Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)

Size: px
Start display at page:

Download "Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI)"

Transcription

1 Horizon 2020 & MIC funded SAFARI Project Scalable and Flexible optical Architecture for Reconfigurable Infrastructure Horizon 2020 EU Japan coordinated R&D project on Scalable And Flexible optical Architecture for Reconfigurable Infrastructure (SAFARI) 6 Oct, 2016 NTT Network Innovation Laboratories Yutaka Miyamoto

2 Overview and Target of SAFARI Project Scalable and Flexible optical Architecture for Reconfigurable Infrastructure (Oct.1, 2014 Sep. 30 th, 2017) Realization of various programmable technology (modulation formats, subcarrier numbers, core multiplicity) for future Pb/s-class optical network (over 1000-km distance) Openflow/SDN extension for novel programmability SDN Controller EMS Interface implementation for novel programmability EMS: Element Management System Dense space division multiplexing of optical fibre transmission systems (Core multiplicity > 30) MMF: Multimode Fibre MCF: Multicore Fibre SMF MMF MCF Scalable Optical Transport Network (OTN) with Manageable Flexibility Control High Core Count Single Mode Multicore Fibre HCC SM MCF Multicore Erbium Doped Fibre Amplifier (MC EDFA) HCC SM MCF Programmable spectral efficiency (Modulation formats) Programmable signal bandwidth (Subcarrier numbers) DSP Tx Rx DSP Control scheme for optical transport programmability beyond 400 Gb/s Joint testbed 2

3 Working package structure 3

4 WP3 Programmable optical hardware Verification and establishment of a control scheme for optical transport programmability beyond 400 Gb/s SDN Controller Openflow/SDN extension for novel programmability EMS Interface implementation for novel programmability Programmability utilization design for scalable network provisioning Scalable control of carrier network with an optimum degree of programmability Interworking between SDN and Physical Layer Abstraction of information from programmable elements and the fiber links and implementation of intermediate layer Emerging programmable functions of L0/L1 Develop and verify various flexible features of programmable optical hardware including carrier number, modulation format etc. 4

5 WP4 Super capacity optical transport networks Investigation and development of MCF based dense SDM (Space Division Multiplexing) with high core counts ( 30) toward super capacity optical transport networks Signal processing Txs Ch.1 Ch.n WDM- MUX SDM- MUX Ch. 1 Multicore fibre Multicore EDFA Multicore fibre SDM- DEMUX Rxs Ch.1 Ch.n Signal processing TDM/WDM Ch.m TDM/WDM/SDM Multicore fibres Single-mode multicore fibre Multicore EDFA Signal processing for SDM 5

6 WP3: Use cases and MCF crosstalk issue We examined the control scheme of programmable optical hardware and investigated the use cases of the scalable and flexible optical networks. We clarified the impact of inter core XT on network planning and control in an MCF deployment scenario. The use case was adopted in ONF Use cases for Carrier Grade SDN document in March, The contribution on the carrier grade SDN use case document with valuable and influential use case was awarded as the outstanding contributor from ONF on Sept. 7 th, ( and events/awards en < and events/awards en>) C C C C A Ultra-high capacity NW B SMF A SMF SMF B SMF SMF A MCF XT-Free B SMF MCF A MCF B Not XT-Free! 6

7 WP4: Requirements for designing SM MCFs more than 30 cores for DSDM Core count Trade off A eff larger than 80 μm 2 at 1550 nm for reducing nonlinearity Crosstalk (XT) less than 19 db/500 km for QPSK transmission Cladding diameter of smaller than 250 μm is desirable from the point of mechanical reliability. 7

8 WP4: Characteristics of each fabricated fibre 30 core 31 core 32 core Techniques for reducing XT Heterogeneous (trench and step index) Homogeneous and Quasi single mode Heterogeneous and Relaxing cutoff condition Core types Manufacturability Relatively bad Good Reasonable Layout Hexagonal closepacked structure packed structure Hexagonal close Square lattice structure 1550 nm A eff 77.3 μm μm μm nm total XT 35 db/500km 14 db/500km 33 db/500km Cladding diameter 229 μm 230 μm 242 μm Fibre length 9.6 km 11.0 km 51.4 km 8

9 WP4: Comparison with reported SM MCFs Core count Our target area Reported 30 core fibre 31 core fibre 32 core fibre 32-core fibre Heterogeneous cores (two-types core) XT at 1550 nm [db/100km] 32 core fibre has realized the highest core count and low XT simultaneously. Y. Sasaki et al., ECOC 2016, paper W.2.B.2. 9

10 Fully integrated cladding-pumped 32core-EYDFA inline amplifier with two pump couplers EYDF: Er/Yb-doped fiber Two pump couplers were employed to enhance the average population inversion. Delay Rx Tx. 1 x 32 splitter 60.2 km 32c-MC-EYDF FI FO 32-ch 32-core 32-core switch MCF MCF 32c-MCF Isolator 32c-MCF Isolator 51.4 km EDFA J. Saurabh et al., ECOC 2016, Postdeadline paper Th.3.A.1 10

11 Comparison between passive- and active fiber Passive MCF Active MC-EYDF MCF MC EYDF Avg. Pitch[μm] Max./min.[μm] 29.1/ /28.45 SD. [μm] Cladding[μm] MFD[μm] Loss/abs. Splice Loss with MCF <0.5 db 1±0.25 db Copyright 2014 NTT corp. All Rights Reserved. 11

12 WP4: 32 core Dense Space Division Multiplexing (DSDM) Long distance Transmission over km Demonstration of 32-core dense space division multiplexing (DSDM), long-haul transmission over km World first demonstration of long-haul DSDM transmission exceeding 1000 km achieved in SAFARI project DWDM PDM-16QAM optical transmitting circuit Main signal Recirculating crosstalk signal Non recirculating Crosstalk signal 32ch switch 2 Novel partial recirculating loop system Loop system configured to input recirculating signals into adjacent cores with larger crosstalk and non-recirculating signals into all other cores Fan in 32 core Dense space division multiplexing (DSDM) fiber 51.4 km 32 loops Fan out 32ch switch Receiver circuit Receiver circuit Receiver circuit 1 Multicore fiber design and fabrication technology Heterogeneous, square lattice structure Three times larger number of cores within typical 243 m cladding diameter Low-crosstalk suitable for PDM-16QAM signal transmission exceeding 1000 km distance T. Mizuno et al., OFC 2016, Postdeadline paper Th5C.3 Mizuno et al, OFC2016 postdeadline paper Th5C.3,

13 WP4: 32 core dense SDM transmission experiment over 1000 km Measured Q factors of all 640 channels (32 DSDM x 20 DWDM) after km (=32 loops) transmission exceeded the FEC limit of 5.7 db Data rate: 78.6 Gb/s (12 Gbaud, PDM-16QAM) WDM: 12.5 GHz spacing, 20 wavelengths Capacity: 50.3 Tb/s core #16, wavelength #11 x-pol. y-pol. T. Mizuno et al., OFC 2016, Postdeadline paper Th5C.3 13

14 Summary SAFARI PJ overview WP3: Proposal of MCF-based network use cases WP4: High count SM-MCF WP4: High count EYDFA WP4: 32-core transmission experiment 14

Multi-core and Few-mode Fiber Technology for Space Division Multiplexing Transmission

Multi-core and Few-mode Fiber Technology for Space Division Multiplexing Transmission Multi-core and Few-mode Fiber Technology for Space Division Multiplexing Transmission Kazuhide Nakajima Access Network Service Systems Laboratories NTT Corporation Outline Three questions about space division

More information

Spectrum Allocation Policies for Flex Grid Network with Data Rate Limited Transmission

Spectrum Allocation Policies for Flex Grid Network with Data Rate Limited Transmission Spectrum Allocation Policies for Flex Grid Network with Data Rate Limited Transmission Kruthika Lohith 1, Triveni C L 2, Dr. P.C Srikanth 3 1Malnad College of Engineering, Hassan, Karnataka 2 Asst Professor,

More information

Open Cloud Interconnect: Use Cases for the QFX10000 Coherent DWDM Line Card

Open Cloud Interconnect: Use Cases for the QFX10000 Coherent DWDM Line Card Open Cloud Interconnect: Use Cases for the QFX10000 DWDM Delivering Scale, Security, and Resiliency to Metro, Regional, and Long-Haul Data Center Interconnect 1 Open Cloud Interconnect: Use Cases for the

More information

Title. CitationOptics Express, 20(26): B77-B84. Issue Date Doc URL. Rights. Type. File Information

Title. CitationOptics Express, 20(26): B77-B84. Issue Date Doc URL. Rights. Type. File Information Title Large-effective-area uncoupled few-mode multi-core f Author(s)Sasaki, Yusuke; Takenaga, Katsuhiro; Guan, Ning; Mat CitationOptics Express, 20(26): B77-B84 Issue Date 2012-12-10 Doc URL http://hdl.handle.net/2115/52232

More information

Front-Haul challenges for future radio access

Front-Haul challenges for future radio access ECOC2014 Sunday Workshop, WS5 Front-Haul challenges for future radio access Sep. 21 st, 2014 Shigeru Kuwano NTT Access Network Service Systems Laboratories, NTT Corporation kuwano.shigeru@lab.ntt.co.jp

More information

Arista 7500E DWDM Solution and Use Cases

Arista 7500E DWDM Solution and Use Cases ARISTA WHITE PAPER Arista DWDM Solution and Use Cases The introduction of the Arista 7500E Series DWDM solution expands the capabilities of the Arista 7000 Series with a new, high-density, high-performance,

More information

Technology and Architectural Approaches to Address Continued Explosive Growth in Network Traffic Jane M. Simmons

Technology and Architectural Approaches to Address Continued Explosive Growth in Network Traffic Jane M. Simmons International Conference on Computing, Networking and Communications (ICNC 2017) Technology and Architectural Approaches to Address Continued Explosive Growth in Network Traffic Jane M. Simmons Monarch

More information

Experimental Investigation of Crosstalk Penalties in Multicore Fiber Transmission Systems

Experimental Investigation of Crosstalk Penalties in Multicore Fiber Transmission Systems Experimental Investigation of Crosstalk Penalties in Multicore Fiber Transmission Systems Volume 7, Number 1, February 2015 Tobias A. Eriksson Benjamin J. Puttnam Ruben S. Luís Magnus Karlsson Peter A.

More information

Is 1Tb/s Ready for Prime Time? Engineering Reality Check

Is 1Tb/s Ready for Prime Time? Engineering Reality Check Is 1Tb/s Ready for Prime Time? Engineering Reality Check Terabit Optical Ethernet IEEE Photonics Society Summer Topical Montreal, Canada 18-20 July 2011 Chris Cole Ilya Lyubomirsky chris.cole@finisar.com

More information

High Speed Migration 100G & Beyond

High Speed Migration 100G & Beyond High Speed Migration 100G & Beyond Moses Ngugi Field Application Engineer 5th September 2017 BANDWIDTH GROWTH Mobile Data IP Video Global Cloud IP Traffic Global IP Traffic Cisco CAGR: 50+% CAGR: 35%+

More information

Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM

Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM Name of Course : E1-E2 CFA Chapter 15 Topic : DWDM Date of Creation : 28.03.2011 DWDM 1.0 Introduction The emergence of DWDM is one of the most recent and important phenomena in the development of fiber

More information

EE 233. LIGHTWAVE. Chapter 5. Lightwave Systems

EE 233. LIGHTWAVE. Chapter 5. Lightwave Systems EE 233. LIGHTWAVE SYSTEMS Chapter 5. Lightwave Systems Instructor: Ivan P. Kaminow 2/16/06 EE233. Prof Kaminow 1 SYSTEM ARCHITECTURES 2/16/06 EE233. Prof Kaminow 2 2/16/06 EE233. Prof Kaminow 3 POINT-TO-POINT

More information

TeraWave Fiber Fiber for the Long Haul

TeraWave Fiber Fiber for the Long Haul TeraWave Fiber Fiber for the Long Haul David Mazzarese John George Robert Lingle March 2014 OFS Technical Marketing and Professional Services Long Haul Network Capacity Reaching Limits Advanced Fibers

More information

Next-Generation ROADMs

Next-Generation ROADMs Next-Generation ROADMs October 1, 2012 Sheldon Walklin CTO, Optelian Contents troduction Wavelength Selective Switch Colorless, Directionless and Contentionless Flexible Bandwidth ROADMs and Transmission

More information

Update on technical feasibility for PAM modulation

Update on technical feasibility for PAM modulation Update on technical feasibility for PAM modulation Gary Nicholl, Chris Fludger Cisco IEEE 80.3 NG00GE PMD Study Group March 0 PAM Architecture Overview [Gary Nicholl] PAM Link Modeling Analysis [Chris

More information

Optical Transceivers for 100GE

Optical Transceivers for 100GE Optical Transceivers for 100GE F3: Transceiver Circuits for Optical Communications ISSCC 10 11 February 2010 Chris Cole chris.cole@finisar.com Outline Optical Interface Types DSP in Datacom Optical Datacom

More information

LAMPIRAN. Source type SLM SLM SLM Maximum spectral power mw/ ffs ffs ffs Ffs

LAMPIRAN. Source type SLM SLM SLM Maximum spectral power mw/ ffs ffs ffs Ffs LAMPIRAN Table 8-6/G.959.1 Single-channel IrDI parameters and values for optical tributary signal class NRZ 10G short-haul applications for G.652 fibre Parameter Units P1S1-2D1 P1S1-2D2a P1S1-2D2b 1S1-2D2bF

More information

Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017

Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017 Scaling the Compute and High Speed Networking Needs of the Data Center with Silicon Photonics ECOC 2017 September 19, 2017 Robert Blum Director, Strategic Marketing and Business Development 1 Data Center

More information

Impact of Physical Layer Impairments on Multi-Degree CDC ROADM-based Optical Networks

Impact of Physical Layer Impairments on Multi-Degree CDC ROADM-based Optical Networks 94 Regular papers ONDM 08 Impact of Physical Layer Impairments on Multi-Degree CDC ROADM-based Optical Networks Diogo G Sequeira, Luís G Cancela,, and João L Rebola, Optical Communications and Photonics

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING M.E., - COMMUNICATION SYSTEMS FIRST YEAR / FIRST SEMESTER - BATCH: 2014-2016 CU7103 OPTICAL NETWORKS 1 SYLLABUS CU7103 OPTICAL NETWORKS L T P C 3

More information

Introduction of Spectrally and Spatially Flexible Optical Networks

Introduction of Spectrally and Spatially Flexible Optical Networks SPATIALLY AND SPECTRALLY FLEXIBLE ELASTIC OPTICAL NETWORKING Introduction of Spectrally and Spatially Flexible Optical Networks Tiejun J. Xia, Herve Fevrier, Ting Wang, and Toshio Morioka Tiejun J. Xia

More information

Adaptation and Monitoring for Elastic Alien Wavelengths

Adaptation and Monitoring for Elastic Alien Wavelengths Adaptation and Monitoring for Elastic Alien Wavelengths F. Cugini 1, N. Sambo 2, F. Paolucci 2, F. Fresi 2, P. Castoldi 2 (1) CNIT, Pisa, Italy,! (2) Scuola Superiore Sant Anna, Pisa, Italy NOC 2016 Introduction

More information

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 40 Channels C21-C60 Dual Fiber DWDM Mux Demux + Monitor Port. 1U Rack Mount, LC/UPC

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 40 Channels C21-C60 Dual Fiber DWDM Mux Demux + Monitor Port. 1U Rack Mount, LC/UPC Data Center & Cloud Computing DATASHEET 40 Channels C21-C60 Dual Fiber DWDM Mux Demux + Monitor Port 1U Rack Mount, LC/UPC Data Center & Cloud Computing Infrastruture Solutions REV.1.0 2018 Overview DWDM

More information

1.6Tb DWDM Solution: 7500R Series Data Sheet

1.6Tb DWDM Solution: 7500R Series Data Sheet 1.6Tb DWDM Solution: 7500R Series Data Sheet Product Highlights DWDM Integrated on Switch Line card High density DWDM solution for Cloud Data Centers Cost and performance optimized for Data Center Interconnect

More information

Singlemode vs Multimode Optical Fibre

Singlemode vs Multimode Optical Fibre Singlemode vs Multimode Optical Fibre White paper White Paper Singlemode vs Multimode Optical Fibre v1.0 EN 1 Introduction Fibre optics, or optical fibre, refers to the medium and the technology associated

More information

Emerging Subsea Networks

Emerging Subsea Networks RESOURCE SAVINGS IN GRIDLESS COHERENT SUBMARINE NETWORKS WITH FILTERLESS ARCHITECTURES Md. Nooruzzaman, Feriel Nabet, Nabih Alloune, Émile Archambault, Christine Tremblay (École de technologie supérieure,

More information

FLEXING NEXT GENERATION OPTICAL MUSCLES

FLEXING NEXT GENERATION OPTICAL MUSCLES FLEXING NEXT GENERATION OPTICAL MUSCLES A Perspective on Flexi-rate Innovation and True 400G From high-capacity data center connectivity to LTE-enabled mobility, the foundation of our modern communications

More information

Considerations on X00 Gb/s 40-80km interfaces with appropriate support for DWDM systems. Peter Stassar HUAWEI TECHNOLOGIES CO., LTD.

Considerations on X00 Gb/s 40-80km interfaces with appropriate support for DWDM systems. Peter Stassar HUAWEI TECHNOLOGIES CO., LTD. Considerations on X00 Gb/s 40-80km interfaces with appropriate support for DWDM systems Peter Stassar www.huawei.com HUAWEI TECHNOLOGIES CO., LTD. Co-author(s) Pete Anslow (Ciena), providing valuable feedback

More information

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok Lambda Networks DWDM Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok vara@kmitnb.ac.th Treads in Communication Information: High Speed, Anywhere,

More information

WHITE PAPER. Photonic Integration

WHITE PAPER. Photonic Integration WHITE PAPER Photonic Integration In the world of microprocessors, we have seen tremendous increases in computational power with simultaneous decreases in cost and power consumption resulting from integration

More information

Introduction To Optical Networks Optical Networks: A Practical Perspective

Introduction To Optical Networks Optical Networks: A Practical Perspective Introduction To Optical Networks Optical Networks: A Practical Perspective Galen Sasaki Galen Sasaki University of Hawaii 1 Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Telecommunications

More information

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 40ch DWDM Mux Demux + Monitor Port. 1U Rack Mount, LC/UPC

DATASHEET. Data Center & Cloud Computing Infrastruture Solutions. 40ch DWDM Mux Demux + Monitor Port. 1U Rack Mount, LC/UPC Data Center & Cloud Computing DATASHEET 40ch DWDM Mux Demux + Monitor Port 1U Rack Mount, LC/UPC Data Center & Cloud Computing Infrastruture Solutions REV.1.0 2017 Overview DWDM Mux Demux 01 The 40ch Mux

More information

Trends in Optical Disaggregation. Presented by :

Trends in Optical Disaggregation. Presented by : Trends in Optical Disaggregation Presented by : Today s Presenters Moderator Simon Stanley Analyst at Large Heavy Reading Matthew Mitchell Vice President of Optical Systems Architecture, Infinera Corporation

More information

International Standardization Activities on Optical Interfaces

International Standardization Activities on Optical Interfaces International Standardization Activities on Optical Interfaces Masahito Tomizawa, Akira Hirano, Shigeki Ishibashi, and Takeshi Sakamoto Abstract This article reviews international standardization activities

More information

Updated in Free Product Guide for Your Network. WDM & FTTx. Catalog

Updated in Free Product Guide for Your Network. WDM & FTTx. Catalog Updated in 2017 Free Product Guide for Your Network WDM & FTTx Catalog FS.COM WDM & FTTx This catalog is a guide of FS.COM WDM & FTTH solutions. FS.COM self-develops a series of OTN (optical transport

More information

Brocade approved solutions for 16/10/8G FC SAN connectivity

Brocade approved solutions for 16/10/8G FC SAN connectivity Brocade approved solutions for 16/10/8G FC SAN connectivity Using Wavelength Division Multiplexing to expand network capacity Smartoptics provides qualified embedded CWDM and DWDM solutions for Brocade

More information

Considerations on objectives for Beyond 10km Ethernet Optical PHYs running over a point-to-point DWDM system

Considerations on objectives for Beyond 10km Ethernet Optical PHYs running over a point-to-point DWDM system Considerations on objectives for Beyond 10km Ethernet Optical PHYs running over a point-to-point DWDM system Gary Nicholl, Cisco Systems Beyond 10km Optical PHYs Study Group Ad Hoc Dec 12, 2017 Background

More information

Looking for a Smarter City? Eugene Botes RCDD/NTS Technical Manager MEPA CommScope

Looking for a Smarter City? Eugene Botes RCDD/NTS Technical Manager MEPA CommScope Looking for a Smarter City? Eugene Botes RCDD/NTS Technical Manager MEPA CommScope Agenda What is a Smart City? Key Applications for the Smart City Designing the Wired and Wireless Infrastructure Technology

More information

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc.

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc. REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES Duane Webber Cisco Systems, Inc. Abstract Today's Cable Operator optical infrastructure designs are becoming more important as customers

More information

FP7 EU-JP Project : STRAUSS. Ken ichi Kitayama (JP Project Coordinator) Osaka University

FP7 EU-JP Project : STRAUSS. Ken ichi Kitayama (JP Project Coordinator) Osaka University FP7 EU-JP Project : STRAUSS Ken ichi Kitayama (JP Project Coordinator) Osaka University Project facts and consortium Project Facts Start Date: 1/6/2013 Duration: 36M EU Funding: 1.49 M JP Funding: 2.82

More information

Next Generation Requirements for DWDM network

Next Generation Requirements for DWDM network Next Generation Requirements for DWDM network Roman Egorov Verizon Laboratories May 3, 2011 Verizon copyright 2011. NG Requirements for DWDM network: Outline Optical Transport Network Metro vs. Long-Haul

More information

Optical networking: is the Internet of the future already here?

Optical networking: is the Internet of the future already here? Optical networking: is the Internet of the future already here? Emilie CAMISARD Renater Optical technologies engineer - Advanced IP Services e-mail: camisard@renater.fr 23/11/04 ATHENS - Optical networking

More information

100G DWDM QSFP Datasheet

100G DWDM QSFP Datasheet 100G DWDM QSFP Datasheet Product Overview The Arista Dense Wavelength-Division Multiplexing (DWDM) 100G QSFP pluggable module (Figure 1) offers cost effective solution for metro Data Center Interconnect

More information

Data Center & Cloud Computing DATASHEET. FS.COM WDM Transport Networks Data Center & Cloud Computing Infrastruture Solutions

Data Center & Cloud Computing DATASHEET. FS.COM WDM Transport Networks Data Center & Cloud Computing Infrastruture Solutions Data Center & Cloud Computing DATASHEET FS.COM WDM Transport Networks Data Center & Cloud Computing Infrastruture Solutions REV.1.0 2018 01 Overview About the Features Efficient Usage Supports up 18 to

More information

Optical switching for scalable and programmable data center networks

Optical switching for scalable and programmable data center networks Optical switching for scalable and programmable data center networks Paraskevas Bakopoulos National Technical University of Athens Photonics Communications Research Laboratory @ pbakop@mail.ntua.gr Please

More information

Crosstalk-Aware Spectrum Defragmentation based on Spectrum Compactness in SDM-EON

Crosstalk-Aware Spectrum Defragmentation based on Spectrum Compactness in SDM-EON Crosstalk-Aware Spectrum Defragmentation based on Spectrum Compactness in SDM-EON Yongli Zhao State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications

More information

Alcatel 1696 Metro Span. Metropolitan DWDM System

Alcatel 1696 Metro Span. Metropolitan DWDM System Alcatel 1696 Metro Span Metropolitan DWDM System In metropolitan areas, the need for higher bandwidth and valueadded services is becoming increasingly critical. Service providers must find flexible and

More information

Crosstalk behavior of cores in multi-core fiber under bent condition

Crosstalk behavior of cores in multi-core fiber under bent condition Crosstalk behavior of cores in multi-core fiber under bent condition Shoichiro Matsuo 1a), Katsuhiro Takenaga 1, Yoko Arakawa 1, Yusuke Sasaki 1, Shoji Tanigawa 1, Kunimasa Saitoh 2, and Masanori Koshiba

More information

100 Gbit/s Computer Optical Interconnect

100 Gbit/s Computer Optical Interconnect 100 Gbit/s Computer Optical Interconnect Ivan Glesk, Robert J. Runser, Kung-Li Deng, and Paul R. Prucnal Department of Electrical Engineering, Princeton University, Princeton, NJ08544 glesk@ee.princeton.edu

More information

Large scale optical circuit switches for future data center applications

Large scale optical circuit switches for future data center applications Large scale optical circuit switches for future data center applications ONDM2017 workshop Yojiro Moriand Ken-ichi Sato Outline 1. Introduction -Optical circuit switch for datacenter- 2. Sub-switch configuration

More information

Fiber Optic Cabling Systems for High Performance Applications

Fiber Optic Cabling Systems for High Performance Applications Fiber Optic Cabling Systems for High Performance Applications BICSI Conference Bangkok, Thailand 17-18 November 2016 Nicholas Yeo, RCDD/NTS/DCDC Data Center Trends Computing evolution Cloud computing Servers

More information

5GBPS CWDM-PON ARCHITECTURE FOR LONG REACH UNICAST AND MULTICAST DATA USING HYBRID AMPLIFIER

5GBPS CWDM-PON ARCHITECTURE FOR LONG REACH UNICAST AND MULTICAST DATA USING HYBRID AMPLIFIER 5GBPS CWDM-PON ARCHITECTURE FOR LONG REACH UNICAST AND MULTICAST DATA USING HYBRID AMPLIFIER Nerkar Narendra N. 1, Kadu Mahesh B. 2 and Labade R.P. 3 1,2,3 Electronics and Telecommunication Department,

More information

Simple Optical Network Architectures

Simple Optical Network Architectures Simple Optical Network Architectures Point to Point Link The simplest optical communication system is that linking two points. The length of such links may be a small as 100 m for say, a computer data

More information

Wavelength-Switched to Flex-Grid Optical Networks

Wavelength-Switched to Flex-Grid Optical Networks Book Chapter Review-Evolution from Wavelength-Switched to Flex-Grid Optical Networks Tanjila Ahmed Agenda ØObjective ØIdentifying the Problem ØSolution: Flex-Grid Network ØFixed-grid DWDM Architecture

More information

Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16

Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16 Part 2 Part2: Lecture 01 Optical technologies Optical networks: Technologies Hybrid networking, network virtualization Traffic engineering (Marijke Kaat) OpenFlow and SURFnet (Ronald van der Pol) Physical

More information

NTT Communications' Perspective on Next GEN Optical Transport Network

NTT Communications' Perspective on Next GEN Optical Transport Network OFC2014 Market Watch NTT Communications' Perspective on Next GEN Optical Transport Network Hisayoshi Yoshida NTT Communication Corporation hisayoshi.yoshida@ntt.com 1 Traffic Trend The rapid traffic growth

More information

Application Note Fiber Connectivity

Application Note Fiber Connectivity Riedel Application solutions Note for - Fiber broadcast Connectivity applications 1 Content Fiber Basics Riedel Portfolio Application examples 2 Fiber Cable Propagation Modes Multi-mode Multiple modes

More information

Leaders in the Advancement of Multimode Fiber. Fiber Future and Beyond

Leaders in the Advancement of Multimode Fiber. Fiber Future and Beyond Leaders in the Advancement of Multimode Fiber Fiber Future and Beyond Major Milestones in the Advancement of Multimode Fiber (MMF) Transmission OM4 Signature Core Fiber Cabling TIA WBMMF ISO/IEC OM5 (WBMMF)

More information

Brochure. WDM Solutions. Methods for Optimizing Fiber Capacity. Transition Networks Brochure.

Brochure. WDM Solutions. Methods for Optimizing Fiber Capacity. Transition Networks Brochure. Brochure WDM Solutions Methods for Optimizing Fiber Capacity Transition Networks Brochure Introduction to WDM Overview Demands on today s voice, video, and data networks are becoming more complex requiring

More information

Multiformat Home Networks using Silica Fibres

Multiformat Home Networks using Silica Fibres Multiformat Home Networks using Silica Fibres Orange Labs Ph. Guignard, J. Guillory, Ph. Chanclou, A. Pizzinat, O. Bouffant, N. Evanno, J. Etrillard, B. Charbonnier, S. Gosselin, L. Guillo, F. Richard.

More information

Lean Disaggregated Regional Optical Transport. Nick Plunket, Interconnection Engineer NANOG 74 October 2 or 3, 2018

Lean Disaggregated Regional Optical Transport. Nick Plunket, Interconnection Engineer NANOG 74 October 2 or 3, 2018 Lean Disaggregated Regional Optical Transport Nick Plunket, Interconnection Engineer NANOG 74 October 2 or 3, 2018 CENIC is a 501(c)(3) with the mission to advance education and research

More information

A Practical Approach for Migrating DCI to 100G Transport Cisco Knowledge Network Series

A Practical Approach for Migrating DCI to 100G Transport Cisco Knowledge Network Series A Practical Approach for Migrating DCI to 100G Transport Cisco Knowledge Network Series Matt Lopoukhine Sushin Suresan Al Kiramoto Rich Leahy BDM PM CSE CSE March 7, 2017 SP Market Trends Cloud Scale Networks

More information

Cost Evaluation for Flexible-Grid Optical Networks

Cost Evaluation for Flexible-Grid Optical Networks Cost Evaluation for Flexible-Grid Optical Networks Jorge López Vizcaíno 1, 3, Yabin Ye 1, Víctor López 2, Felipe Jiménez 2, Raúl Duque 2, Peter M. Krummrich 3 1 Huawei Technologies Duesseldorf GmbH, European

More information

WDM network management

WDM network management IO2654 Optical Networking WDM network management Paolo Monti Optical Networks Lab (ONLab), Communication Systems Department (COS) http://web.it.kth.se/~pmonti/ For some material in this lecture check the

More information

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering Question Bank Subject Code : EC459 Subject Name : Optical Networks Class : IV Year B.Tech (ECE)

More information

OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE

OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE OPTIMIZATION THE ARCHITECTURES OF THE CATV NETWORKS TO PROVIDING THE VIDEO-ON-DEMAND SERVICE Lidia Totkova Jordanova 1, Jordan Iliev Nenkov 2 Faculty of Communications and Communications Technologies,

More information

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications Data Sheet Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output

More information

Cisco MDS 9000 Family Pluggable Transceivers

Cisco MDS 9000 Family Pluggable Transceivers Cisco MDS 9000 Family Pluggable Transceivers The Cisco Small Form-Factor Pluggable (), and X2 devices for use on the Cisco MDS 9000 Family are hot-swappable transceivers that plug into ports on the Cisco

More information

A very high capacity optical fibre network for largescale antenna constellations: the RETINA project

A very high capacity optical fibre network for largescale antenna constellations: the RETINA project 1 isbn 1-58603-187-2 Proceedings of NOC 2001, pp 165-172 Ipswich, UK, June 2001 A very high capacity optical fibre network for largescale constellations: the RETINA project Ton Koonen, Huug de Waardt COBRA

More information

MARKET PERSPECTIVE: SEMICONDUCTOR TREND OF 2.5D/3D IC WITH OPTICAL INTERFACES PHILIPPE ABSIL, IMEC

MARKET PERSPECTIVE: SEMICONDUCTOR TREND OF 2.5D/3D IC WITH OPTICAL INTERFACES PHILIPPE ABSIL, IMEC MARKET PERSPECTIVE: SEMICONDUCTOR TREND OF 2.5D/3D IC WITH OPTICAL INTERFACES PHILIPPE ABSIL, IMEC OUTLINE Market Trends & Technology Needs Silicon Photonics Technology Remaining Key Challenges Conclusion

More information

NORDUnet Conference Fiber Pair Sharing. Pavel Škoda, Josef Vojtěch

NORDUnet Conference Fiber Pair Sharing. Pavel Škoda, Josef Vojtěch NORDUnet Conference 2012 Fiber Pair Sharing Pavel Škoda, Josef Vojtěch Department of Optical Networks http://www.ces.net/, http://czechlight.cesnet.cz/en/ Oslo, September 18th, 2012 NORDUnet Conference

More information

ERicsson pau 140o family photonic attachment unit

ERicsson pau 140o family photonic attachment unit ERicsson pau 140o family photonic attachment unit ERicsson pau The Ericsson Photonic Attachment Unit (PAU) family provides a variety of DWDM networking functions for building the photonic network layer

More information

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks

Internet Traffic Characteristics. How to take care of the Bursty IP traffic in Optical Networks Internet Traffic Characteristics Bursty Internet Traffic Statistical aggregation of the bursty data leads to the efficiency of the Internet. Large Variation in Source Bandwidth 10BaseT (10Mb/s), 100BaseT(100Mb/s),

More information

Pluggable DWDM: Considerations For Campus and Metro DCI Applications

Pluggable DWDM: Considerations For Campus and Metro DCI Applications Pluggable DWDM: Considerations For Campus and Metro DCI Applications Xiang Zhou and Hong Liu Pla0orm Datacenter Op9cs With input from Vijay, Tad and Vinayak from NetArch group ECOC 2016 WS 3 Short range

More information

Panel : Next Generation Optical Transport Networks - From 100G to 1T and Beyond

Panel : Next Generation Optical Transport Networks - From 100G to 1T and Beyond anel : Next Generation Optical Transport Networks - From 100G to 1T and Beyond April 19, 2011 Tom McDermott Fujitsu Network Communications What is OTN? Optical Transport Network (OTN) ITU G.709 provides:

More information

Low power applications

Low power applications MSc in Photonics & Europhotonics Laser Systems and Applications 2017/2018 Low power applications Prof. Cristina Masoller Universitat Politècnica de Catalunya cristina.masoller@upc.edu www.fisica.edu.uy/~cris

More information

Enhancing PON capabilities using the wavelength domain

Enhancing PON capabilities using the wavelength domain Enhancing PON capabilities using the wavelength domain Joint ITU/IEEE workshop on Next Generation Access, Geneva 2008 Thomas Pfeiffer, Alcatel-Lucent Bell Labs June 20, 2008 Introduction Optical fiber

More information

Multicasting with Physical Layer Constraints in Metropolitan Optical Networks with Mesh Topologies

Multicasting with Physical Layer Constraints in Metropolitan Optical Networks with Mesh Topologies Multicasting with Physical Layer Constraints in Metropolitan Optical Networks with Mesh Topologies Tania Panayiotou KIOS Research Center for Intelligent Systems and Networks Dept Electrical and Computer

More information

Comparative Analysis of Network Topologies Using Optical Amplifiers

Comparative Analysis of Network Topologies Using Optical Amplifiers Comparative Analysis of Network Topologies Using Optical Amplifiers 1 Raghavee N.S, 2 Gaurav H Kankaria, 3 S. Sugumaran, 4 S.Revathi School of Electronics and Communication Engineering, VIT University,

More information

Plexxi LightRail White Paper

Plexxi LightRail White Paper White Paper CWDM and Limited Fiber Plant Installations Introduction This document contains information about using the CWDM capabilities of the Plexxi Switch hardware & Control software components within

More information

Potential of WDM packets

Potential of WDM packets 1 Potential of WDM packets Dominique Chiaroni and Bogdan Uscumlic Nokia Bell Labs, Route de Villejust, 91620 Nozay, France Abstract The need for ultra-low latencies in fronthaul/backhaul solutions for

More information

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a

A Novel Optimization Method of Optical Network Planning. Wu CHEN 1, a A Novel Optimization Method of Optical Network Planning Wu CHEN 1, a 1 The engineering & technical college of chengdu university of technology, leshan, 614000,china; a wchen_leshan@126.com Keywords:wavelength

More information

NEW YORK CITY COLLEGE of TECHNOLOGY

NEW YORK CITY COLLEGE of TECHNOLOGY NEW YORK CITY COLLEGE of TECHNOLOGY THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF ELECTRICAL AND TELECOMMUNICATIONS ENGINEERING TECHNOLOGY Course : TCET 4102 Fiber-optic communications Module 9: Components

More information

INF5050 Introduction to optical networking

INF5050 Introduction to optical networking INF5050 Introduction to optical networking steinar@transpacket.com steinar.bjornstad@ntnu.no Background M.Sc. Physics/electronics UIO. Ph.D. Telecommunication NTNU 10 years at Telenor R&D optical network

More information

Optical Trends in the Data Center. Doug Coleman Manager, Technology & Standards Distinguished Associate Corning Optical Communications

Optical Trends in the Data Center. Doug Coleman Manager, Technology & Standards Distinguished Associate Corning Optical Communications Optical Trends in the Data Center Doug Coleman Manager, Technology & Standards Distinguished Associate Corning Optical Communications Telecom 2017 Corning Restricted Incorporated 2 Server Access Switch

More information

TC1880 Series. 4/5/6/8 Channel RS-232 FIBER OPTIC MICRO MUX User's Manual

TC1880 Series. 4/5/6/8 Channel RS-232 FIBER OPTIC MICRO MUX User's Manual Series 4/5/6/8 Channel RS-232 FIBER OPTIC MICRO MUX MODEL: S/N: DATE: Notice! Although every effort has been made to insure that this manual is current and accurate as of date of publication, no guarantee

More information

400GBase-LR8: A Proposal for 10 km Objective Using 50 Gb/s PAM4 Signaling

400GBase-LR8: A Proposal for 10 km Objective Using 50 Gb/s PAM4 Signaling 400GBase-LR8: A Proposal for 10 km Objective Using 50 Gb/s PAM4 Signaling Ali Ghiasi Ghiasi Quantum LLC IEEE 802.3bs Task Force Berlin March 2015 1 List of supporters! Mike Furlong Clariphy! Sudeep Bhoja

More information

SLIDE 1 - COPYRIGHT G. Across the country, Across the Data Centre. Tim Rayner. Optical Engineer, AARNet.

SLIDE 1 - COPYRIGHT G. Across the country, Across the Data Centre. Tim Rayner. Optical Engineer, AARNet. SLIDE 1 - COPYRIGHT 2015 100G Across the country, Across the Data Centre Tim Rayner Optical Engineer, AARNet Tim.Rayner@AARNet.edu.au Agenda SLIDE 2 - COPYRIGHT 2015 Review of 10G, 40G &100G Standards

More information

Lowering the Costs of Optical Transport Networking

Lowering the Costs of Optical Transport Networking Lowering the Costs of Optical Transport Networking Deploying your own network even in a slowing economy with shrinking budgets! Rob Adams, VP Product Marketing/Product Line Management Who is Ekinops Private

More information

TCX1000 Programmable ROADM

TCX1000 Programmable ROADM TCX1000 Programmable ROADM Product Overview An integral part of Juniper s Programmable Photonic Layer open line system solution, the TCX Series Optical Transport Systems portfolio provides the foundation

More information

BWDM CWDM DWDM WDM TECHNOLOGY

BWDM CWDM DWDM WDM TECHNOLOGY BWDM CWDM DWDM WDM TECHNOLOGY INTRODUCTION User s of today s voice, video, and data networks are becoming more complex requiring more bandwidth and faster transmission rates over ever increasing distances.

More information

Wideband Multimode Fiber What is it and why does it make sense?

Wideband Multimode Fiber What is it and why does it make sense? White Paper Wideband Multimode Fiber What is it and why does it make sense? March, 2015 Contents Executive summary 3 A brief history of MMF 3 The role of fiber connectors 4 Introducing WBMMF 5 2 Executive

More information

WDM-PON Architecture Implement Using AWG with Multicasting Efficiency

WDM-PON Architecture Implement Using AWG with Multicasting Efficiency WDMPON Architecture Implement Using AWG with Multicasting Efficiency Nerkar Narendra N, Kadu Mahesh B Electronics and Telecommunication Department, AVCOE Sangamner, India. ABSTRACT: We present the experimental

More information

Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing

Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing Sharing Direct Fiber Channels Between Protection and Enterprise Applications Using Wavelength Division Multiplexing Jonathan Sykes, Dewey Day, and Kevin Fennelly Pacific Gas and Electric Company Veselin

More information

The Evolution of Optical Transport Networks

The Evolution of Optical Transport Networks The Evolution of Optical Transport Networks Rod C. Alferness Chief Technology Officer - Optical Networking Group Lucent Technologies SPARTAN Symposium - 5/20/98 Page 1 Network Architecture Dynamics...

More information

The Analysis of SARDANA HPON Networks Using the HPON Network Configurator

The Analysis of SARDANA HPON Networks Using the HPON Network Configurator The Analysis of SARDANA HPON Networks Using the HPON Network Configurator Rastislav ROKA Institute of Telecommunications, Faculty of Electrical Engineering and Information Technology, Slovak University

More information

Wide Area Networks :

Wide Area Networks : Wide Area Networks : Backbone Infrastructure Ian Pratt University of Cambridge Computer Laboratory Outline Demands for backbone bandwidth Fibre technology DWDM Long-haul link design Backbone network technology

More information

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions

INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions INTRODUCING THE 5G-PPP 5G-XHAUL PROJECT Daniel Camps (i2cat) Bristol 5G city testbed with 5G-XHaul extensions OUTLINE 1) 5G-XHaul introduction 2) 5G-XHaul architectural aspects 3) Sample of data-plane

More information

100G and Beyond: high-density Ethernet interconnects

100G and Beyond: high-density Ethernet interconnects 100G and Beyond: high-density Ethernet interconnects Kapil Shrikhande Sr. Principal Engineer, CTO Office Force10 Networks MIT MicroPhotonics Center Spring Meeting April 5, 2011 [ 1 ] Ethernet applications

More information

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES Experimental Astronomy (2004) 17: 213 220 C Springer 2005 FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES D.H.P. MAAT and G.W. KANT ASTRON, P.O. Box 2, 7990 AA Dwingeloo,

More information