Towards Transactional Memory for Safety-Critical Embedded Systems

Size: px
Start display at page:

Download "Towards Transactional Memory for Safety-Critical Embedded Systems"

Transcription

1 Towards Transactional Memory for Safety-Critical Embedded Systems Stefan Metzlaff, Sebastian Weis, and Theo Ungerer Department of Computer Science, University of Augsburg, Germany Euro-TM Workshop on Transactional Memory April 14, 2013 WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 1

2 Motivation Safety-critical embedded systems Avionics or automotive domain Real-time constraints Fault tolerance constraints Different certification requirements (SL 1-4, DAL A-E) Trend towards High performance Low power E.g. autonomous driving, Multi-core processors and parallel applications WTM13 A380, [1] Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems Google Driverless Car, [2] 2

3 Motivation Transactional memory in safety-critical systems Concurrency control Predictable execution in multi-cores Real-time capable concurrency Bounding communication interferences Fault tolerance Fault containment Fault detection Fault recovery WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 3

4 Real-Time, Multi-Core & TM nterferences at shared resources Access to bus, memory, and /O Predictable arbitration with bandwidth guarantees (e.g. TDMA) Concurrency control nterferences at application level Requirements for hard real-time (HRT) TM Commit guarantee for each transaction Calculable number of transaction aborts HRT contention management Related work: [Fahmy et al. 2009] and [Schoeberl et al. 2010] Core 1 Core 2 Cache Memory Bus /O Device WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 4

5 HRT-TM Design Overview Lazy versioning No cascading roll-backs Predictable transactions by commit ordering FFO transaction commit queue Registering transactions on transaction begin Commit serialisation Bounded number of aborts and transaction delay Running Waiting Commiting Aborting Allows estimation of WCET bounds (requires the set of concurrent transactions) Predictable concurrency control in shared memory systems WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 5

6 HRT-TM Enhancement for Non Real-Time Applications with tasks of different RT requirements E.g.: Advanced Driver Assistance System Hard real-time (HRT): collision avoidance Soft real-time (SRT): night vision Best-effort (BE): traffic sign recognition Data sharing among applications Limiting interference of non-hrt tasks Prioritised TM contention manager nterferences only during commit of BE task Analysis requires profiling BE working sets Preliminary results: minimal impact of BE tasks on WCET bounds of HRT tasks Collision Avoidance, HRT, [3] Night Vision, SRT, [4] Traffic Sign Recognition, BE, [5] WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 6

7 Fault Tolerance & TM Encapsulation of vulnerable code in transactions Redundant execution of transactions Fault model Core: transient and permanent faults nterconnect: transient faults only LLC & Memory: protected by ECC (not covered in this work) Related work: [Yalcin et al. 2010] and [Sanchez et al. 2010] Permanent Faults Core Local Memory Memory Core Local Memory Bus / nterconnect LLC Transient Faults WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 7

8 FT-TM Fault Detection and Recovering Fault containment: lazy versioning TM Fault detection: redundant execution of TXs Spatial, temporal, or both cannot change global state Comparison of write sets of s and register sets Fault recovery: check-pointing system state State of memory already managed by TM Register set needs to be saved on TX begin Rollback to TX begin on fault via TX retry Fault Containment Fault-Detection Fault Recovery Contention Manager WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 8

9 FT-TM Levels of Fault Tolerance Tasks with different FT properties Low or high error rate HRT or BE requirements Fault detection and recovery schemes (1) 1 core, > 2 execution time overhead on fault (transient only) (2) 2 cores, > 1 execution time overhead on fault (3) 3 cores, < 1 execution time overhead on fault (1) (2) (3) Fault-Detection Fault-Detection Roll-back Recovery Fault-Detection Send Commit Forward Error Correction Towards an individual level of fault tolerance for each task WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 9

10 Conclusions and Future Work Transactional memory for safety-critical embedded systems Hard real-time: isolation and predictability Fault tolerance: fault containment, detection, and recovery Mixed criticality systems: different requirements for tasks Future work Enhance HRT-TM by soft real-time support Fault recovery schemes for FT-TM ntegration of real-time and fault tolerance WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 10

11 Questions? References: [1] [2] [3] [4] [5] from Eichner, M.L.; Breckon, T.P., ntegrated speed limit detection and recognition from real-time video, ntelligent Vehicles Symposium, pp , 2008, EEE WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 11

12 References: [Fahmy et al. 2009]: S. F. Fahmy, B. Ravindran, and E. D. Jensen. On bounding response times under software transactional memory in distributed multiprocessor real-time systems. DATE, 2009 [Schoeberl et al. 2010]: M. Schoeberl, F. Brandner, and J. Vitek. RTTM: real-time transactional memory. SAC, 2010 [Sanchez et al. 2010]: D. Sanchez, J.L. Aragon, and J.M. Garcia. A log-based redundant architecture for reliable parallel computation. HiPC, [Yalcin et al. 2010]: G. Yalcin, O. Unsal,. Hur, A. Cristal, and M. Valero. FaulTM: Fault-Tolerance Using Hardware Transactional Memory. Pespma, WTM13 Metzlaff, Weis, and Ungerer / TM for Safety-Critical Embedded Systems 12

Enhancing Real-Time Behaviour of Parallel Applications using Intel TSX

Enhancing Real-Time Behaviour of Parallel Applications using Intel TSX Enhancing Real-Time Behaviour of Parallel Applications using Intel TSX Florian Haas, Stefan Metzlaff, Sebastian Weis, and Theo Ungerer Department of Computer Science, University of Augsburg, Germany January

More information

Commercial-Off-the-shelf Hardware Transactional Memory for Tolerating Transient Hardware Errors

Commercial-Off-the-shelf Hardware Transactional Memory for Tolerating Transient Hardware Errors Commercial-Off-the-shelf Hardware Transactional Memory for Tolerating Transient Hardware Errors Rasha Faqeh TU- Dresden 19.01.2015 Dresden, 23.09.2011 Transient Error Recovery Motivation Folie Nr. 12 von

More information

Fault-Tolerant Execution on COTS Multi-core Processors with Hardware Transactional Memory Support

Fault-Tolerant Execution on COTS Multi-core Processors with Hardware Transactional Memory Support Fault-Tolerant Execution on COTS Multi-core Processors with Hardware Transactional Memory Support Florian Haas 1(B), Sebastian Weis 1, Theo Ungerer 1, Gilles Pokam 2, and Youfeng Wu 2 1 Department of Computer

More information

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao

Chapter 39: Concepts of Time-Triggered Communication. Wenbo Qiao Chapter 39: Concepts of Time-Triggered Communication Wenbo Qiao Outline Time and Event Triggered Communication Fundamental Services of a Time-Triggered Communication Protocol Clock Synchronization Periodic

More information

Transactional Memory for Dependable Embedded Systems

Transactional Memory for Dependable Embedded Systems al Memory for Dependable Embedded Systems Christof Fetzer Dresden University of Technology Dresden, Germany christof.fetzer@tu-dresden.de Pascal Felber University of Neuchâtel Neuchâtel, Switzerland pascal.felber@unine.ch

More information

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior

Fault Tolerance. Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure behavior Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures, or predictable: exhibit a well defined failure

More information

Context. Hardware Performance. Increasing complexity. Software Complexity. And the Result is. Embedded systems are becoming more complex every day:

Context. Hardware Performance. Increasing complexity. Software Complexity. And the Result is. Embedded systems are becoming more complex every day: Context Embedded systems are becoming more complex every day: Giorgio uttazzo g.buttazzo@sssup.it more functions higher performance higher efficiency Scuola Superiore Sant nna new hardware s Increasing

More information

Context. Giorgio Buttazzo. Scuola Superiore Sant Anna. Embedded systems are becoming more complex every day: more functions. higher performance

Context. Giorgio Buttazzo. Scuola Superiore Sant Anna. Embedded systems are becoming more complex every day: more functions. higher performance Giorgio uttazzo g.buttazzo@sssup.it Scuola Superiore Sant nna Context Embedded systems are becoming more complex every day: more functions higher performance higher efficiency new hardware platforms 2

More information

Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability

Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability Architectural Time-predictability Factor (ATF) to Measure Architectural Time Predictability Yiqiang Ding, Wei Zhang Department of Electrical and Computer Engineering Virginia Commonwealth University Outline

More information

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet

Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Atacama: An Open Experimental Platform for Mixed-Criticality Networking on Top of Ethernet Gonzalo Carvajal 1,2 and Sebastian Fischmeister 1 1 University of Waterloo, ON, Canada 2 Universidad de Concepcion,

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 18 Chapter 7 Case Studies Part.18.1 Introduction Illustrate practical use of methods described previously Highlight fault-tolerance

More information

ARTIST-Relevant Research from Linköping

ARTIST-Relevant Research from Linköping ARTIST-Relevant Research from Linköping Department of Computer and Information Science (IDA) Linköping University http://www.ida.liu.se/~eslab/ 1 Outline Communication-Intensive Real-Time Systems Timing

More information

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all

Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all Fault Tolerance Causes of failure: process failure machine failure network failure Goals: transparent: mask (i.e., completely recover from) all failures or predictable: exhibit a well defined failure behavior

More information

A Multi-Modal Composability Framework for Cyber-Physical Systems

A Multi-Modal Composability Framework for Cyber-Physical Systems S5 Symposium June 12, 2012 A Multi-Modal Composability Framework for Cyber-Physical Systems Linh Thi Xuan Phan Insup Lee PRECISE Center University of Pennsylvania Avionics, Automotive Medical Devices Cyber-physical

More information

1. Introduction. 1 Multi-Core Execution of Hard Real-Time Applications Supporting Analysability. This research is partially funded by the

1. Introduction. 1 Multi-Core Execution of Hard Real-Time Applications Supporting Analysability. This research is partially funded by the WCET ANALYSIS OF A PARALLEL 3D MULTIGRID SOLVER EXECUTED ON THE MERASA MULTI-CORE 1 Christine Rochange 2, Armelle Bonenfant 2, Pascal Sainrat 2, Mike Gerdes 3, Julian Wolf 3, Theo Ungerer 3, Zlatko Petrov

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 17 - Checkpointing II Chapter 6 - Checkpointing Part.17.1 Coordinated Checkpointing Uncoordinated checkpointing may lead

More information

An Encapsulated Communication System for Integrated Architectures

An Encapsulated Communication System for Integrated Architectures An Encapsulated Communication System for Integrated Architectures Architectural Support for Temporal Composability Roman Obermaisser Overview Introduction Federated and Integrated Architectures DECOS Architecture

More information

Ensuring Schedulability of Spacecraft Flight Software

Ensuring Schedulability of Spacecraft Flight Software Ensuring Schedulability of Spacecraft Flight Software Flight Software Workshop 7-9 November 2012 Marek Prochazka & Jorge Lopez Trescastro European Space Agency OUTLINE Introduction Current approach to

More information

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems

A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems Work in progress A Byzantine Fault-Tolerant Key-Value Store for Safety-Critical Distributed Real-Time Systems December 5, 2017 CERTS 2017 Malte Appel, Arpan Gujarati and Björn B. Brandenburg Distributed

More information

CDA 5140 Software Fault-tolerance. - however, reliability of the overall system is actually a product of the hardware, software, and human reliability

CDA 5140 Software Fault-tolerance. - however, reliability of the overall system is actually a product of the hardware, software, and human reliability CDA 5140 Software Fault-tolerance - so far have looked at reliability as hardware reliability - however, reliability of the overall system is actually a product of the hardware, software, and human reliability

More information

D 8.4 Workshop Report

D 8.4 Workshop Report Project Number 288008 D 8.4 Workshop Report Version 2.0 30 July 2014 Final Public Distribution Denmark Technical University, Eindhoven University of Technology, Technical University of Vienna, The Open

More information

FIT: A Distributed Database Performance Tradeoff. Faleiro and Abadi CS590-BDS Thamir Qadah

FIT: A Distributed Database Performance Tradeoff. Faleiro and Abadi CS590-BDS Thamir Qadah FIT: A Distributed Database Performance Tradeoff Faleiro and Abadi CS590-BDS Thamir Qadah Desirable features in Distributed Databases Impossible to achieve Fairness Isolation Throughput It is impossible

More information

parmerasa Dissemination Event Address of Welcome

parmerasa Dissemination Event Address of Welcome parmerasa Dissemination Event Address of Welcome Prof. Dr. Theo Ungerer, parmerasa Project Coordinator, University of Augsburg Prof. Dr. Jesús Labarta, Director of Computer Sciences Department of Barcelona

More information

Distributed Embedded Systems and realtime networks

Distributed Embedded Systems and realtime networks STREAM01 / Mastère SE Distributed Embedded Systems and realtime networks Embedded network TTP Marie-Agnès Peraldi-Frati AOSTE Project UNSA- CNRS-INRIA January 2008 1 Abstract Requirements for TT Systems

More information

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation

Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Safety and Reliability of Software-Controlled Systems Part 14: Fault mitigation Prof. Dr.-Ing. Stefan Kowalewski Chair Informatik 11, Embedded Software Laboratory RWTH Aachen University Summer Semester

More information

ARCHITECTURE DESIGN FOR SOFT ERRORS

ARCHITECTURE DESIGN FOR SOFT ERRORS ARCHITECTURE DESIGN FOR SOFT ERRORS Shubu Mukherjee ^ШВпШшр"* AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO T^"ТГПШГ SAN FRANCISCO SINGAPORE SYDNEY TOKYO ^ P f ^ ^ ELSEVIER Morgan

More information

Page 1 FAULT TOLERANT SYSTEMS. Coordinated Checkpointing. Time-Based Synchronization. A Coordinated Checkpointing Algorithm

Page 1 FAULT TOLERANT SYSTEMS. Coordinated Checkpointing. Time-Based Synchronization. A Coordinated Checkpointing Algorithm FAULT TOLERANT SYSTEMS Coordinated http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Chapter 6 II Uncoordinated checkpointing may lead to domino effect or to livelock Example: l P wants to take a

More information

A Server-based Approach for Predictable GPU Access Control

A Server-based Approach for Predictable GPU Access Control A Server-based Approach for Predictable GPU Access Control Hyoseung Kim * Pratyush Patel Shige Wang Raj Rajkumar * University of California, Riverside Carnegie Mellon University General Motors R&D Benefits

More information

Distributed Systems

Distributed Systems 15-440 Distributed Systems 11 - Fault Tolerance, Logging and Recovery Tuesday, Oct 2 nd, 2018 Logistics Updates P1 Part A checkpoint Part A due: Saturday 10/6 (6-week drop deadline 10/8) *Please WORK hard

More information

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien

Operating Systems, Concurrency and Time. real-time communication and CAN. Johan Lukkien Operating Systems, Concurrency and Time real-time communication and CAN Johan Lukkien (Courtesy: Damir Isovic, Reinder Bril) Question Which requirements to communication arise from real-time systems? How

More information

ECE 259 / CPS 221 Advanced Computer Architecture II (Parallel Computer Architecture) Availability. Copyright 2010 Daniel J. Sorin Duke University

ECE 259 / CPS 221 Advanced Computer Architecture II (Parallel Computer Architecture) Availability. Copyright 2010 Daniel J. Sorin Duke University Advanced Computer Architecture II (Parallel Computer Architecture) Availability Copyright 2010 Daniel J. Sorin Duke University Definition and Motivation Outline General Principles of Available System Design

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS http://www.ecs.umass.edu/ece/koren/faulttolerantsystems Part 5 Processor-Level Techniques & Byzantine Failures Chapter 2 Hardware Fault Tolerance Part.5.1 Processor-Level Techniques

More information

FaulTM: Fault-Tolerance Using Hardware Transactional Memory

FaulTM: Fault-Tolerance Using Hardware Transactional Memory FaulTM: Fault-Tolerance Using Hardware Transactional Memory Gulay Yalcin, Osman Unsal, Ibrahim Hur, Adrian Cristal, Mateo Valero To cite this version: Gulay Yalcin, Osman Unsal, Ibrahim Hur, Adrian Cristal,

More information

Eliminating Single Points of Failure in Software Based Redundancy

Eliminating Single Points of Failure in Software Based Redundancy Eliminating Single Points of Failure in Software Based Redundancy Peter Ulbrich, Martin Hoffmann, Rüdiger Kapitza, Daniel Lohmann, Reiner Schmid and Wolfgang Schröder-Preikschat EDCC May 9, 2012 SYSTEM

More information

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner

Real-Time Component Software. slide credits: H. Kopetz, P. Puschner Real-Time Component Software slide credits: H. Kopetz, P. Puschner Overview OS services Task Structure Task Interaction Input/Output Error Detection 2 Operating System and Middleware Application Software

More information

Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018

Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018 Communication Patterns in Safety Critical Systems for ADAS & Autonomous Vehicles Thorsten Wilmer Tech AD Berlin, 5. March 2018 Agenda Motivation Introduction of Safety Components Introduction to ARMv8

More information

CHAPTER 3 RECOVERY & CONCURRENCY ADVANCED DATABASE SYSTEMS. Assist. Prof. Dr. Volkan TUNALI

CHAPTER 3 RECOVERY & CONCURRENCY ADVANCED DATABASE SYSTEMS. Assist. Prof. Dr. Volkan TUNALI CHAPTER 3 RECOVERY & CONCURRENCY ADVANCED DATABASE SYSTEMS Assist. Prof. Dr. Volkan TUNALI PART 1 2 RECOVERY Topics 3 Introduction Transactions Transaction Log System Recovery Media Recovery Introduction

More information

Design and Analysis of Time-Critical Systems Introduction

Design and Analysis of Time-Critical Systems Introduction Design and Analysis of Time-Critical Systems Introduction Jan Reineke @ saarland university ACACES Summer School 2017 Fiuggi, Italy computer science Structure of this Course 2. How are they implemented?

More information

DISTRIBUTED REAL-TIME SYSTEMS

DISTRIBUTED REAL-TIME SYSTEMS Distributed Systems Fö 11/12-1 Distributed Systems Fö 11/12-2 DISTRIBUTED REAL-TIME SYSTEMS What is a Real-Time System? 1. What is a Real-Time System? 2. Distributed Real Time Systems 3. Predictability

More information

Memory Architectures for NoC-Based Real-Time Mixed Criticality Systems

Memory Architectures for NoC-Based Real-Time Mixed Criticality Systems Memory Architectures for NoC-Based Real-Time Mixed Criticality Systems Neil Audsley Real-Time Systems Group Computer Science Department University of York York United Kingdom 2011-12 1 Overview Motivation:

More information

Lecture 7: Transactional Memory Intro. Topics: introduction to transactional memory, lazy implementation

Lecture 7: Transactional Memory Intro. Topics: introduction to transactional memory, lazy implementation Lecture 7: Transactional Memory Intro Topics: introduction to transactional memory, lazy implementation 1 Transactions New paradigm to simplify programming instead of lock-unlock, use transaction begin-end

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications

Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications Overview of Potential Software solutions making multi-core processors predictable for Avionics real-time applications Marc Gatti, Thales Avionics Sylvain Girbal, Xavier Jean, Daniel Gracia Pérez, Jimmy

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Goal A Distributed Transaction We want a transaction that involves multiple nodes Review of transactions and their properties

More information

FlexRay International Workshop. Protocol Overview

FlexRay International Workshop. Protocol Overview FlexRay International Workshop 4 th March 2003 Detroit Protocol Overview Dr. Christopher Temple - Motorola FlexRay principles Provide a communication infrastructure for future generation highspeed control

More information

Fault tolerance with transactions: past, present and future. Dr Mark Little Technical Development Manager, Red Hat

Fault tolerance with transactions: past, present and future. Dr Mark Little Technical Development Manager, Red Hat Fault tolerance with transactions: past, present and future Dr Mark Little Technical Development Manager, Overview Fault tolerance Transaction fundamentals What is a transaction? ACID properties Distributed

More information

Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters

Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters Predicting Program Phases and Defending against Side-Channel Attacks using Hardware Performance Counters Junaid Nomani and Jakub Szefer Computer Architecture and Security Laboratory Yale University junaid.nomani@yale.edu

More information

A Pattern-supported Parallelization Approach

A Pattern-supported Parallelization Approach A Pattern-supported Parallelization Approach Ralf Jahr, Mike Gerdes, Theo Ungerer University of Augsburg, Germany The 2013 International Workshop on Programming Models and Applications for Multicores and

More information

A Statically Scheduled Time- Division-Multiplexed Networkon-Chip for Real-Time Systems

A Statically Scheduled Time- Division-Multiplexed Networkon-Chip for Real-Time Systems A Statically Scheduled Time- Division-Multiplexed Networkon-Chip for Real-Time Systems Martin Schoeberl, Florian Brandner, Jens Sparsø, Evangelia Kasapaki Technical University of Denamrk 1 Real-Time Systems

More information

RTC: Language Support for Real-Time Concurrency

RTC: Language Support for Real-Time Concurrency RTC: Language Support for Real-Time Concurrency Insup Lee, Susan Davidson, and Victor Wolfe 1 Introduction The RTC (Real-Time Concurrency) programming concepts and language constructs for expressing timing

More information

SpaceWire-RT Project and Baseline Concepts

SpaceWire-RT Project and Baseline Concepts SpaceWire-RT Project and Baseline Concepts Steve Parkes, Albert Ferrer Space Technology Centre, University of Dundee Yuriy Sheynin, St Petersburg University of Aerospace Instrumentation 1 Aims Overview

More information

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007

TU Wien. Fault Isolation and Error Containment in the TT-SoC. H. Kopetz. TU Wien. July 2007 TU Wien 1 Fault Isolation and Error Containment in the TT-SoC H. Kopetz TU Wien July 2007 This is joint work with C. El.Salloum, B.Huber and R.Obermaisser Outline 2 Introduction The Concept of a Distributed

More information

Fault Tolerance. Distributed Systems IT332

Fault Tolerance. Distributed Systems IT332 Fault Tolerance Distributed Systems IT332 2 Outline Introduction to fault tolerance Reliable Client Server Communication Distributed commit Failure recovery 3 Failures, Due to What? A system is said to

More information

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer?

Parallel and Distributed Systems. Programming Models. Why Parallel or Distributed Computing? What is a parallel computer? Parallel and Distributed Systems Instructor: Sandhya Dwarkadas Department of Computer Science University of Rochester What is a parallel computer? A collection of processing elements that communicate and

More information

Exam 2 Review. Fall 2011

Exam 2 Review. Fall 2011 Exam 2 Review Fall 2011 Question 1 What is a drawback of the token ring election algorithm? Bad question! Token ring mutex vs. Ring election! Ring election: multiple concurrent elections message size grows

More information

AUTOBEST: A microkernel-based system (not only) for automotive applications. Marc Bommert, Alexander Züpke, Robert Kaiser.

AUTOBEST: A microkernel-based system (not only) for automotive applications. Marc Bommert, Alexander Züpke, Robert Kaiser. AUTOBEST: A microkernel-based system (not only) for automotive applications Marc Bommert, Alexander Züpke, Robert Kaiser vorname.name@hs-rm.de Outline Motivation AUTOSAR ARINC 653 AUTOBEST Architecture

More information

ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors

ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors ReVive: Cost-Effective Architectural Support for Rollback Recovery in Shared-Memory Multiprocessors Milos Prvulovic, Zheng Zhang*, Josep Torrellas University of Illinois at Urbana-Champaign *Hewlett-Packard

More information

Overview. Prerequisites. VMware vsphere 6.5 Optimize, Upgrade, Troubleshoot

Overview. Prerequisites. VMware vsphere 6.5 Optimize, Upgrade, Troubleshoot VMware vsphere 6.5 Optimize, Upgrade, Troubleshoot Course Name Format Course Books vsphere Version Delivery Options Remote Labs Max Attendees Requirements Lab Time Availability May, 2017 Suggested Price

More information

Deterministic Ethernet & Unified Networking

Deterministic Ethernet & Unified Networking Deterministic Ethernet & Unified Networking Never bet against Ethernet Mirko Jakovljevic mirko.jakovljevic@tttech.com www.tttech.com Copyright TTTech Computertechnik AG. All rights reserved. About TTTech

More information

Real-Time Systems and Programming Languages

Real-Time Systems and Programming Languages Real-Time Systems and Programming Languages Ada, Real-Time Java and C/Real-Time POSIX Fourth Edition Alan Burns and Andy Wellings University of York * ADDISON-WESLEY An imprint of Pearson Education Harlow,

More information

Software LEIC/LETI. Lecture 20

Software LEIC/LETI. Lecture 20 Software Engineering @ LEIC/LETI Lecture 20 Last Lecture Profiler and Debugger tools Offline concurrency patterns Presentation logic Services Domain logic Remote access Data access Remote Service Database

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Goal A Distributed Transaction We want a transaction that involves multiple nodes Review of transactions and their properties

More information

SpaceWire-RT Update. EU FP7 Project Russian and European Partners. SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH

SpaceWire-RT Update. EU FP7 Project Russian and European Partners. SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH SpaceWire-RT Update EU FP7 Project Russian and European Partners SUAI, SubMicron, ELVEES University of Dundee, Astrium GmbH 1 Contents SpaceWire-RT project SpaceWire-RT protocols Oversampled SpaceFibre

More information

Lecture 6: Lazy Transactional Memory. Topics: TM semantics and implementation details of lazy TM

Lecture 6: Lazy Transactional Memory. Topics: TM semantics and implementation details of lazy TM Lecture 6: Lazy Transactional Memory Topics: TM semantics and implementation details of lazy TM 1 Transactions Access to shared variables is encapsulated within transactions the system gives the illusion

More information

Chapter 18 Parallel Processing

Chapter 18 Parallel Processing Chapter 18 Parallel Processing Multiple Processor Organization Single instruction, single data stream - SISD Single instruction, multiple data stream - SIMD Multiple instruction, single data stream - MISD

More information

QoS support for Intelligent Storage Devices

QoS support for Intelligent Storage Devices QoS support for Intelligent Storage Devices Joel Wu Scott Brandt Department of Computer Science University of California Santa Cruz ISW 04 UC Santa Cruz Mixed-Workload Requirement General purpose systems

More information

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols

Lecture 2. Basics of networking in automotive systems: Network. topologies, communication principles and standardised protocols Lecture 2. Basics of networking in automotive systems: Network topologies, communication principles and standardised protocols Objectives Introduce basic concepts used in building networks for automotive

More information

A High Integrity Distributed Deterministic Java Environment. WORDS 2002 January 7, San Diego CA

A High Integrity Distributed Deterministic Java Environment. WORDS 2002 January 7, San Diego CA A High Integrity Distributed Deterministic Java Environment WORDS 2002 January 7, San Diego CA João Ventura Skysoft Portugal SA Fridtjof Siebert & Andy Walter aicas GmbH James Hunt Forschungszentrum Informatik

More information

Validation of real-time properties of a robotic software architecture

Validation of real-time properties of a robotic software architecture Validation of real-time properties of a robotic software architecture Charles Lesire (Onera - DCSD), David Doose (Onera - DTIM), Hugues Cassé (IRIT) CAR 2011 Grenoble, France May 2011 Motivations Schedulability

More information

Time-Triggered Ethernet

Time-Triggered Ethernet Time-Triggered Ethernet Chapters 42 in the Textbook Professor: HONGWEI ZHANG CSC8260 Winter 2016 Presented By: Priyank Baxi (fr0630) fr0630@wayne.edu Outline History Overview TTEthernet Traffic Classes

More information

Distributed IMA with TTEthernet

Distributed IMA with TTEthernet Distributed IMA with thernet ARINC 653 Integration of thernet Georg Gaderer, Product Manager Georg.Gaderer@tttech.com October 30, 2012 Copyright TTTech Computertechnik AG. All rights reserved. Introduction

More information

Leveraging Transactional Memory for Energy-efficient Computing below Safe Operation Margins

Leveraging Transactional Memory for Energy-efficient Computing below Safe Operation Margins Leveraging Transactional Memory for Energy-efficient Computing below Safe Operation Margins Adrian Cristal Osman Unsal Gulay Yalcin Barcelona Computing Center, Spain first.last@bsc.es Christof Fetzer Jons-Tobias

More information

PROBABILISTIC SCHEDULING MICHAEL ROITZSCH

PROBABILISTIC SCHEDULING MICHAEL ROITZSCH Faculty of Computer Science Institute of Systems Architecture, Operating Systems Group PROBABILISTIC SCHEDULING MICHAEL ROITZSCH DESKTOP REAL-TIME 2 PROBLEM worst case execution time (WCET) largely exceeds

More information

Transactions in Task Models

Transactions in Task Models Transactions in Task Models Daniel Reichart, Peter Forbrig University of Rostock, Department of Computer Science {daniel.reichart peter.forbrig}@uni-rostock.de Abstract. In this paper we propose a method

More information

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d)

FAULT TOLERANCE. Fault Tolerant Systems. Faults Faults (cont d) Distributed Systems Fö 9/10-1 Distributed Systems Fö 9/10-2 FAULT TOLERANCE 1. Fault Tolerant Systems 2. Faults and Fault Models. Redundancy 4. Time Redundancy and Backward Recovery. Hardware Redundancy

More information

Announcements. R3 - There will be Presentations

Announcements. R3 - There will be Presentations Announcements R3 - There will be Presentations Clarify any requirements and expectations with stakeholder Unify any assumptions/dependencies with other silos Distributed Systems SWEN-343 Distributed Systems

More information

Issues in Programming Language Design for Embedded RT Systems

Issues in Programming Language Design for Embedded RT Systems CSE 237B Fall 2009 Issues in Programming Language Design for Embedded RT Systems Reliability and Fault Tolerance Exceptions and Exception Handling Rajesh Gupta University of California, San Diego ES Characteristics

More information

Mixed Criticality Scheduling in Time-Triggered Legacy Systems

Mixed Criticality Scheduling in Time-Triggered Legacy Systems Mixed Criticality Scheduling in Time-Triggered Legacy Systems Jens Theis and Gerhard Fohler Technische Universität Kaiserslautern, Germany Email: {jtheis,fohler}@eit.uni-kl.de Abstract Research on mixed

More information

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons)

) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) ) Intel)(TX)memory):) Transac'onal) Synchroniza'on) Extensions)(TSX))) Transac'ons) Transactions - Definition A transaction is a sequence of data operations with the following properties: * A Atomic All

More information

Overall Structure of RT Systems

Overall Structure of RT Systems Course Outline Introduction Characteristics of RTS Real Time Operating Systems (RTOS) OS support: scheduling, resource handling Real Time Programming Languages Language support, e.g. Ada tasking Scheduling

More information

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery

In This Lecture. Transactions and Recovery. Transactions. Transactions. Isolation and Durability. Atomicity and Consistency. Transactions Recovery In This Lecture Database Systems Lecture 15 Natasha Alechina Transactions Recovery System and Media s Concurrency Concurrency problems For more information Connolly and Begg chapter 20 Ullmanand Widom8.6

More information

Fault tolerant scheduling in real time systems

Fault tolerant scheduling in real time systems tolerant scheduling in real time systems Afrin Shafiuddin Department of Electrical and Computer Engineering University of Wisconsin-Madison shafiuddin@wisc.edu Swetha Srinivasan Department of Electrical

More information

Other Optimistic Mechanisms, Memory Management!

Other Optimistic Mechanisms, Memory Management! Other Optimistic Mechanisms, Memory Management! Richard M. Fujimoto! Professor!! Computational Science and Engineering Division! College of Computing! Georgia Institute of Technology! Atlanta, GA 30332-0765,

More information

Today: Fault Tolerance. Replica Management

Today: Fault Tolerance. Replica Management Today: Fault Tolerance Failure models Agreement in presence of faults Two army problem Byzantine generals problem Reliable communication Distributed commit Two phase commit Three phase commit Failure recovery

More information

CENTRUM INDUSTRIAL IT - Where IT meets Automation -

CENTRUM INDUSTRIAL IT - Where IT meets Automation - CENTRUM INDUSTRIAL IT - Where IT meets Automation - M.Sc. Jahanzaib Imtiaz (Institut Industrial IT) Prof. Dr.-Ing. Jürgen Jasperneite (Fraunhofer IOSB-INA) Institut Industrial IT/Fraunhofer IOSB-INA Family!

More information

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory

Lecture 21: Transactional Memory. Topics: consistency model recap, introduction to transactional memory Lecture 21: Transactional Memory Topics: consistency model recap, introduction to transactional memory 1 Example Programs Initially, A = B = 0 P1 P2 A = 1 B = 1 if (B == 0) if (A == 0) critical section

More information

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors

AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors AR-SMT: A Microarchitectural Approach to Fault Tolerance in Microprocessors Computer Sciences Department University of Wisconsin Madison http://www.cs.wisc.edu/~ericro/ericro.html ericro@cs.wisc.edu High-Performance

More information

Fault Tolerant Computing CS 530

Fault Tolerant Computing CS 530 Fault Tolerant Computing CS 530 Lecture Notes 1 Introduction to the class Yashwant K. Malaiya Colorado State University 1 Instructor, TA Instructor: Yashwant K. Malaiya, Professor malaiya @ cs.colostate.edu

More information

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems

Failure Models. Fault Tolerance. Failure Masking by Redundancy. Agreement in Faulty Systems Fault Tolerance Fault cause of an error that might lead to failure; could be transient, intermittent, or permanent Fault tolerance a system can provide its services even in the presence of faults Requirements

More information

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit

Fault Tolerance. o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication. o Distributed Commit Fault Tolerance o Basic Concepts o Process Resilience o Reliable Client-Server Communication o Reliable Group Communication o Distributed Commit -1 Distributed Commit o A more general problem of atomic

More information

A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract)

A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract) A Formal Model of Crash Recovery in Distributed Software Transactional Memory (Extended Abstract) Paweł T. Wojciechowski, Jan Kończak Poznań University of Technology 60-965 Poznań, Poland {Pawel.T.Wojciechowski,Jan.Konczak}@cs.put.edu.pl

More information

Single-Path Programming on a Chip-Multiprocessor System

Single-Path Programming on a Chip-Multiprocessor System Single-Path Programming on a Chip-Multiprocessor System Martin Schoeberl, Peter Puschner, and Raimund Kirner Vienna University of Technology, Austria mschoebe@mail.tuwien.ac.at, {peter,raimund}@vmars.tuwien.ac.at

More information

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations

Lecture 21: Transactional Memory. Topics: Hardware TM basics, different implementations Lecture 21: Transactional Memory Topics: Hardware TM basics, different implementations 1 Transactions New paradigm to simplify programming instead of lock-unlock, use transaction begin-end locks are blocking,

More information

Evolving the CORBA standard to support new distributed real-time and embedded systems

Evolving the CORBA standard to support new distributed real-time and embedded systems Evolving the CORBA standard to support new distributed real-time and embedded systems Tom Bracewell Senior Principal Software Engineer Raytheon Integrated Defense Systems Sudbury, MA. / (978) 440-2539

More information

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi

Distributed Systems. Characteristics of Distributed Systems. Lecture Notes 1 Basic Concepts. Operating Systems. Anand Tripathi 1 Lecture Notes 1 Basic Concepts Anand Tripathi CSci 8980 Operating Systems Anand Tripathi CSci 8980 1 Distributed Systems A set of computers (hosts or nodes) connected through a communication network.

More information

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs

Distributed Systems. Characteristics of Distributed Systems. Characteristics of Distributed Systems. Goals in Distributed System Designs 1 Anand Tripathi CSci 8980 Operating Systems Lecture Notes 1 Basic Concepts Distributed Systems A set of computers (hosts or nodes) connected through a communication network. Nodes may have different speeds

More information

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6)

Lecture: Consistency Models, TM. Topics: consistency models, TM intro (Section 5.6) Lecture: Consistency Models, TM Topics: consistency models, TM intro (Section 5.6) 1 Coherence Vs. Consistency Recall that coherence guarantees (i) that a write will eventually be seen by other processors,

More information

I/O CANNOT BE IGNORED

I/O CANNOT BE IGNORED LECTURE 13 I/O I/O CANNOT BE IGNORED Assume a program requires 100 seconds, 90 seconds for main memory, 10 seconds for I/O. Assume main memory access improves by ~10% per year and I/O remains the same.

More information

TWO-PHASE COMMIT ATTRIBUTION 5/11/2018. George Porter May 9 and 11, 2018

TWO-PHASE COMMIT ATTRIBUTION 5/11/2018. George Porter May 9 and 11, 2018 TWO-PHASE COMMIT George Porter May 9 and 11, 2018 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative Commons license These slides

More information

Current Topics in OS Research. So, what s hot?

Current Topics in OS Research. So, what s hot? Current Topics in OS Research COMP7840 OSDI Current OS Research 0 So, what s hot? Operating systems have been around for a long time in many forms for different types of devices It is normally general

More information