Engineering QLogic Corporation Dr William Brantley Manager

More information

Shifter: Fast and consistent HPC workflows using containers

Shifter: Fast and consistent HPC workflows using containers Shifter: Fast and consistent HPC workflows using containers CUG 2017, Redmond, Washington Lucas Benedicic, Felipe A. Cruz, Thomas C. Schulthess - CSCS May 11, 2017 Outline 1. Overview 2. Docker 3. Shifter

More information

AUTOMATIC SMT THREADING

AUTOMATIC SMT THREADING AUTOMATIC SMT THREADING FOR OPENMP APPLICATIONS ON THE INTEL XEON PHI CO-PROCESSOR WIM HEIRMAN 1,2 TREVOR E. CARLSON 1 KENZO VAN CRAEYNEST 1 IBRAHIM HUR 2 AAMER JALEEL 2 LIEVEN EECKHOUT 1 1 GHENT UNIVERSITY

More information

E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems

E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems E-Store: Fine-Grained Elastic Partitioning for Distributed Transaction Processing Systems Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore, Ashraf Aboulnaga, Andrew Pavlo, Michael

More information

Intel Distribution for Python* и Intel Performance Libraries

Intel Distribution for Python* и Intel Performance Libraries Intel Distribution for Python* и Intel Performance Libraries 1 Motivation * L.Prechelt, An empirical comparison of seven programming languages, IEEE Computer, 2000, Vol. 33, Issue 10, pp. 23-29 ** RedMonk

More information

First Experiences with Intel Cluster OpenMP

First Experiences with Intel Cluster OpenMP First Experiences with Intel Christian Terboven, Dieter an Mey, Dirk Schmidl, Marcus Wagner surname@rz.rwth aachen.de Center for Computing and Communication RWTH Aachen University, Germany IWOMP 2008 May

More information

Evaluating selected cluster file systems with Parabench

Evaluating selected cluster file systems with Parabench Evaluating selected cluster file systems with Parabench Internship report Authors: Marcel Krause; Jens Schlager, B.A. Tutors: Olga Mordvinova, Julian M. Kunkel Winter term 2009 2010 Overview Test Scenarios

More information

Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling

Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling RTAS 13 April 10, 2013 Björn B. bbb@mpi-sws.org Semaphores + P-FP Scheduling Used in practice: VxWorks, QNX, ThreadX,

More information

Typical Bugs in parallel Programs

Typical Bugs in parallel Programs Center for Information Services and High Performance Computing (ZIH) Typical Bugs in parallel Programs Parallel Programming Course, Dresden, 8.- 12. February 2016 Joachim Protze (protze@rz.rwth-aachen.de)

More information

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS

ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS ACCELERATING THE PRODUCTION OF SYNTHETIC SEISMOGRAMS BY A MULTICORE PROCESSOR CLUSTER WITH MULTIPLE GPUS Ferdinando Alessi Annalisa Massini Roberto Basili INGV Introduction The simulation of wave propagation

More information

HPC In The Cloud? Michael Kleber. July 2, Department of Computer Sciences University of Salzburg, Austria

HPC In The Cloud? Michael Kleber. July 2, Department of Computer Sciences University of Salzburg, Austria HPC In The Cloud? Michael Kleber Department of Computer Sciences University of Salzburg, Austria July 2, 2012 Content 1 2 3 MUSCLE NASA 4 5 Motivation wide spread availability of cloud services easy access

More information

Benchmark runs of pcmalib on Nehalem and Shanghai nodes

Benchmark runs of pcmalib on Nehalem and Shanghai nodes MOSAIC group Institute of Theoretical Computer Science Department of Computer Science Benchmark runs of pcmalib on Nehalem and Shanghai nodes Christian Lorenz Müller, April 9 Addresses: Institute for Theoretical

More information

Portable Power/Performance Benchmarking and Analysis with WattProf

Portable Power/Performance Benchmarking and Analysis with WattProf Portable Power/Performance Benchmarking and Analysis with WattProf Amir Farzad, Boyana Norris University of Oregon Mohammad Rashti RNET Technologies, Inc. Motivation Energy efficiency is becoming increasingly

More information

Dirk Tetzlaff Technical University of Berlin

Dirk Tetzlaff Technical University of Berlin Software Engineering g for Embedded Systems Intelligent Task Mapping for MPSoCs using Machine Learning Dirk Tetzlaff Technical University of Berlin 3rd Workshop on Mapping of Applications to MPSoCs June

More information

Analyzing Cache Bandwidth on the Intel Core 2 Architecture

Analyzing Cache Bandwidth on the Intel Core 2 Architecture John von Neumann Institute for Computing Analyzing Cache Bandwidth on the Intel Core 2 Architecture Robert Schöne, Wolfgang E. Nagel, Stefan Pflüger published in Parallel Computing: Architectures, Algorithms

More information

The Optimal CPU and Interconnect for an HPC Cluster

The Optimal CPU and Interconnect for an HPC Cluster 5. LS-DYNA Anwenderforum, Ulm 2006 Cluster / High Performance Computing I The Optimal CPU and Interconnect for an HPC Cluster Andreas Koch Transtec AG, Tübingen, Deutschland F - I - 15 Cluster / High Performance

More information

Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments

Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments Tomas Karnagel, Dirk Habich, Wolfgang Lehner Database Technology Group Technische Universität Dresden Dresden,

More information

ELP. Effektive Laufzeitunterstützung für zukünftige Programmierstandards. Speaker: Tim Cramer, RWTH Aachen University

ELP. Effektive Laufzeitunterstützung für zukünftige Programmierstandards. Speaker: Tim Cramer, RWTH Aachen University ELP Effektive Laufzeitunterstützung für zukünftige Programmierstandards Agenda ELP Project Goals ELP Achievements Remaining Steps ELP Project Goals Goals of ELP: Improve programmer productivity By influencing

More information

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends

Outline. Motivation Parallel k-means Clustering Intel Computing Architectures Baseline Performance Performance Optimizations Future Trends Collaborators: Richard T. Mills, Argonne National Laboratory Sarat Sreepathi, Oak Ridge National Laboratory Forrest M. Hoffman, Oak Ridge National Laboratory Jitendra Kumar, Oak Ridge National Laboratory

More information

High-performance aspects in virtualized infrastructures

High-performance aspects in virtualized infrastructures SVM 21 High-performance aspects in virtualized infrastructures Vitalian Danciu, Nils gentschen Felde, Dieter Kranzlmüller, Tobias Lindinger SVM 21 - HPC aspects in virtualized infrastructures 1/29/21 Niagara

More information

Resource and Performance Distribution Prediction for Large Scale Analytics Queries

Resource and Performance Distribution Prediction for Large Scale Analytics Queries Resource and Performance Distribution Prediction for Large Scale Analytics Queries Prof. Rajiv Ranjan, SMIEEE School of Computing Science, Newcastle University, UK Visiting Scientist, Data61, CSIRO, Australia

More information

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc.

ET International HPC Runtime Software. ET International Rishi Khan SC 11. Copyright 2011 ET International, Inc. HPC Runtime Software Rishi Khan SC 11 Current Programming Models Shared Memory Multiprocessing OpenMP fork/join model Pthreads Arbitrary SMP parallelism (but hard to program/ debug) Cilk Work Stealing

More information

Using Intel VTune Amplifier XE for High Performance Computing

Using Intel VTune Amplifier XE for High Performance Computing Using Intel VTune Amplifier XE for High Performance Computing Vladimir Tsymbal Performance, Analysis and Threading Lab 1 The Majority of all HPC-Systems are Clusters Interconnect I/O I/O... I/O I/O Message

More information

Introducing OTF / Vampir / VampirTrace

Introducing OTF / Vampir / VampirTrace Center for Information Services and High Performance Computing (ZIH) Introducing OTF / Vampir / VampirTrace Zellescher Weg 12 Willers-Bau A115 Tel. +49 351-463 - 34049 (Robert.Henschel@zih.tu-dresden.de)

More information

PARALLEL ID3. Jeremy Dominijanni CSE633, Dr. Russ Miller

PARALLEL ID3. Jeremy Dominijanni CSE633, Dr. Russ Miller PARALLEL ID3 Jeremy Dominijanni CSE633, Dr. Russ Miller 1 ID3 and the Sequential Case 2 ID3 Decision tree classifier Works on k-ary categorical data Goal of ID3 is to maximize information gain at each

More information

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries

Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Oncilla - a Managed GAS Runtime for Accelerating Data Warehousing Queries Jeffrey Young, Alex Merritt, Se Hoon Shon Advisor: Sudhakar Yalamanchili 4/16/13 Sponsors: Intel, NVIDIA, NSF 2 The Problem Big

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Shared memory parallel algorithms in Scotch 6

Shared memory parallel algorithms in Scotch 6 Shared memory parallel algorithms in Scotch 6 François Pellegrini EQUIPE PROJET BACCHUS Bordeaux Sud-Ouest 29/05/2012 Outline of the talk Context Why shared-memory parallelism in Scotch? How to implement

More information

I/O Profiling Towards the Exascale

I/O Profiling Towards the Exascale I/O Profiling Towards the Exascale holger.brunst@tu-dresden.de ZIH, Technische Universität Dresden NEXTGenIO & SAGE: Working towards Exascale I/O Barcelona, NEXTGenIO facts Project Research & Innovation

More information

Obfuscating Transformations. What is Obfuscator? Obfuscation Library. Obfuscation vs. Deobfuscation. Summary

Obfuscating Transformations. What is Obfuscator? Obfuscation Library. Obfuscation vs. Deobfuscation. Summary ? Obfuscating Outline? 1? 2 of Obfuscating 3 Motivation: Java Virtual Machine? difference between Java and others? Most programming languages: Java: Source Code Machine Code Predefined Architecture Java

More information

Parallel Computer Architecture and Programming Final Project

Parallel Computer Architecture and Programming Final Project Muhammad Hilman Beyri (mbeyri), Zixu Ding (zixud) Parallel Computer Architecture and Programming Final Project Summary We have developed a distributed interactive ray tracing application in OpenMP and

More information

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI

OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI CMPE 655- MULTIPLE PROCESSOR SYSTEMS OVERHEADS ENHANCEMENT IN MUTIPLE PROCESSING SYSTEMS BY ANURAG REDDY GANKAT KARTHIK REDDY AKKATI What is MULTI PROCESSING?? Multiprocessing is the coordinated processing

More information

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications

A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications A2E: Adaptively Aggressive Energy Efficient DVFS Scheduling for Data Intensive Applications Li Tan 1, Zizhong Chen 1, Ziliang Zong 2, Rong Ge 3, and Dong Li 4 1 University of California, Riverside 2 Texas

More information

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec

PROGRAMOVÁNÍ V C++ CVIČENÍ. Michal Brabec PROGRAMOVÁNÍ V C++ CVIČENÍ Michal Brabec PARALLELISM CATEGORIES CPU? SSE Multiprocessor SIMT - GPU 2 / 17 PARALLELISM V C++ Weak support in the language itself, powerful libraries Many different parallelization

More information

Case study: OpenMP-parallel sparse matrix-vector multiplication

Case study: OpenMP-parallel sparse matrix-vector multiplication Case study: OpenMP-parallel sparse matrix-vector multiplication A simple (but sometimes not-so-simple) example for bandwidth-bound code and saturation effects in memory Sparse matrix-vector multiply (spmvm)

More information

OpenStaPLE, an OpenACC Lattice QCD Application

OpenStaPLE, an OpenACC Lattice QCD Application OpenStaPLE, an OpenACC Lattice QCD Application Enrico Calore Postdoctoral Researcher Università degli Studi di Ferrara INFN Ferrara Italy GTC Europe, October 10 th, 2018 E. Calore (Univ. and INFN Ferrara)

More information

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison

Revisiting the Past 25 Years: Lessons for the Future. Guri Sohi University of Wisconsin-Madison Revisiting the Past 25 Years: Lessons for the Future Guri Sohi University of Wisconsin-Madison Outline VLIW OOO Superscalar Enhancing Superscalar And the future 2 Beyond pipelining to ILP Late 1980s to

More information

Introduction to MPI. May 20, Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign

Introduction to MPI. May 20, Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign Introduction to MPI May 20, 2013 Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign Top500.org PERFORMANCE DEVELOPMENT 1 Eflop/s 162 Pflop/s PROJECTED 100 Pflop/s

More information