Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16

Size: px
Start display at page:

Download "Part 2! Physical layer! Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! 19/04/16"

Transcription

1 Part 2 Part2: Lecture 01 Optical technologies Optical networks: Technologies Hybrid networking, network virtualization Traffic engineering (Marijke Kaat) OpenFlow and SURFnet (Ronald van der Pol) Physical layer Part2: Lecture 01 Optical technologies Application Presentation Session Transport Network Data Link Physical The purpose of the physical layer (PHY) is to create the electrical, optical, or microwave signal that represents the bits in each frame. 1

2 PHY functions From bits to signals Channel coding encode a series of bits into signals Modulation adapt signal to the transmission channel Multiplexing share the channel Packet Transmission Packets Sender Receiver Header/Body Header/Body Header/Body Bit Stream Digital Signal Analog Signal Analog and digital data Signaling Digital data à modulation/demodulation à analog transmission Modem: Signaling is the method of representing the bits (signals) The Physical layer standards must define what type of signal represents a "1" and a "0"Bits Analog data à coder/decoder à digital transmission CODEC: CODEC 2

3 Modems speeds Encoding Bit rate (bits/s) The number of bits processed per unit of time. Encoding is the symbolic grouping of bits (symbols or code groups) prior to being presented to the media. Bauds or signal rate or modulation rate (baud): The number of signaling events per second 1 kbd = 1000 baud è 1000 symbols per second 1000 tones in a modem 1000 pulses in a line code symbols per second = 4Bd 8 bits per second = 8 b/s Advantages using code groups include: Reducing bit level error Helping to distinguish data bits from control bits Better media error detection 1 second Encoding examples More encodings NRZ - Non return to zero SONET uses NRZ (light off, light on) High voltage = 1; Low voltage = 0 Voltage does not return to 0 between bits Manchester encoding Ethernet uses Manchester encoding (10 Mbit/s) XOR of clock and data 8b/10b = 8 bits of data in 10 bit symbols (5b/6b + 3b/4b) Used in: GigaBit Ethernet InfiniBand USB 3.0 PCI Express (< 3.0) 64b/66b: 64 bit data in 66 bit symbols Used in: 10 GE 40 GE 100GE 3

4 Optical transmission Transmission media Total internal reflection. Beware of: Degradation of signal Fiber fuse Used to : 1. Achieve higher bandwidth 2. Span longer distances Optical transmission range Optical Spectrum UV Visible IR 125 GHz/nm λ λ = c ν Light Ultraviolet (UV) Visible Infrared (IR) Communication wavelengths 850, 1310, 1550 nm Low-loss wavelengths Specialty wavelengths 980, 1480, 1625 nm 850 nm 980 nm 1310 nm 1480 nm 1550 nm 1625 nm 4

5 Comparison Fiber optic cables Pros of electrical transmission Pros of optical transmission Core: A center core made from glass or plastic fibers Lower material cost Lower cost of transmitters and receivers Capability to carry electrical power as well as signals exceptionally low loss, absence of ground currents and other parasite signal and power issues inherently high data-carrying capacity. Cladding: A plastic coating cushions the fiber center; Kevlar fibers help to strengthen the cables and prevent breakage. Buffer coating: the outer insulating jacket made of teflon or PVC. Fiber cables Different single mode fibers Multi mode Cheaper Over short distances: 2 km for 100 Mbit/s (100BASE-FX) m for 1 Gbit/s (1000BASE-SX) 300 m for 10 Gbit/s (10GBASE-SR) Wavelengths: 850 and 1300 nm Single mode Single mode Over long distances: 80 km at 10Gbit/s (XENPACK) Wavelengths:1300 nm and 1550 nm SMF (G.652) DSF (G.653) NZDSF v Good for TDM at 1310 nm v OK for TDM at 1550 nm v OK for DWDM (With Dispersion Mgmt) v OK for TDM at 1310 nm v Good for TDM at 1550 nm v Bad for DWDM (C-Band) v OK for TDM at 1310 nm (G.655) v Good for TDM at 1550 nm v Good for DWDM (C + L Bands) 5

6 Connectors GBIC - Gigabit Interface Converter Transceivers SFP - Small Form-factor Pluggable (and SFP+) SC - square/standard LC - little/local ST - straight tip/bayonet XENPACK XFP - 10 Gigabit Small Form-factor Pluggable Couplers db Attenuation Decibels (db) is the unit to express differences in signal strengths (loss or gain) between start and end. It s a relative value expressing attenuation. P1 and P2 power at start and end P1/P2 is the power ratio db= 10 Log 10 (P1/P2) E.g.: a ratio P1/P2 = 2 is equivalent to 3DB 6

7 dbm Power budget Decibels milliwatt (dbm) is the unit to express power of an interface (output power and the receiver sensitivity). Its an absolute value. Input power P in P in = 0 dbm P in = 1mW Output power P out P out = -20 dbm P out = 0.01mW X dbm = 10 Log 10 (Power in mw/1mw) Optical loss: P in -P out (in db) P in -P out = 20 db Affected by: Fiber attenuation Splices Patch Panels/Connectors Optical components (filters, amplifiers, etc) Bends in fiber Contamination (dirt/oil on connectors) What about Maximum tolerated power and Maximum Launch power? Optical Attenuation Specified in loss per kilometer (db/km) 0.40 db/km at 1310 nm 0.25 db/km at 1550 nm Loss due to absorption by impurities 1400 nm peak due to OH ions 1310 Window 1550 Window Test EDFA optical amplifiers available in 1550 window 7

8 Optical networks Optical networks An optical network utilizes fiber optic as transmission medium.. First generation optical networks - SONET/SDH networks: optics provided transmission and capacity. switching and intelligence handled in electronics Second generation networks - all optical: routing, switching and intelligence are moving in the optical layer. Basic components Couplers and splitters, used to combine and split signals in the network; Taps are type of couplers that tap off small portion of the power from a light stream for monitoring purposes; Wavelength crossconnect Cascading mux and demux can create a (static) OXC Filters λ 1, λ 2, λ 3, λ 4 λ Wavelength 1 filter λ 1 1, λ 1 2, λ 1 3, λ 1 4 λ 1 λ 2 λ 3 λ 4 λ 2, 1 λ1, λ 1 2 3, λ 2 4 Multiplexers(mux) and demultiplexers (demux) λ 2, λ 2 1 2, λ 2 3, λ 2 4 λ 1 1, λ 2 2, λ 2 3, λ 1 4 λ 1 λ 2 λ 1, λ 2, λ 3, λ 4 λ 1, λ 2, λ 3, λ 4 λ 3 λ 1 λ 2 λ 3 λ 4 λ 4 8

9 MEMs devices Amplifiers Signals get attenuated as they travel in fibers. Two approaches: Regenerators, converts optical into electrical signal and retransmit; Amplifiers: Amplification window, the range of wavelengths over which there is signal gain Types: erbium doped fiber amplifiers (EDFAs); Semiconductor optical amplifiers (SOA); Raman optical amplifiers. Transmitters Semiconductor lasers are the light source for optical transmission. They have a fixed wavelength for operation. Think of gigabit Ethernet: 1000SX 1000LX 1000ZX Tunable lasers can alter the wavelength of operation. They open up the possibility to have: Reconfigurable optical networks Optical packet switched networks Multiplexing schemes TDM: SONET/SDH (D)WDM 9

10 TDM TDM Time-Division Multiplexing (TDM) two or more signals or bit streams are transferred apparently simultaneously as sub-channels in one communication channel, but are physically taking turns on the channel. The time domain is divided into several recurrent timeslots of fixed length, one for each sub-channel. TDM example: T-carrier Telephony switches: DS0 (Digital Signal 0) is the basic voice signal: 64kbit/s (8Khz sample rate with 8bit sample) In North America: DS1 (running over a T1 line) is 24DS0 plus 8kbps synchronization and maintenance overhead:1.544mbps DS3 (running over a T3 line) is 28 DS1 (or 672 DS0): Mbps In Europe/Japan: E1 is 32 DS0: 2.048Mbps E3 is 512 DS0: Mbps SONET/SDH Synchronous Optical Networking (SONET) Synchronous Digital Hierarchy (SDH) Originally designed to transport different circuits (DS0, DS3) of different origins within a single framing protocol. Currently the frame can transport: Ethernet (Ethernet over SONET - EOS) IP (Packet over SONET - POS) Learn more: "Synchronous Optical Network (SONET) - Basic Description including Multiplex Structure, Rates and Formats," ANSI T "Synchronous Optical Network (SONET)--Payload Mappings," T

11 STS-1 STS-3 An STS-3 frame has 9 rows * 270 columns = 2430 bytes. It is transmitted in 125microseconds: 8Khz STS-3: Mbps (equivalent to 1 STM-1 in SDH) Transport Overhead Synchronous Payload Envelope New transport overhead is obtained with byte interleaving. Channelized and concatenated (unchannelized) Ethernet frames: First: header Then: Payload Finally: Trailer Transmitting SONET/SDH frames SONET/SDH frames Transmitted row by row (each row with transport overhead and payload) SONET/SDH data rates SONET Optical SONET frame SDH level and Payload Line rate (kbps) Carrier Level format frame format bandwidth (kbps) OC-1 STS-1 STM-0 50,112 51,840 OC-3 STS-3 STM-1 150, ,520 OC-12 STS-12 STM-4 601, ,080 OC-24 STS-24-1,202,688 1,244,160 OC-48 STS-48 STM-16 2,405,376 2,488,320 OC-192 STS-192 STM-64 9,621,504 9,953,280 OC-768 STS-768 STM ,486,016 39,813,120 11

12 Optical carrier level Learn more: PPP over SONET/SDH RFC Jun.1999 Packets over SONET/SDH STS-N Electrical multiplexer OC-N optical transmitter PO PO User data Stream-1 User data User data EO conversion OC-N signal SPE TO SPE User data Stream-2 User data Stream-N STSX-N interface GFP Generic Framing Protocol: it allows to map client packets into the SONET/SDH payloads, in order to transport non-tdm traffic more efficiently. (D)WDM Ethernet frame 12

13 WDM Transmission windows Wavelength-division multiplexing (WDM) multiplexes multiple optical carrier signals on a single optical fiber by using different wavelengths (colours) of laser light to carry different signals. Band Description Wavelength range O band original 1260 to 1360 nm E band extended 1360 to 1460 nm S band short wavelengths 1460 to 1530 nm C band conventional ("erbium window") 1530 to 1565 nm L band long wavelengths 1565 to 1625 nm U band ultralong wavelengths 1625 to 1675 nm Types of WDM (Conventional) WDM 16 channels in the C-band(1550nm) Wavelength tloss 1rst wavelength 850nm 3dB/km 2 nd wavelength 1310nm 0.4dB/km 3 rd wavelength 1550nm (C band) 0.2dB/km 4 th wavelength 1625nm (L band) 0.2 db/ km Dense WDM - DWDM 40 channels at 100Ghz spacing or 80 channels at 50 Ghz spacing in the C-band Ultra DWDM extend the spacing to 2GHz With Raman amplification instead EDFA channles double and reach the L-band Coarse WDM Started with two channels (1310 and 1550 nm) Nowadays 16 channels in the O-band (around 1310nm) and C-band (around 1550nm) 13

14 19/04/16 Interfaces to WDM TDM and DWDM Comparison Transponders are an essential component: They convert the incoming optical signal in an ITU-standard wavelength. SONET/SDH from client -> an electrical signal -> ITU wavelength TDM (SONET/SDH) Takes signals and multiplexes them to a single higher optical bit rate E/O or O/E/O conversion (D)WDM Takes multiple optical signals and multiplexes onto a single fiber No signal format conversion DS-1 DS-3 OC-1 OC-3 OC-12 OC-48 OC-12c OC-48c OC-192c SONET ADM DWDM OADM Fiber Fiber OTN Know what to buy? OTN Optical Transport Network Replaces SONET/SDH as transport mechanisms, as it betters integrate with DWDM. OTN specifies a digital wrapper to create an optical data unit (ODU), Learn more: ITU G.709 Optical Transport Network (OTN)" ITU G.872 "Architecture for the Optical Transport Network (OTN)" CISCO CRS Available Interface modules: 1-Port OC-768C/STM-256C Tunable WDMPOS 4-Port 10GE Tunable WDMPHY 4-Port OC-192c/STM-64 POS/DPT 8-Port 10 Gigabit Ethernet 16-Port OC-48c/STM-16c POS/DPT Cisco CRS Single-Port OC-768c/STM-256c POS Juniper T4000 Available line cards: 100-Gigabit Ethernet 10-Port 10GbE Oversubscribed Ethernet 4-port 10 GE 4-Port OC Gigabit Ethernet Dense Wavelength Division Multiplexing (DWDM) Optical Transport Network 10-Gigabit Ethernet Dense Wavelength Division Multiplexing (DWDM) N.b: these are just two random examples to show you now (should) know what these routers can do. 14

15 Literature Home reading Chapter 1 Technology overview Chapter 2 SONET and SDH Basics Chaper 3 SONET and SDH: advanced topics Chapter 1- Introduction to optical networks Section SONET/SDH For the test on Apr. 22 read: A survey of network virtualization by Chowdory and Boutaba (EXCLUDING section 3) 15

Part2: Lecture 01! Optical technologies!

Part2: Lecture 01! Optical technologies! Part2: Lecture 01! Optical technologies! Last Time! QoS Quality ofservice! Guarantees in terms of packet loss, latency and throughput! Traffic classification! Algorithms and techniques:! RR WRR! Token

More information

Optical networking: is the Internet of the future already here?

Optical networking: is the Internet of the future already here? Optical networking: is the Internet of the future already here? Emilie CAMISARD Renater Optical technologies engineer - Advanced IP Services e-mail: camisard@renater.fr 23/11/04 ATHENS - Optical networking

More information

Chapter 8: Multiplexing

Chapter 8: Multiplexing NET 456 High Speed Networks Chapter 8: Multiplexing Dr. Anis Koubaa Reformatted slides from textbook Data and Computer Communications, Ninth Edition by William Stallings, 1 (c) Pearson Education - Prentice

More information

Lecture 2 Physical Layer - Multiplexing

Lecture 2 Physical Layer - Multiplexing DATA AND COMPUTER COMMUNICATIONS Lecture 2 Physical Layer - Multiplexing Mei Yang Based on Lecture slides by William Stallings 1 MULTIPLEXING multiple links on 1 physical line common on long-haul, high

More information

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007.

Modems, DSL, and Multiplexing. CS158a Chris Pollett Feb 19, 2007. Modems, DSL, and Multiplexing CS158a Chris Pollett Feb 19, 2007. Outline Finish up Modems DSL Multiplexing The fastest modems Last day, we say the combinations and phases used to code symbols on a 2400

More information

Introduction To Optical Networks Optical Networks: A Practical Perspective

Introduction To Optical Networks Optical Networks: A Practical Perspective Introduction To Optical Networks Optical Networks: A Practical Perspective Galen Sasaki Galen Sasaki University of Hawaii 1 Galen Sasaki University of Hawaii 2 Galen Sasaki University of Hawaii 3 Telecommunications

More information

Synchronous Optical Networks (SONET) Advanced Computer Networks

Synchronous Optical Networks (SONET) Advanced Computer Networks Synchronous Optical Networks (SONET) Advanced Computer Networks SONET Outline Brief History SONET Overview SONET Rates SONET Ring Architecture Add/Drop Multiplexor (ADM) Section, Line and Path Virtual

More information

Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM

Name of Course : E1-E2 CFA. Chapter 15. Topic : DWDM Name of Course : E1-E2 CFA Chapter 15 Topic : DWDM Date of Creation : 28.03.2011 DWDM 1.0 Introduction The emergence of DWDM is one of the most recent and important phenomena in the development of fiber

More information

Synchronous Optical Networks SONET. Computer Networks: SONET

Synchronous Optical Networks SONET. Computer Networks: SONET Synchronous Optical Networks SONET 1 Telephone Networks {Brief History} Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS

More information

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok

Lambda Networks DWDM. Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok Lambda Networks DWDM Vara Varavithya Department of Electrical Engineering King Mongkut s Institute of Technology North Bangkok vara@kmitnb.ac.th Treads in Communication Information: High Speed, Anywhere,

More information

Introduction to Optical Networks

Introduction to Optical Networks Introduction to Optical Networks P. Michael Henderson mike@michael-henderson.us 1 Agenda The physics of light Laser and photodetector operation Characteristics of optical fiber Optical amplifiers SONET

More information

Wide Area Networks :

Wide Area Networks : Wide Area Networks : Backbone Infrastructure Ian Pratt University of Cambridge Computer Laboratory Outline Demands for backbone bandwidth Fibre technology DWDM Long-haul link design Backbone network technology

More information

Introduction to Networks

Introduction to Networks Introduction to Networks Network Topology How we interconnect network users Network Hierarchy The connection between network topology and geographical size Telecommunication (Phone Networks) Circuit Switching

More information

Optical Loss Budgets

Optical Loss Budgets CHAPTER 4 The optical loss budget is an important aspect in designing networks with the Cisco ONS 15540. The optical loss budget is the ultimate limiting factor in distances between nodes in a topology.

More information

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet

learntelecoms interactive e-learning suite of courses: SyncNet v6 SDH-based broadband networks SyncNet Tel: 0845 0949 120 Email: info@ptt.co.uk Web site: www.ptt.co.uk SyncNet SyncNet v6 SDH-based broadband networks SyncNet is a suite of interactive, multimedia e-learning courses. provides training in the

More information

PA-POS-2OC3 Overview. The Cisco 7206 VXR router can be used as a router shelf in a Cisco AS5800 universal access server.

PA-POS-2OC3 Overview. The Cisco 7206 VXR router can be used as a router shelf in a Cisco AS5800 universal access server. :: Seite 1 von 6 :: Datenblatt zum Produkt Cisco 2 Port Packet/SONET mit DC# 437848 :: PA-POS-2OC3 Overview The PA-POS-2OC3 provides two Packet-over-SONET (POS) ports in a single port adapter slot. The

More information

Module 11 - Fiber Optic Networks and the Internet

Module 11 - Fiber Optic Networks and the Internet Module 11 - Fiber Optic Networks and the Internet Dr. Alan Kost Associate Research Professor Of Sciences, University Of Arizona Dr. Alan Kost is an Associate Research Professor of Sciences in the University

More information

Simple Optical Network Architectures

Simple Optical Network Architectures Simple Optical Network Architectures Point to Point Link The simplest optical communication system is that linking two points. The length of such links may be a small as 100 m for say, a computer data

More information

10-Gigabit Ethernet DWDM OTN Optical Interface Specifications

10-Gigabit Ethernet DWDM OTN Optical Interface Specifications 1-Gigabit Ethernet DWDM OTN Optical Interface Specifications M12 router and T Series routers support the following 1-Gigabit Ethernet DWDM OTN PIC transceiver. To determine DWDM OTN support, see the cables

More information

Core Network. Core Network Technologies. S Verkkopalvelujen tuotanto S Network Service Provisioning Lecture 2: Core Network Technologies

Core Network. Core Network Technologies. S Verkkopalvelujen tuotanto S Network Service Provisioning Lecture 2: Core Network Technologies Lic.(Tech.) Marko Luoma (1/37) Lic.(Tech.) Marko Luoma (2/37) S-38.192 Verkkopalvelujen tuotanto S-38.192 Network Service Provisioning Lecture 2: Core Network Technologies Connects MAN networks together

More information

S Optical Networks Course Lecture 7: Optical Network Design

S Optical Networks Course Lecture 7: Optical Network Design S-72.3340 Optical Networks Course Lecture 7: Optical Network Design Edward Mutafungwa Communications Laboratory, Helsinki University of Technology, P. O. Box 2300, FIN-02015 TKK, Finland Tel: +358 9 451

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum PCS FMRadi o/ TV Short wave Radi o AM Broadcast Ul trasoni c Soni c Vi si ble Li ght Infrared Li ght Ul travi ol et X- Rays Frequency 1 khz 1 M Hz 1 G Hz 1 THz 1 Y Hz 1 ZHz Wavelength

More information

10-Gigabit Ethernet DWDM OTN PIC Optical Interface Support (T640 Router)

10-Gigabit Ethernet DWDM OTN PIC Optical Interface Support (T640 Router) 1-Gigabit Ethernet DWDM OTN PIC Optical Interface Support (T64 Router) Table 1 describes the optical interfaces supported on the 1 Gigabit Ethernet DWDM OTN PIC. Table 1: Optical Interface Support for

More information

Communication Networks

Communication Networks Communication Networks Chapter 3 Multiplexing Frequency Division Multiplexing (FDM) Useful bandwidth of medium exceeds required bandwidth of channel Each signal is modulated to a different carrier frequency

More information

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc.

REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES. Duane Webber Cisco Systems, Inc. REDUCING CAPEX AND OPEX THROUGH CONVERGED OPTICAL INFRASTRUCTURES Duane Webber Cisco Systems, Inc. Abstract Today's Cable Operator optical infrastructure designs are becoming more important as customers

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about backbone networks After this lecture, you should know WDM, PDH, SDH and ATM understand

More information

Lecture 15: Multiplexing (2)

Lecture 15: Multiplexing (2) Lecture 15: Multiplexing (2) Last Lecture Multiplexing (1) Source: chapter 8 This Lecture Multiplexing (2) Source: chapter8 Next Lecture Circuit switching (1) Source: chapter9 Digital Carrier Systems Hierarchy

More information

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies.

DWDM Topologies CHAPTER. This chapter explains Cisco ONS dense wavelength division multiplexing (DWDM) topologies. CHAPTER 12 This chapter explains Cisco ONS 15454 dense wavelength division multiplexing (DWDM) topologies. Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature.

More information

A Compact, Low-power Consumption Optical Transmitter

A Compact, Low-power Consumption Optical Transmitter Optical Transmitter WDM Variable Wavelength A Compact, Low-power Consumption Optical Transmitter We have developed a compact, low-power e- optical transmitter intended for constructing regional transmission

More information

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan

Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan RESEARCH ARTICLE Real Time Implementation of Data Communication using Ipv4Telecom Network through Sdhstm-4 Digital Transmission Wan SharadaOhatkar*, Sanjay Thakare**, RachnaChavan*, Mugdha Kulkarni *,

More information

SONET. By Sadhish Prabhu. Unit II

SONET. By Sadhish Prabhu. Unit II SONET By Sadhish Prabhu History Digital carrier systems The hierarchy of digital signals that the telephone network uses. Trunks and access links organized in DS (digital signal) hierarchy Problem: rates

More information

Overview: Cisco Series Router Shared Port Adapters

Overview: Cisco Series Router Shared Port Adapters CHAPTER 2 Overview: Cisco 12000 Series Router Shared Port Adapters This chapter describes the shared port adapters (SPAs) that are supported on the Cisco 12000 Series Router and contains the following

More information

Trends and evolution of transport networks. F.-Joachim Westphal SL SI, IBU Telco, SSC ENPS (known as Technology Center before)

Trends and evolution of transport networks. F.-Joachim Westphal SL SI, IBU Telco, SSC ENPS (known as Technology Center before) Trends and evolution of transport networks F.-Joachim Westphal SL SI, IBU Telco, SSC ENPS (known as Technology Center before) Carriers Dilemma... Presented 2001 Demand growing slowed down but it still

More information

BROADBAND AND HIGH SPEED NETWORKS

BROADBAND AND HIGH SPEED NETWORKS BROADBAND AND HIGH SPEED NETWORKS SYNCHRONOUS OPTICAL NETWORK (SONET) Synchronous Optical Network (SONET) is a standard for optical telecommunications transport. SONET defines optical carrier (OC) levels

More information

DWDM Cards. 6.1 DWDM Card Overview CHAPTER

DWDM Cards. 6.1 DWDM Card Overview CHAPTER CHAPTER 6 This chapter describes Cisco ONS 15454 dense wavelength-division multiplexing (DWDM) card features and functions. For installation and card turn-up procedures, refer to the Cisco ONS 15454 Procedure

More information

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering

S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering S.R.M. University Faculty of Engineering and Technology School of Electronics and Communication Engineering Question Bank Subject Code : EC459 Subject Name : Optical Networks Class : IV Year B.Tech (ECE)

More information

SONET/SDH VCAT SONET VCAT

SONET/SDH VCAT SONET VCAT SONET/SDH VCAT SONET/SDH networks have been deployed and heavily utilized for many years. These networks where designed for the efficient transport of DS0 voice circuits. Service providers, who have made

More information

Ethernet Cards. 5.1 Ethernet Card Overview CHAPTER

Ethernet Cards. 5.1 Ethernet Card Overview CHAPTER CHAPTER 5 Note The terms "Unidirectional Path Switched Ring" and "UPSR" may appear in Cisco literature. These terms do not refer to using Cisco ONS 15xxx products in a unidirectional path switched ring

More information

iaccess Multi-Service Platform-DM In Band Managed Multi-Service Platform-FRM220 Series

iaccess Multi-Service Platform-DM In Band Managed Multi-Service Platform-FRM220 Series iaccess TM Multi-Service Platform-DM In Band Managed Multi-Service Platform-FRM220 Series Mobile Fronthaul & Backhaul for 4G LTE 10G Ethernet for Data Center Solution Carrier Ethernet (NID & EDD) CWDM

More information

SONET/SDH. By Iqtidar Ali

SONET/SDH. By Iqtidar Ali SONET/SDH By Iqtidar Ali SONET/SDH SONET/SDH means Synchronous Optical Network (SONET) was developed by ANSI. Synchronous Digital Hierarchy (SDH) was developed by ITU-T. The high bandwidth of fiber optic

More information

Beykent University Network Courses

Beykent University Network Courses /8/24 Beykent University Network Courses Module 3 : Optical Networks and Systems Part kaanavsarasan.weebly.com November 24 November 24 Course Outline Introduction to Optics Components of Optical Networks

More information

Lecture 6 Datalink Framing, Switching. From Signals to Packets

Lecture 6 Datalink Framing, Switching. From Signals to Packets Lecture 6 Datalink Framing, Switching David Andersen Department of Computer Science Carnegie Mellon University 15-441 Networking, Spring 2005 http://www.cs.cmu.edu/~srini/15-441/s05/ 1 From Signals to

More information

Application Note Fiber Connectivity

Application Note Fiber Connectivity Riedel Application solutions Note for - Fiber broadcast Connectivity applications 1 Content Fiber Basics Riedel Portfolio Application examples 2 Fiber Cable Propagation Modes Multi-mode Multiple modes

More information

International Standardization Activities on Optical Interfaces

International Standardization Activities on Optical Interfaces International Standardization Activities on Optical Interfaces Masahito Tomizawa, Akira Hirano, Shigeki Ishibashi, and Takeshi Sakamoto Abstract This article reviews international standardization activities

More information

Optical transport networks

Optical transport networks Optical transport networks Ullas Kumar CS Applications Engineer Zarlink Semiconductor Abstract The advances in optical networking are guiding the world towards an all optical network supporting a broad

More information

Optical Network Tester (ONT)

Optical Network Tester (ONT) Module-E 10 G/2.5 G Jitter Module 10 G E Jitter Module 2.5 G D Optical Network Tester (ONT) Module-E and Jitter Modules Today s market is facing tremendous new packet-based services growth such as VoIP

More information

Table of Contents 1 E-CPOS Interface Configuration 1-1

Table of Contents 1 E-CPOS Interface Configuration 1-1 Table of Contents 1 E-CPOS Interface Configuration 1-1 Overview 1-1 SONET 1-1 SDH 1-1 E-CPOS 1-5 Configuring an E-CPOS Interface 1-6 Configuring an E-CPOS Interface 1-6 Configuring the Operating Mode of

More information

Backbone network technologies. T Jouni Karvo, Timo Kiravuo

Backbone network technologies. T Jouni Karvo, Timo Kiravuo Backbone network technologies T-110.300 Jouni Karvo, Timo Kiravuo Backbone network technologies This lecture tells about landline backbone networks After this lecture, you should know WDM, PDH, SDH and

More information

MX Ring. WDM - MUX/DeMUX. MUX/DeMUX. Features Full native mode performance Optical connectors Passive model requires no power.

MX Ring. WDM - MUX/DeMUX. MUX/DeMUX. Features Full native mode performance Optical connectors Passive model requires no power. WDM - MUX/DeMUX MX20-3155 Dual Channel WDM MUX/DeMUX 5 MX20-3155 is a dual channel, passive, protocol transparent, WDM multiplexer/demultiplexer which utilizes two popular WDM lambda channels of 1310nm

More information

Chapter 4 Transmission Systems and the Telephone Network. School of Info. Sci. & Eng. Shandong Univ.

Chapter 4 Transmission Systems and the Telephone Network. School of Info. Sci. & Eng. Shandong Univ. Chapter 4 Transmission Systems and the Telephone Network School of Info. Sci. & Eng. Shandong Univ. Skip in Chapter 3 Articles 3.8.7, 3.8.8 (polynomial math for CRC codes) Skip in Chapter 4 4.2.2 (SONET

More information

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING M.E., - COMMUNICATION SYSTEMS FIRST YEAR / FIRST SEMESTER - BATCH: 2014-2016 CU7103 OPTICAL NETWORKS 1 SYLLABUS CU7103 OPTICAL NETWORKS L T P C 3

More information

OptiDriver 100 Gbps Application Suite

OptiDriver 100 Gbps Application Suite OptiDriver Application Suite INTRODUCTION MRV s OptiDriver is designed to optimize both 10 Gbps and applications with the industry s most compact, low power, and flexible product line. Offering a variety

More information

Ethernet Operation Any Service Any Port Card Application CHAPTER

Ethernet Operation Any Service Any Port Card Application CHAPTER 10 CHAPTER Operation This chapter describes the operation of the Cisco ONS 15600 SDH ASAP card. For card specifications, refer to Appendix A, Hardware Specifications. For step-by-step card circuit configuration

More information

Cisco MDS 9000 Family Pluggable Transceivers

Cisco MDS 9000 Family Pluggable Transceivers Cisco MDS 9000 Family Pluggable Transceivers The Cisco Small Form-Factor Pluggable (), and X2 devices for use on the Cisco MDS 9000 Family are hot-swappable transceivers that plug into ports on the Cisco

More information

Optical Fiber Communications. Optical Networks- unit 5

Optical Fiber Communications. Optical Networks- unit 5 Optical Fiber Communications Optical Networks- unit 5 Network Terminology Stations are devices that network subscribers use to communicate. A network is a collection of interconnected stations. A node

More information

Gaoyao Tang Applications Engineer, Innocor Ltd April Copyright Innocor Ltd.

Gaoyao Tang Applications Engineer, Innocor Ltd April Copyright Innocor Ltd. Gaoyao Tang Applications Engineer, Innocor Ltd April 6 Copyright Innocor Ltd. www.innocor.com Optical Ethernet -------An introduction LAN boundary extended to encompass the wide area networks (WAN) and

More information

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing.

1/29/2008. From Signals to Packets. Lecture 6 Datalink Framing, Switching. Datalink Functions. Datalink Lectures. Character and Bit Stuffing. /9/008 From Signals to Packets Lecture Datalink Framing, Switching Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Carnegie Mellon University Analog Signal Digital

More information

2. The initialization vector (IV) is used in the framework of

2. The initialization vector (IV) is used in the framework of Advanced Network Protocols Prof. E. Damiani The exam is composed of three sections: a multiple choice and two open question ones. Please do NOT write your answers on the exam text. Rather, hand them in

More information

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications

Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications Data Sheet Cisco Small Form-Factor Pluggable Modules for Gigabit Ethernet Applications The industry-standard Cisco Small Form-Factor Pluggable (SFP) Gigabit Interface Converter is a hot-swappable input/output

More information

Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver with Integrated G.709 and FEC

Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver with Integrated G.709 and FEC Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver with Integrated G.709 and FEC Management XFI Electrical Interface Description Menara Networks Tunable OTN XFP DWDM transceiver combines carrier grade

More information

Overview. Port Adapter Overview CHAPTER

Overview. Port Adapter Overview CHAPTER CHAPTER This chapter describes the PA-POS-OC port adapter and contains the following sections: Port Adapter, page - SONET/SDH, page - Features, page - Interface Specifications, page - OC- Optical Fiber

More information

Optical Transceivers for 100GE

Optical Transceivers for 100GE Optical Transceivers for 100GE F3: Transceiver Circuits for Optical Communications ISSCC 10 11 February 2010 Chris Cole chris.cole@finisar.com Outline Optical Interface Types DSP in Datacom Optical Datacom

More information

UNIT - 8 OPTICAL AMPLIFIERS AND NETWORKS

UNIT - 8 OPTICAL AMPLIFIERS AND NETWORKS UNIT - 8 OPTICAL AMPLIFIERS AND NETWORKS Optical amplifiers, basic applications and types, semiconductor optical amplifiers, EDFA. Optical Networks: Introduction, SONET / SDH, Optical Interfaces, SONET/SDH

More information

Chapter - 7. Multiplexing and circuit switches

Chapter - 7. Multiplexing and circuit switches Chapter - 7 Multiplexing and circuit switches Multiplexing Multiplexing is used to combine multiple communication links into a single stream. The aim is to share an expensive resource. For example several

More information

Transparent SONET or SDH over Packet (TSoP) Protocol

Transparent SONET or SDH over Packet (TSoP) Protocol Transparent SONET or SDH over Packet (TSoP) Protocol Transparent SONET or SDH over Packet (TSoP) Protocol is not supported on the Cisco ASR 900 RSP3 module. The Transparent SONET or SDH over Packet (TSoP)

More information

Transparent SONET or SDH over Packet (TSoP) Protocol

Transparent SONET or SDH over Packet (TSoP) Protocol Transparent SONET or SDH over Packet (TSoP) Protocol is not supported on the Cisco ASR 900 RSP3 module. The Transparent SONET or SDH over Packet (TSoP) protocol converts SONET or SDH TDM traffic to a packet

More information

Standardization Activities for the Optical Transport Network

Standardization Activities for the Optical Transport Network Standardization Activities for the Optical Transport Network Takuya Ohara and Osamu Ishida Abstract The standardized technology for the Optical Transport Network (OTN) is evolving drastically. ITU-T SG15

More information

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES

FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES Experimental Astronomy (2004) 17: 213 220 C Springer 2005 FIBER OPTIC NETWORK TECHNOLOGY FOR DISTRIBUTED LONG BASELINE RADIO TELESCOPES D.H.P. MAAT and G.W. KANT ASTRON, P.O. Box 2, 7990 AA Dwingeloo,

More information

WaveReady Eight-Port Any Service OTN Muxponder WRM-8008T000B

WaveReady Eight-Port Any Service OTN Muxponder WRM-8008T000B WaveReady Eight-Port Any Service OTN Muxponder WRM-8008T000B www.lumentum.com Data Sheet A flexible WDM transport solution The WRM-8008 is a next-generation OTN muxponder that can transparently aggregate

More information

Native Ethernet transmission beyond the LAN

Native Ethernet transmission beyond the LAN Native Ethernet transmission beyond the LAN Cătălin Meiroşu CERN and Politehnica Bucureşti TERENA 05 Poznań Overview 10 GE, a distance independent Ethernet The WAN PHY long haul Ethernet and SONET-friendly

More information

CISCO WDM SERIES OF CWDM PASSIVE DEVICES

CISCO WDM SERIES OF CWDM PASSIVE DEVICES DATA SHEET CISCO WDM SERIES OF CWDM PASSIVE DEVICES Cisco Systems introduces its second generation of coarse wavelength-division multiplexing (CWDM) passive devices boasting increased functions and improved

More information

Dynamic Optical Transport for Metro, Regional and Long Haul DWDM 10G >100G

Dynamic Optical Transport for Metro, Regional and Long Haul DWDM 10G >100G www.ekinops.net Dynamic Optical Transport for Metro, Regional and Long Haul DWDM 10G >100G DETAILED PRODUCT BROCHURE SMALL FORM FACTOR LOW-POWER CONSUMPTION LEADING EDGE TECHNOLOGY Dynamic Optical Transport

More information

PA-POS-1OC3 Overview

PA-POS-1OC3 Overview CHAPTER PA-POS-OC Overview This chapter describes the PA-POS-OC and contains the following sections: PA-POS-OC Overview, page - SONET/SDH Overview, page - Features, page - Interface Specifications, page

More information

Physical Layer Part 3

Physical Layer Part 3 Physical Layer Part 3 Transmission Media Networks: Transmission Media 1 Transmission Media Transmission medium:: the physical path between transmitter and receiver. Repeaters or amplifiers may be used

More information

Fibre Optic Communications - Networking

Fibre Optic Communications - Networking Fibre Optic Communications - Networking Professor Chris Chatwin Module: Fibre Optic Communications MSc/MEng Digital Communication Systems UNIVERSITY OF SUSSEX SCHOOL OF ENGINEERING & INFORMATICS 1 st June

More information

CPOS Interface. Synchronous digital hierarchy (SDH), defined by CCITT (today s ITU-T), uses a SONET rate subset.

CPOS Interface. Synchronous digital hierarchy (SDH), defined by CCITT (today s ITU-T), uses a SONET rate subset. SONET/SDH Synchronous Optical Network (SONET), a synchronous transmission system defined by ANSI, is an international standard transmission protocol. It adopts optical transmission where transmission rates

More information

WDM Industrial Products

WDM Industrial Products Faulty of Engineering Dept. of Elect. & Computer Engineering EE5912 High Speed Networks WDM Industrial Products Lecturer: Dr. Mohan Gurusamy Names Matric Numbers Email Wei Nan HT042584N weinan@nus.edu.sg

More information

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1

Data Link Networks. Hardware Building Blocks. Nodes & Links. CS565 Data Link Networks 1 Data Link Networks Hardware Building Blocks Nodes & Links CS565 Data Link Networks 1 PROBLEM: Physically connecting Hosts 5 Issues 4 Technologies Encoding - encoding for physical medium Framing - delineation

More information

Optical networking technology

Optical networking technology 1 Optical networking technology Technological advances in semiconductor products have essentially been the primary driver for the growth of networking that led to improvements and simplification in the

More information

Chapter 6 Questions. Problems

Chapter 6 Questions. Problems Chapter 6 Questions Q6-1. Q6-2. Q6-3. Q6-4. Q6-5. Q6-6. Q6-7. Describe the goals of multiplexing. List three main multiplexing techniques mentioned in this chapter. Distinguish between a link and a channel

More information

Increasing Fiber Capacity with CWDM

Increasing Fiber Capacity with CWDM Increasing Fiber Capacity with CWDM A Tutorial on CWDM Network Design Presented by: Greg Scott MSO/Telecom Sales Increasing Fiber Capacity with CWDM Introduction WDM Technology Overview CWDM and Fiber

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 ECI TELECOM S LQLAB 30 Hasivim Street Petah-Tikva 4959338, ISRAEL Moshe Perel Phone: 972 52-4008642 Email: Moshe.Perel@ecitele.com ELECTRICAL Valid to: June

More information

Telco Scalable Backbones

Telco Scalable Backbones Telco Scalable Backbones PDH, SONET/SDH (C) Herbert Haas 2005/03/11 Everything that can be invented has been invented Charles H. Duell, commissioner of the US Office of Patents 1899 Agenda Basics Shannon

More information

IP over. Mario Baldi. Politecnico di Torino. (Technical University of Turin) IPinterconnection - 1 Copyright: si veda nota a pag.

IP over. Mario Baldi. Politecnico di Torino. (Technical University of Turin)  IPinterconnection - 1 Copyright: si veda nota a pag. IP over ATM SDH DWDM Mario Baldi Politecnico di Torino (Technical University of Turin) www.baldi.info IPinterconnection - 1 Copyright: si veda nota a pag. 2 Nota di Copyright This set of transparencies,

More information

Practical Optical Networking

Practical Optical Networking 1 of 22 11/15/2007 6:04 PM Practical Optical Networking Outline 1. Evolution of national R&E infrastructure 2. Physical and architectural aspects of optical nets 3. Hybrid networking 4. Testing 2 of 22

More information

5U CWDM Managed Platform SML-5000

5U CWDM Managed Platform SML-5000 CWDM Managed Platform 5U CWDM Managed Platform 5000 The SigmaLinks5000 is a flexible, cost-effective optical transport system, designed to multiplex, de-multiplex and switch high-speed data for storage,

More information

The T-BERD 8000 Transport Module SONET, T-Carrier, and Ethernet Test Module for the T-BERD 8000

The T-BERD 8000 Transport Module SONET, T-Carrier, and Ethernet Test Module for the T-BERD 8000 ACTERNA TEST & MEASUREMENT SOLUTIONS The Transport Module SONET, T-Carrier, and Ethernet Test Module for the Key Features Optical testing at 155 Mb/s, 622 Mb/s, 2.5 Gb/s, and 10 Gb/s SDH/SONET T-Carrier

More information

Overview. Port Adapter Overview CHAPTER

Overview. Port Adapter Overview CHAPTER CHAPTER This chapter describes the Cisco PA-POS-OC port adapter and contains the following sections: Port Adapter, page - SONET/SDH, page - Features, page - Interface Specifications, page -4 PA-POS-OC

More information

Optical System Components (I)

Optical System Components (I) Optical System Components (I) In this lecture: History The Main parts of Fiber optics Types of Fiber optics Couplers Isolators Circulators switches Multiplexers & Filters Historical development of optical

More information

Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver With Integrated G.709 Framer and FEC P/N : GXT-CXXX-XX(XX)

Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver With Integrated G.709 Framer and FEC P/N : GXT-CXXX-XX(XX) Tunable OTN XFP MSA Compliant DWDM 11.1Gb/s Transceiver With Integrated G.709 Framer and FEC P/N : GXTCXXXXX(XX) Features Compliant with XFP MSA Integrated OTN G.709 Digital Wrapper 6.2dB Net Coding Gain

More information

Direct Link Networks. Nodes. Links. Outline Building Blocks Encoding

Direct Link Networks. Nodes. Links. Outline Building Blocks Encoding Direct Link Networks Outline Building Blocks Encoding Spring 2009 CSE 30462 1 Nodes Network adaptor Device driver Memory bottleneck CPU Cache Network adaptor (To network) Memory I/O bus Spring 2009 CSE

More information

Cisco 100BASE-X Small Form-Factor Pluggable Modules for Fast Ethernet Applications

Cisco 100BASE-X Small Form-Factor Pluggable Modules for Fast Ethernet Applications Data Sheet Cisco 100BASE-X Small Form-Factor Pluggable Modules for Fast Ethernet Applications Product Overview The Cisco 100BASE-X Small Form-Factor Pluggable (SFP) device (Figure 1) is a hot-swappable

More information

Optical Cards. 4.1 OC-N Cards OC-N Card Overview CHAPTER

Optical Cards. 4.1 OC-N Cards OC-N Card Overview CHAPTER CHAPTER 4 This chapter describes the Cisco ONS 15454 optical card features and functions. It includes descriptions, hardware specifications, and block diagrams for each optical card. For installation and

More information

SFP GBIC XFP. Application Note. Cost Savings. Density. Flexibility. The Pluggables Advantage

SFP GBIC XFP. Application Note. Cost Savings. Density. Flexibility. The Pluggables Advantage SFP GBIC XFP The Pluggables Advantage interfaces in the same general vicinity. For example, most major data centers have large Ethernet (and Gigabit Ethernet) networks with copper, multimode and single-mode

More information

Optical Networks Jean-Michel Dricot BEST Course

Optical Networks Jean-Michel Dricot BEST Course Optical Networks Jean-Michel Dricot BEST Course - 2013 http://opera.ulb.ac.be/ Introduction 2/50 Tier-1 Core Network: the Internet Overall Internet traffic 500 TBytes/second. Capacity doubles every two

More information

1-Port Gigabit Ethernet Line Card Overview

1-Port Gigabit Ethernet Line Card Overview CHAPTER -Port Gigabit Ethernet Line Card Overview This chapter describes the Cisco series -port Gigabit Ethernet line card (referred to as the -port Gigabit Ethernet line card), and contains the following

More information

Multiplexing (Recap)

Multiplexing (Recap) Multiplexing (Recap) Multiplexing How to transfer data between two sites once there is a digital link between them? Analog to Digital (A2D) conversion Human voice is a continuous signal in the range 0-4

More information

Optical Communications and Networking 朱祖勍. Nov. 27, 2017

Optical Communications and Networking 朱祖勍. Nov. 27, 2017 Optical Communications and Networking Nov. 27, 2017 1 What is a Core Network? A core network is the central part of a telecommunication network that provides services to customers who are connected by

More information

PLC and SONET/SDH Networks Bridging with Ethernet

PLC and SONET/SDH Networks Bridging with Ethernet PLC and SONET/SDH Networks Bridging with Ethernet Carolina Pérez 1, Enrique Areizaga 2, Daniel Múgica 3, Elena Terradillos 4, Amaya Pardo 5 1 ROBOTIKER-TELECOM, Parque Tecnológico de Zamudio, Edificio

More information

Course Details. Optical Networks. Grading. Course References. Outline of Course. Course Project. Jason Jue The University of Texas at Dallas

Course Details. Optical Networks. Grading. Course References. Outline of Course. Course Project. Jason Jue The University of Texas at Dallas Course Details Optical Networks Jason Jue The University of Texas at Dallas Instructor: Jason Jue E-mail: jjue@utdallas.edu URL: http://www.utdallas.edu/~jjue/optical/ Lectures: Thursday 2-5 pm Course

More information