Users Guide: Fast IP Lookup (FIPL) in the FPX

Size: px
Start display at page:

Download "Users Guide: Fast IP Lookup (FIPL) in the FPX"

Transcription

1 Users Guide: Fast IP Lookup (FIPL) in the FPX Gigabit Kits Workshop /22 FIPL System Design Each FIPL Engine performs a longest matching prefix lookup on a single 32-bit IPv4 destination address FIPL Engine Controller scales to required lookup throughput with minimal hardware resource usage Instantiate required number of parallel lookup engines 4 engines in current configuration (2.4 Gb/s link) Pipeline memory accesses FIPL Wrapper Buffers packets Supports up to 4 virtual ports Control Processor Handles data structure updates PP TI Switch Fabric PP TI CP Physical Links TI FIPL Engine Controller FIPL Engine FIPL Engine FIPL Wrapper Packet I/O SRAM Interface Control Processor Packet I/O

2 Design Overview SRAM Extract IP Headers Request Grant SRAM Interface Remap VCIs for IP packets IP Lookup Engine counter On-Chip Cell Store SRAM 2 Packet Reassembler RAD FPGA Control Cell Processor LC NID FPGA SW Performance Evaluation Used gate-level simulation with ModelSim MHz system clock Configured a FIPL Engine Controller to enable one to eight FIPL engines based on the contents of a control cell Initialized tree bitmap data structure with 6,564 entries from the Mae-West routing table (July 2, 2 snapshot) Measured lookup latency and throughput for test sequences of 248 random destination addresses Addresses stored in on-chip memory read by FIPL Engine Controller Measured lookup latency and throughput for various update loads 2

3 Throughput and latency performance Millions of lookups per second Theoretical Worst-case Throughput Mae West Throughput Theoretical Worst-case Avg. Lookup Latency Mae West Avg. Lookup Latency #offiplengines Average Lookup Latency (ns) Update performance Millions of lookups per second , updates per second, updates per second, updates per second No updates #offiplengines 3

4 Performance on WU Research Platform Based on results, a 4 engine configuration was targeted to the WUGS/FPX research platform Sustained.988 Gb/s throughput on single-cell packets = 4.7 M packets/sec Limited by 2 Gb/s switch interface of FPX (32-bit at 62.5 MHz) Verified using bandwidth monitoring software, the cell multiplying feature of the WUGS, and four traffic sources sending at different rates with corresponding 24-bit prefix entries in the route table Utilizes only 8% of available logic resources and 2.5% of onchip memory resources 4 FIPL Engines and FIPL Engine Controller utilizes 6% of logic resources FIPL Wrapper utilizes 2% of logic resources and 2.5% of on-chip memory resources Current Work: MSR Integration SRAM Updates CCP Register Set Updates & Status DQ Status & Rate Control Control Path Data Path SRAM Register Set SRAM AAL LC SW Pkt-ptr Shim Header ISAR Mgmt Filters FIPL Hdr update Ref. counter Discard pkt. Packet Storage Manager (includes free space list) Q-Mgr OSAR O-SW AAL5 LC SW SDRAM SDRAM 4

5 Default FIPL Configuration Current FIPL Wrapper configured for future MSR integration (all parameters modifiable via control cell) Listens for IP traffic on 4 sub-ports (SP SP3) Sub-port VCI determined by an input base VCI (Ibase_VCI) and a sub-port index (SPI) Sub-port VCI = Ibase_VCI + SPI Defaults: Ibase_VCI = x8 (28) SP=,SP=,SP2=2,SP3=3 SP_VCI = x8 (28), SP_VCI = x8 (29), Similar operation for outgoing VC resolution For current use, explicitly specify outgoing VCI as Next Hop References Scalable IP Lookup for Programmable Routers,, John W. Lockwood, Todd Sproull, Jonathan S. Turner, David B. Parlour, WUCS--33, /. Generalized RAD Module Infrastructure of the Field Programmable Port Extender (FPX) Version 2.,, John W. Lockwood, Naji Naufel, WUCS-TM--6, 7/. Generalized RAD Module Interface Specification of the Field Programmable Port Extender (FPX) Version 2.,, John W. Lockwood, Sarang Dharmapurikar, WUCS-TM--5, 7/. FPX Website: 5

6 FIPL Switch Initialization FIPL Switch Initialization Switch Configuration -> GBNSC Restart Switch Configuration -> Switch Reset Switch Configuration -> Configure all VCIs Switch Configuration -> Set ALL ports to Hardware Mode Switch Configuration -> Configure a Unidirectional VC Incoming Port: 3 Incoming VC: 28 Outgoing Port: 2 Outgoing VC: 28 Switch Configuration -> Configure a Unidirectional VC Incoming Port: 2 Incoming VC: 54 Outgoing Port: 3 Outgoing VC: 54 Switch Configuration -> Configure a Unidirectional VC Incoming Port: 2 Incoming VC: 55 Outgoing Port: 3 Outgoing VC: 55 6

7 FIPL Control Software FPX Applications Start Application NCHARGE on all ports FPX Applications Start Application FIPL Memory Manager (Port 2, Stack ) FIPL Upload bitfile Download rad_fipl_msr.v2e.cclk.bit from: Save to Desktop FPX Applications Upload a file: Browse to Desktop and select file 7

8 FIPL Programming the RAD Configuration Memory Updates Complete Configuration (filename given after upload) FIPL Adding Routes Fast IP Lookup -> Route Add IP Address: Net Mask: 24 Next Hop: 54 8

9 FIPL Sending Test Packets () Create Cells IPv4 IP Address: Protocol: 4 TTL: 255 VCI: 28 Random Data Create Cell Receive on 54 FIPL Sending Test Packets (2) 9

10 Route Modify and Delete Modify Route /24 55 Create Cell (transmit on 28) Receive on 55 Receive on 54 (should timeout, no cell received) Add Route /6 54 Create cell Should still receive on 55 (not 54) Delete Route /24 Create cell Should now receive on 54

FPX Architecture for a Dynamically Extensible Router

FPX Architecture for a Dynamically Extensible Router FPX Architecture for a Dynamically Extensible Router Alex Chandra, Yuhua Chen, John Lockwood, Sarang Dharmapurikar, Wenjing Tang, David Taylor, Jon Turner http://www.arl.wustl.edu/arl Dynamically Extensible

More information

WUCS-TM-02-?? September 13, 2002

WUCS-TM-02-?? September 13, 2002 Field-programmable Port extender (FPX) Support for the Multi-Service Router (MSR) Version 1.0 David E. Taylor, Sarang Dharmapurikar, John W. Lockwood, Jonathan S. Turner, Yuhua Chen, Alex Chandra, Wen-Jing

More information

WUCS-TM-02-?? September 23, 2005

WUCS-TM-02-?? September 23, 2005 Field-programmable Port extender (FPX) Support for the Network Services Platform (NSP) Version 1.0 Alex Chandra, Yuhua Chen, John DeHart, Sarang Dharmapurikar, Fred Kuhns, John W. Lockwood, Wen-Jing Tang,

More information

Hardware Laboratory Configuration

Hardware Laboratory Configuration Field-programmable Port Extender () January 2002 Workshop Hardware Laboratory Configuration John Lockwood, Lockwood@arl.wustl.edu Assistant Professor Washington University Department of Computer Science

More information

Field-programmable Port Extender (FPX) August 2001 Workshop. John Lockwood, Assistant Professor

Field-programmable Port Extender (FPX) August 2001 Workshop. John Lockwood, Assistant Professor Field-programmable Port Extender (FPX) August 2001 Workshop John Lockwood, Lockwood@arl.wustl.edu Assistant Professor Washington University Department of Computer Science Applied Research Lab 1 Brookings

More information

Scheduling Data Flows using DRR

Scheduling Data Flows using DRR CS/CoE 535 Acceleration of Networking Algorithms in Reconfigurable Hardware Prof. Lockwood : Fall 2001 http://www.arl.wustl.edu/~lockwood/class/cs535/ Scheduling Data Flows using DRR http://www.ccrc.wustl.edu/~praveen

More information

TCP-Splitter: A Reconfigurable Hardware Based TCP/IP Flow Monitor

TCP-Splitter: A Reconfigurable Hardware Based TCP/IP Flow Monitor CP-Splitter: A Reconfigurable Hardware Based CP/IP Flow Monitor David V. Schuehler dvs1@arl.wustl.edu John W. Lockwood lockwood@arl.wustl.edu Applied Research Laboratory (ARL) Department of Computer Science

More information

TCP-Splitter: Design, Implementation and Operation

TCP-Splitter: Design, Implementation and Operation Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2003-14 2003-03-18 TCP-Splitter:

More information

TCP Programmer for FPXs

TCP Programmer for FPXs TCP Programmer for s Harvey Ku John W. Lockwood David V. Schuehler Department of Computer Science Applied Research Lab Washington University 1 Brookings Drive, Box 1045 Saint Louis, MO 63130 WUCS-2002-29

More information

Control and Configuration Software for a Reconfigurable Networking Hardware Platform

Control and Configuration Software for a Reconfigurable Networking Hardware Platform 1 Control and Configuration Software for a Reconfigurable Networking Hardware Platform Todd S. Sproull, John W. Lockwood, David E. Taylor Applied Research Laboratory Washington University Saint Louis,

More information

Internet Worm and Virus Protection for Very High-Speed Networks

Internet Worm and Virus Protection for Very High-Speed Networks Internet Worm and Virus Protection for Very High-Speed Networks John W. Lockwood Professor of Computer Science and Engineering lockwood@arl.wustl.edu http://www.arl.wustl.edu/~lockwood Research Sponsor:

More information

Protocol Processing on the FPX

Protocol Processing on the FPX Field-programmable Port Extender (FPX) January 2002 Workshop Protocol Processing on the FPX John Lockwood, Lockwood@arl.wustl.edu Assistant Professor Washington University Department of Computer Science

More information

Design and Evaluation of a High-Performance Dynamically Extensible Router

Design and Evaluation of a High-Performance Dynamically Extensible Router Design and Evaluation of a High-Performance Dynamically Extensible Router Fred Kuhns, John DeHart, Anshul Kantawala, Ralph Keller, John Lockwood, Prashanth Pappu, David Richard, David Taylor, Jyoti Parwatikar,

More information

Hello, World: A Simple Application for the Field Programmable Port Extender (FPX)

Hello, World: A Simple Application for the Field Programmable Port Extender (FPX) Hello, World: A Simple Application for the Field Programmable Port Extender (FPX) John Lockwood, David Lim WUCS-TM-00-12 July 11, 2000 Department of Computer Science Applied Research Lab Washington University

More information

Last Lecture: Network Layer

Last Lecture: Network Layer Last Lecture: Network Layer 1. Design goals and issues 2. Basic Routing Algorithms & Protocols 3. Addressing, Fragmentation and reassembly 4. Internet Routing Protocols and Inter-networking 5. Router design

More information

Router Construction. Workstation-Based. Switching Hardware Design Goals throughput (depends on traffic model) scalability (a function of n) Outline

Router Construction. Workstation-Based. Switching Hardware Design Goals throughput (depends on traffic model) scalability (a function of n) Outline Router Construction Outline Switched Fabrics IP Routers Tag Switching Spring 2002 CS 461 1 Workstation-Based Aggregate bandwidth 1/2 of the I/O bus bandwidth capacity shared among all hosts connected to

More information

NetFPGA Hardware Architecture

NetFPGA Hardware Architecture NetFPGA Hardware Architecture Jeffrey Shafer Some slides adapted from Stanford NetFPGA tutorials NetFPGA http://netfpga.org 2 NetFPGA Components Virtex-II Pro 5 FPGA 53,136 logic cells 4,176 Kbit block

More information

FPGA Implementation of Lookup Algorithms

FPGA Implementation of Lookup Algorithms 2011 IEEE 12th International Conference on High Performance Switching and Routing FPGA Implementation of Lookup Algorithms Zoran Chicha, Luka Milinkovic, Aleksandra Smiljanic Department of Telecommunications

More information

Multi-gigabit Switching and Routing

Multi-gigabit Switching and Routing Multi-gigabit Switching and Routing Gignet 97 Europe: June 12, 1997. Nick McKeown Assistant Professor of Electrical Engineering and Computer Science nickm@ee.stanford.edu http://ee.stanford.edu/~nickm

More information

First Gigabit Kits Workshop

First Gigabit Kits Workshop First Gigabit Kits Workshop July 12-13, 1999 Jonathan Turner Washington University Computer Science Department http://www.arl.wustl.edu/gigabitkits/kits.html Jonathan Turner 11/8/99 1 Agenda Monday, July

More information

Design of a High Performance Dynamically Extensible Router

Design of a High Performance Dynamically Extensible Router Design of a High Performance Dynamically Extensible Router Fred Kuhns, John DeHart, Anshul Kantawala, Ralph Keller, John Lockwood, Prashanth Pappu, David Richards, David Taylor, Jyoti Parwatikar, Ed Spitznagel,

More information

Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware

Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware Protocol Wrappers for Layered Network Packet Processing in Reconfigurable Hardware Florian Braun John Lockwood Marcel Waldvogel University of Stuttgart Washington University in St. Louis IBM Zurich Research

More information

Frugal IP Lookup Based on a Parallel Search

Frugal IP Lookup Based on a Parallel Search Frugal IP Lookup Based on a Parallel Search Zoran Čiča and Aleksandra Smiljanić School of Electrical Engineering, Belgrade University, Serbia Email: cicasyl@etf.rs, aleksandra@etf.rs Abstract Lookup function

More information

The iflow Address Processor Forwarding Table Lookups using Fast, Wide Embedded DRAM

The iflow Address Processor Forwarding Table Lookups using Fast, Wide Embedded DRAM Enabling the Future of the Internet The iflow Address Processor Forwarding Table Lookups using Fast, Wide Embedded DRAM Mike O Connor - Director, Advanced Architecture www.siliconaccess.com Hot Chips 12

More information

FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet

FPgrep and FPsed: Packet Payload Processors for Managing the Flow of Digital Content on Local Area Networks and the Internet Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2003-56 2003-07-29 FPgrep and

More information

P51: High Performance Networking

P51: High Performance Networking P51: High Performance Networking Lecture 6: Programmable network devices Dr Noa Zilberman noa.zilberman@cl.cam.ac.uk Lent 2017/18 High Throughput Interfaces Performance Limitations So far we discussed

More information

Routers Technologies & Evolution for High-Speed Networks

Routers Technologies & Evolution for High-Speed Networks Routers Technologies & Evolution for High-Speed Networks C. Pham Université de Pau et des Pays de l Adour http://www.univ-pau.fr/~cpham Congduc.Pham@univ-pau.fr Router Evolution slides from Nick McKeown,

More information

Design of a Weighted Fair Queueing Cell Scheduler for ATM Networks

Design of a Weighted Fair Queueing Cell Scheduler for ATM Networks Design of a Weighted Fair Queueing Cell Scheduler for ATM Networks Yuhua Chen Jonathan S. Turner Department of Electrical Engineering Department of Computer Science Washington University Washington University

More information

SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE. (To be the first page of each copy of the thesis)

SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE. (To be the first page of each copy of the thesis) SEVER INSTITUTE OF TECHNOLOGY MASTER OF SCIENCE DEGREE THESIS ACCEPTANCE (To be the first page of each copy of the thesis) DATE: July 29, 2003 STUDENT S NAME: James Moscola This student s thesis, entitled

More information

Hash-Based String Matching Algorithm For Network Intrusion Prevention systems (NIPS)

Hash-Based String Matching Algorithm For Network Intrusion Prevention systems (NIPS) Hash-Based String Matching Algorithm For Network Intrusion Prevention systems (NIPS) VINOD. O & B. M. SAGAR ISE Department, R.V.College of Engineering, Bangalore-560059, INDIA Email Id :vinod.goutham@gmail.com,sagar.bm@gmail.com

More information

Network Processors. Nevin Heintze Agere Systems

Network Processors. Nevin Heintze Agere Systems Network Processors Nevin Heintze Agere Systems Network Processors What are the packaging challenges for NPs? Caveat: I know very little about packaging. Network Processors What are the packaging challenges

More information

Network Monitoring, Visualization. Topics

Network Monitoring, Visualization. Topics Monitoring, Visualization Gigabit Kits Workshop (January 10, 2001) Ken Wong, Eileen Kraemer*, Jon Turner Washington University and University of Georgia* NSF ANI-9714698 http://www.arl.wustl.edu/arl/projects/nmvc

More information

A Platform for High Performance Overlay Hosting Services

A Platform for High Performance Overlay Hosting Services A Platform for High Performance Overlay Hosting Services Jon Turner with Patrick Crowley, John DeHart, Brandon Heller, Fred Kuhns, Sailesh Kumar, John Lockwood, Jing Lu, Mike Wilson, Charlie Wiseman and

More information

Hardware Acceleration in Computer Networks. Jan Kořenek Conference IT4Innovations, Ostrava

Hardware Acceleration in Computer Networks. Jan Kořenek Conference IT4Innovations, Ostrava Hardware Acceleration in Computer Networks Outline Motivation for hardware acceleration Longest prefix matching using FPGA Hardware acceleration of time critical operations Framework and applications Contracted

More information

Demonstration of a High Performance Active Router DARPA Demo - 9/24/99

Demonstration of a High Performance Active Router DARPA Demo - 9/24/99 Demonstration of a High Performance Active Router DARPA Demo - 9/24/99 Dan Decasper, John DeHart, Ralph Keller, Jonathan Turner, Sumi Choi and Tilman Wolf University, Applied Research Lab http://www.arl.wustl.edu/arl/

More information

Implementation of an Open Multi-Service Router

Implementation of an Open Multi-Service Router Implementation of an Open Multi-Service Router Fred Kuhns, John DeHart, Ralph Keller, John Lockwood, Prashanth Pappu, Jyoti Parwatikar, Ed Spitznagel, David Richards, David Taylor, Jon Turner and Ken Wong

More information

Keywords -- Programmable router, reconfigurable hardware, active networking, port processor. I. INTRODUCTION

Keywords -- Programmable router, reconfigurable hardware, active networking, port processor. I. INTRODUCTION Dynamic Hardware s (DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable Routers David E. Taylor, Jonathan S. Turner, John W. Lockwood det3@arl.wustl.edu, jst@cs.wustl.edu, lockwood@arl.wustl.edu

More information

A Modular System for FPGA-Based TCP Flow Processing in High-Speed Networks

A Modular System for FPGA-Based TCP Flow Processing in High-Speed Networks A Modular System for FPGA-Based Flow Processing in High-Speed Networks David V. Schuehler and John W. Lockwood Applied Research Laboratory, Washington University One Brookings Drive, Campus Box 1045 St.

More information

Using the Open Network Lab

Using the Open Network Lab Using the Open Network Lab Jon Turner Applied Research Laboratory Computer Science and Engineering Department http://www.arl.wustl.edu/arl 2 - Jonathan Turner 1/31/2006 Motivation What is ONL?» remotely

More information

jumbo6 v1.2 manual pages

jumbo6 v1.2 manual pages jumbo6 v1.2 manual pages Description This tool allows the assessment of IPv6 implementations with respect to attack vectors based on IPv6 jumbograms. This tool is part of the IPv6 Toolkit v1.2: a security

More information

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things

Outline. Circuit Switching. Circuit Switching : Introduction to Telecommunication Networks Lectures 13: Virtual Things 8-5: Introduction to Telecommunication Networks Lectures : Virtual Things Peter Steenkiste Spring 05 www.cs.cmu.edu/~prs/nets-ece Outline Circuit switching refresher Virtual Circuits - general Why virtual

More information

Simulation of the Hello World Application for the Field-programmable Port Extender (FPX)

Simulation of the Hello World Application for the Field-programmable Port Extender (FPX) Simulation of the Hello World Application for the Field-programmable Port Extender (FPX) John W. Lockwood, Washington University, Applied Research Lab http://www.arl.wustl.edu/arl/projects/fpx/ Spring

More information

The router architecture consists of two major components: Routing Engine. 100-Mbps link. Packet Forwarding Engine

The router architecture consists of two major components: Routing Engine. 100-Mbps link. Packet Forwarding Engine Chapter 4 The router architecture consists of two major components: Packet Forwarding Engine Performs Layer 2 and Layer 3 packet switching, route lookups, and packet forwarding. Routing Engine Provides

More information

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1,

Topics for Today. Network Layer. Readings. Introduction Addressing Address Resolution. Sections 5.1, Topics for Today Network Layer Introduction Addressing Address Resolution Readings Sections 5.1, 5.6.1-5.6.2 1 Network Layer: Introduction A network-wide concern! Transport layer Between two end hosts

More information

Chapter 4. Advanced Internetworking. 4.3 MPLS 4.4 Mobile IP

Chapter 4. Advanced Internetworking. 4.3 MPLS 4.4 Mobile IP Computer Networks: A Systems Approach, 5e Larry L. Peterson and Bruce S. Davie Advanced Internetworking 4.3 MPLS 4.4 Mobile IP Copyright 2, Elsevier Inc. All rights Reserved 4.3 MPLS (Multi-Protocol Label

More information

Efficient Packet Classification for Network Intrusion Detection using FPGA

Efficient Packet Classification for Network Intrusion Detection using FPGA Efficient Packet Classification for Network Intrusion Detection using FPGA ABSTRACT Haoyu Song Department of CSE Washington University St. Louis, USA hs@arl.wustl.edu FPGA technology has become widely

More information

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES

PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES PUSHING THE LIMITS, A PERSPECTIVE ON ROUTER ARCHITECTURE CHALLENGES Greg Hankins APRICOT 2012 2012 Brocade Communications Systems, Inc. 2012/02/28 Lookup Capacity and Forwarding

More information

Liquid Architecture Λ

Liquid Architecture Λ Liquid Architecture Λ Phillip Jones, Shobana Padmanabhan, Daniel Rymarz, John Maschmeyer David V. Schuehler, John W. Lockwood, and Ron K. Cytron Department of Computer Science and Engineering Washington

More information

Routing Basics ISP/IXP Workshops

Routing Basics ISP/IXP Workshops Routing Basics ISP/IXP Workshops 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 addresses are 32 bits long range from 1.0.0.0 to

More information

Novel Hardware Architecture for Fast Address Lookups

Novel Hardware Architecture for Fast Address Lookups Novel Hardware Architecture for Fast Address Lookups Pronita Mehrotra Paul D. Franzon Department of Electrical and Computer Engineering North Carolina State University {pmehrot,paulf}@eos.ncsu.edu This

More information

tcp6 v1.2 manual pages

tcp6 v1.2 manual pages tcp6 v1.2 manual pages Description This tool allows the assessment of IPv6 implementations with respect to a variety of attack vectors based on TCP/IPv6 segments. This tool is part of the IPv6 Toolkit

More information

Dynamic Hardware Plugins in an FPGA with Partial Run-time Reconfiguration

Dynamic Hardware Plugins in an FPGA with Partial Run-time Reconfiguration 24.2 Dynamic Hardware Plugins in an FPGA with Partial Run-time Reconfiguration Edson L. Horta, Universidade de San Pãulo Escola Politécnica - LSI San Pãulo, SP, Brazil edson-horta@ieee.org John W. Lockwood,

More information

A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup

A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup A Hybrid Approach to CAM-Based Longest Prefix Matching for IP Route Lookup Yan Sun and Min Sik Kim School of Electrical Engineering and Computer Science Washington State University Pullman, Washington

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley, July 2004. Network Layer 4-1 Chapter 4: Network Layer Chapter

More information

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture

Generic Architecture. EECS 122: Introduction to Computer Networks Switch and Router Architectures. Shared Memory (1 st Generation) Today s Lecture Generic Architecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California,

More information

Routing Basics ISP/IXP Workshops

Routing Basics ISP/IXP Workshops Routing Basics ISP/IXP Workshops 1 Routing Concepts IPv4 Routing Forwarding Some definitions Policy options Routing Protocols 2 IPv4 Internet uses IPv4 addresses are 32 bits long range from 1.0.0.0 to

More information

Experience with the NetFPGA Program

Experience with the NetFPGA Program Experience with the NetFPGA Program John W. Lockwood Algo-Logic Systems Algo-Logic.com With input from the Stanford University NetFPGA Group & Xilinx XUP Program Sunday, February 21, 2010 FPGA-2010 Pre-Conference

More information

Decision Forest: A Scalable Architecture for Flexible Flow Matching on FPGA

Decision Forest: A Scalable Architecture for Flexible Flow Matching on FPGA Decision Forest: A Scalable Architecture for Flexible Flow Matching on FPGA Weirong Jiang, Viktor K. Prasanna University of Southern California Norio Yamagaki NEC Corporation September 1, 2010 Outline

More information

COMP9332 Network Routing & Switching

COMP9332 Network Routing & Switching COMP9332 Network Routing & Switching Switching in IP Networks with MPLS http://www.cse.unsw.edu.au/~cs9332 1 Lecture Overview This lecture introduces the concept of switching, which allows faster processing

More information

Multiflow TCP, UDP, IP, and ATM Traffic Generation Module

Multiflow TCP, UDP, IP, and ATM Traffic Generation Module Washington University in St. Louis Washington University Open Scholarship All Computer Science and Engineering Research Computer Science and Engineering Report Number: WUCSE-2003-24 2003-04-24 Multiflow

More information

Quality-of-Service for a High-Radix Switch

Quality-of-Service for a High-Radix Switch Quality-of-Service for a High-Radix Switch Nilmini Abeyratne, Supreet Jeloka, Yiping Kang, David Blaauw, Ronald G. Dreslinski, Reetuparna Das, and Trevor Mudge University of Michigan 51 st DAC 06/05/2014

More information

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015 .. MPLS Multi Protocol Label Switching (an introduction) Karst Koymans Informatics Institute University of Amsterdam (version 4.3, 2015/03/09 13:07:57) Thursday, March 12, 2015 Karst Koymans (UvA) MPLS

More information

Scalable Lookup Algorithms for IPv6

Scalable Lookup Algorithms for IPv6 Scalable Lookup Algorithms for IPv6 Aleksandra Smiljanić a*, Zoran Čiča a a School of Electrical Engineering, Belgrade University, Bul. Kralja Aleksandra 73, 11120 Belgrade, Serbia ABSTRACT IPv4 addresses

More information

The Network Layer and Routers

The Network Layer and Routers The Network Layer and Routers Daniel Zappala CS 460 Computer Networking Brigham Young University 2/18 Network Layer deliver packets from sending host to receiving host must be on every host, router in

More information

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture

EECS 122: Introduction to Computer Networks Switch and Router Architectures. Today s Lecture EECS : Introduction to Computer Networks Switch and Router Architectures Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley,

More information

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing

Routing Basics. Routing Concepts. IPv4. IPv4 address format. A day in a life of a router. What does a router do? IPv4 Routing Routing Concepts IPv4 Routing Routing Basics ISP/IXP Workshops Forwarding Some definitions Policy options Routing Protocols 1 2 IPv4 IPv4 address format Internet uses IPv4 addresses are 32 bits long range

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary TOC Switching Why? Direct vs. Switched Networks: n links Single link Direct Network

More information

TOC: Switching & Forwarding

TOC: Switching & Forwarding TOC: Switching & Forwarding Why? Switching Techniques Switch Characteristics Switch Examples Switch Architectures Summary Why? Direct vs. Switched Networks: Single link Switches Direct Network Limitations:

More information

LS Example 5 3 C 5 A 1 D

LS Example 5 3 C 5 A 1 D Lecture 10 LS Example 5 2 B 3 C 5 1 A 1 D 2 3 1 1 E 2 F G Itrn M B Path C Path D Path E Path F Path G Path 1 {A} 2 A-B 5 A-C 1 A-D Inf. Inf. 1 A-G 2 {A,D} 2 A-B 4 A-D-C 1 A-D 2 A-D-E Inf. 1 A-G 3 {A,D,G}

More information

A Pipelined IP Address Lookup Module for 100 Gbps Line Rates and beyond

A Pipelined IP Address Lookup Module for 100 Gbps Line Rates and beyond A Pipelined IP Address Lookup Module for 1 Gbps Line Rates and beyond Domenic Teuchert and Simon Hauger Institute of Communication Networks and Computer Engineering (IKR) Universität Stuttgart, Pfaffenwaldring

More information

ANN. A Scalable, High Performance Active Network Node. Dan Decasper.

ANN. A Scalable, High Performance Active Network Node. Dan Decasper. ANN A Scalable, High Performance Active Network Node Dan Decasper dan@arl.wustl.edu Applied Research Laboratory (ARL), Washington University, St.Louis Computer Engineering and Network Laboratory (TIK),

More information

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS

PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS THE UNIVERSITY OF NAIROBI DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING FINAL YEAR PROJECT. PROJECT NO. 60 PARALLEL ALGORITHMS FOR IP SWITCHERS/ROUTERS OMARI JAPHETH N. F17/2157/2004 SUPERVISOR:

More information

Using Serial Ports to Connect to ATM with DXI Encapsulation

Using Serial Ports to Connect to ATM with DXI Encapsulation Using Serial Ports to Connect to ATM with DXI Encapsulation Document ID: 10418 Contents Introduction Prerequisites Requirements Components Used Conventions Physical Setup ATM DXI Modes ATM DXI Headers

More information

CS 268: Route Lookup and Packet Classification

CS 268: Route Lookup and Packet Classification Overview CS 268: Route Lookup and Packet Classification Packet Lookup Packet Classification Ion Stoica March 3, 24 istoica@cs.berkeley.edu 2 Lookup Problem Identify the output interface to forward an incoming

More information

Fast IP Routing Lookup with Configurable Processor and Compressed Routing Table

Fast IP Routing Lookup with Configurable Processor and Compressed Routing Table Fast IP Routing Lookup with Configurable Processor and Compressed Routing Table H. Michael Ji, and Ranga Srinivasan Tensilica, Inc. 3255-6 Scott Blvd Santa Clara, CA 95054 Abstract--In this paper we examine

More information

Design of a Flexible Open Platform for High Performance Active Networks

Design of a Flexible Open Platform for High Performance Active Networks Design of a Flexible pen Platform for High Performance Active Networks Sumi Choi, Dan Decasper, John Dehart, Ralph Keller John Lockwood, Jonathan Turner and Tilman Wolf fsyc1, dan, jdd, keller, lockwood,

More information

Parallel-Search Trie-based Scheme for Fast IP Lookup

Parallel-Search Trie-based Scheme for Fast IP Lookup Parallel-Search Trie-based Scheme for Fast IP Lookup Roberto Rojas-Cessa, Lakshmi Ramesh, Ziqian Dong, Lin Cai, and Nirwan Ansari Department of Electrical and Computer Engineering, New Jersey Institute

More information

Design principles in parser design

Design principles in parser design Design principles in parser design Glen Gibb Dept. of Electrical Engineering Advisor: Prof. Nick McKeown Header parsing? 2 Header parsing? Identify headers & extract fields A???? B???? C?? Field Field

More information

LONGEST prefix matching (LPM) techniques have received

LONGEST prefix matching (LPM) techniques have received IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 2, APRIL 2006 397 Longest Prefix Matching Using Bloom Filters Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor, Member, IEEE Abstract We

More information

Chapter 6 Addressing the Network- IPv4

Chapter 6 Addressing the Network- IPv4 Chapter 6 Addressing the Network- IPv4 Objectives Explain the structure IP addressing and demonstrate the ability to convert between 8- bit binary and decimal numbers. Given an IPv4 address, classify by

More information

Implementing High-Speed Search Applications with APEX CAM

Implementing High-Speed Search Applications with APEX CAM Implementing High-Speed Search Applications with APEX July 999, ver.. Application Note 9 Introduction Most memory devices store and retrieve data by addressing specific memory locations. For example, a

More information

Network Layer: outline

Network Layer: outline Network Layer: outline 1 introduction 2 virtual circuit and datagram networks 3 what s inside a router 4 IP: Internet Protocol datagram format IPv4 addressing ICMP IPv6 5 routing algorithms link state

More information

Design and Implementation of High Performance Application Specific Memory

Design and Implementation of High Performance Application Specific Memory Design and Implementation of High Performance Application Specific Memory - 고성능 Application Specific Memory 의설계와구현 - M.S. Thesis Sungdae Choi Dec. 20th, 2002 Outline Introduction Memory for Mobile 3D Graphics

More information

Multiprotocol Label Switching (MPLS) on Cisco Routers

Multiprotocol Label Switching (MPLS) on Cisco Routers Multiprotocol Label Switching (MPLS) on Cisco Routers This document describes commands for configuring and monitoring Multiprotocol Label Switching (MPLS) functionality on Cisco routers and switches. This

More information

Router Architectures

Router Architectures Router Architectures Venkat Padmanabhan Microsoft Research 13 April 2001 Venkat Padmanabhan 1 Outline Router architecture overview 50 Gbps multi-gigabit router (Partridge et al.) Technology trends Venkat

More information

A Framework for Rule Processing in Reconfigurable Network Systems

A Framework for Rule Processing in Reconfigurable Network Systems A Framework for Rule Processing in Reconfigurable Network Systems Michael Attig and John Lockwood Washington University in Saint Louis Applied Research Laboratory Department of Computer Science and Engineering

More information

Configuring NetFlow. Feature History for Configuring NetFlow. Release This feature was introduced.

Configuring NetFlow. Feature History for Configuring NetFlow. Release This feature was introduced. Configuring NetFlow A NetFlow flow is a unidirectional sequence of packets that arrive on a single interface (or subinterface), and have the same values for key fields. NetFlow is useful for the following:

More information

Network Processors and their memory

Network Processors and their memory Network Processors and their memory Network Processor Workshop, Madrid 2004 Nick McKeown Departments of Electrical Engineering and Computer Science, Stanford University nickm@stanford.edu http://www.stanford.edu/~nickm

More information

CSC 4900 Computer Networks: Network Layer

CSC 4900 Computer Networks: Network Layer CSC 4900 Computer Networks: Network Layer Professor Henry Carter Fall 2017 Villanova University Department of Computing Sciences Review What is AIMD? When do we use it? What is the steady state profile

More information

Overview. Implementing Gigabit Routers with NetFPGA. Basic Architectural Components of an IP Router. Per-packet processing in an IP Router

Overview. Implementing Gigabit Routers with NetFPGA. Basic Architectural Components of an IP Router. Per-packet processing in an IP Router Overview Implementing Gigabit Routers with NetFPGA Prof. Sasu Tarkoma The NetFPGA is a low-cost platform for teaching networking hardware and router design, and a tool for networking researchers. The NetFPGA

More information

Label Switching. The idea. Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label. cs670.

Label Switching. The idea. Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label. cs670. Label Switching The idea Add a small label (sometimes called a tag ) on the front of a packet and route the packet based on the label label How it works IP IP payload When the packet reaches a router,

More information

A 400Gbps Multi-Core Network Processor

A 400Gbps Multi-Core Network Processor A 400Gbps Multi-Core Network Processor James Markevitch, Srinivasa Malladi Cisco Systems August 22, 2017 Legal THE INFORMATION HEREIN IS PROVIDED ON AN AS IS BASIS, WITHOUT ANY WARRANTIES OR REPRESENTATIONS,

More information

Problem Statement. Algorithm MinDPQ (contd.) Algorithm MinDPQ. Summary of Algorithm MinDPQ. Algorithm MinDPQ: Experimental Results.

Problem Statement. Algorithm MinDPQ (contd.) Algorithm MinDPQ. Summary of Algorithm MinDPQ. Algorithm MinDPQ: Experimental Results. Algorithms for Routing Lookups and Packet Classification October 3, 2000 High Level Outline Part I. Routing Lookups - Two lookup algorithms Part II. Packet Classification - One classification algorithm

More information

Extensible Network Configuration and Communication Framework

Extensible Network Configuration and Communication Framework Extensible Network Configuration and Communication Framework Todd Sproull and John Lockwood Applied Research Laboratory Department of Computer Science and Engineering: Washington University in Saint Louis

More information

CMSC 332 Computer Networks Network Layer

CMSC 332 Computer Networks Network Layer CMSC 332 Computer Networks Network Layer Professor Szajda CMSC 332: Computer Networks Where in the Stack... CMSC 332: Computer Network 2 Where in the Stack... Application CMSC 332: Computer Network 2 Where

More information

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen

Lecture 4 - Network Layer. Transport Layer. Outline. Introduction. Notes. Notes. Notes. Notes. Networks and Security. Jacob Aae Mikkelsen Lecture 4 - Network Layer Networks and Security Jacob Aae Mikkelsen IMADA September 23, 2013 September 23, 2013 1 / 67 Transport Layer Goals understand principles behind network layer services: network

More information

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access

Last time. Wireless link-layer. Introduction. Characteristics of wireless links wireless LANs networking. Cellular Internet access Last time Wireless link-layer Introduction Wireless hosts, base stations, wireless links Characteristics of wireless links Signal strength, interference, multipath propagation Hidden terminal, signal fading

More information

Internetworking Part 1

Internetworking Part 1 CMPE 344 Computer Networks Spring 2012 Internetworking Part 1 Reading: Peterson and Davie, 3.1 22/03/2012 1 Not all networks are directly connected Limit to how many hosts can be attached Point-to-point:

More information

Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors

Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors University of Crete School of Sciences & Engineering Computer Science Department Master Thesis by Michael Papamichael Network Interface Architecture and Prototyping for Chip and Cluster Multiprocessors

More information

HAIL: A HARDWARE-ACCELERATED ALGORITHM FOR LANGUAGE IDENTIFICATION. Charles M. Kastner, G. Adam Covington, Andrew A. Levine, John W.

HAIL: A HARDWARE-ACCELERATED ALGORITHM FOR LANGUAGE IDENTIFICATION. Charles M. Kastner, G. Adam Covington, Andrew A. Levine, John W. HAIL: A HARDWARE-ACCELERATED ALGORITHM FOR LANGUAGE IDENTIFICATION Charles M. Kastner, G. Adam Covington, Andrew A. Levine, John W. Lockwood Applied Research Laboratory Washington University in St. Louis

More information