SEESAW: Set Enhanced Superpage Aware caching

Size: px
Start display at page:

Download "SEESAW: Set Enhanced Superpage Aware caching"

Transcription

1 SEESAW: Set Enhanced Superpage Aware caching Set Associativity Mayank Parasar, Abhishek Bhattacharjee Ω, Tushar Krishna School of Electrical and Computer Engineering Georgia Institute of Technology Ω Department of Computer Science Rutgers University

2 Outline 2 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

3 L1 Cache Characteristics 3 Fast lookup High hit-rate Energy Efficiency

4 Virtually Indexed Physically Tagged [VIPT] 4 Cache VA VPN Page Offset Set index block offset v tag Data block TLB set-1 PA PPN Page Offset set-n Cache = HIT/MISS

5 Virtually Indexed Physically Tagged [VIPT] Cache 5 VA VPN Page Offset TLB Set index block offset v tag VIPT Caches necessitate: (set-index + block-offset) <= Page-offset Data block set-1 PA PPN Page Offset Cache set-n = HIT/MISS

6 Impact of Associativity on Access Latency and Energy of cache 6 Cache Access Latency Cache Access Energy

7 Effect of associativity on MPKI of cache 7 High Associativity hurts latency and energy without commensurately improving hit rate

8 Revisiting L1 Cache Characteristics for VIPT Cache 8 Fast lookup Virtual memory! High hit-rate Energy Efficiency Virtual memory!

9 Opportunity: Superpage 9 Is it possible to relax constrains of Traditional VIPT cache? Yes How? Offset-bits: 12 Offset-bits: 21 Offset-bits: 30 4-KB Baseline Page 2-MB 1-GB More page-offset bits for superpage! Super Page HW and OS Support for Superpages in modern processors

10 Prevalence of superpages in modern OSes under memory fragmentation 10 Ran on 32-core; Sandybridge; 32 GB RAM Memhog causes memory fragmentation; higher %age indicates higher fragmentation

11 Outline 11 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

12 SEESAW: Concept Set:1 Set:2 et:3 v tag Data block super-page Base-page Set:1 Set:2 Set:3 Set:4 Set:5 Set:6 Set:7 Set:8 Set:9 v tag Data block 12 Faster Energy-Efficient Less-sets More-associativity More-sets Less-associativity

13 Outline 13 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

14 SEESAW: Micro-architecture 14 A VPN Partition bit Translation Filter Table (TFT) Superpage offset Basepage Offset Set index block offset set-1 v tag Data block Partition decoder v tag Decodes partition index from partition bit Data block set-1 TLB Predicts whether page is superpage A PPN Basepage Offset set-n Partition-0 Cache Partition-1 set-n

15 SEESAW: Micro-architecture 15 Superpage offset A VPN Basepage Offset Partition bit Translation Filter Table (TFT) Set index block offset set-1 v tag Data block Partition decoder v tag Data block set-1 TLB A PPN Basepage Offset set-n Partition-0 Cache Partition-1 set-n

16 SEESAW: Superpage access 16 Superpage offset A VPN Basepage Offset Partition bit Translation Filter Table (TFT) Set index block offset set-1 v tag Super Page Data block Partition decoder v tag Data block set-1 TLB A PPN Basepage Offset set-n Partition-0 Cache Partition-1 set-n = HIT/MISS

17 SEESAW: Basepage access 17 A VPN Basepage Offset Partition index Translation Filter Table (TFT) Set index block offset set-1 v tag Not a Super Page Data block Partition decoder v tag Data block set-1 TLB A PPN Basepage Offset set-n Partition-0 Cache Partition-1 = HIT/MISS set-n

18 18 SEESAW: TFT and Partition Decoder Translation Filter Table (TFT) Partition decoder Tag: VA[63:21] Super page? Translation Filter Table Ø TFT Lookup Ø Direct mapped Ø False negative due to size Ø TFT Update Ø VA misprediction Ø 2MB L1-TLB fill Ø 2MB L1-TLB Invalidation Partition Decoder Ø For 32kB Cache Ø For 64kB Cache

19 SEESAW: Cache line insertion policy A VPN Partition bit Translation Filter Table (TFT) Baseline Page Offset Set index block offset set-1 v tag Data block Partition decoder v Which partition should cacheline be inserted? tag Data block TLB 19 set-1 A PPN set-n Baseline Page Offset Partition-0 Cache Partition-1 set-n

20 20 SEESAW: Cache line insertion policy 4way-8way Superpage miss: victim within the partition Basepage miss: victim within the set 4way Uses LRU within the associated partition Avoid installing the same line twice Saves energy

21 21 SEESAW: System Level Optimization Cache coherence Cache coherence lookups use physical address Snoopy provide higher energy benefits over Directory based coherence Page table modifications Superpage splintered into multiple basepages Multiple basepages promoted to superpages

22 Outline 22 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

23 SEESAW: Simulated system 23

24 24 SEESAW: Workloads Spec Parsec Cloudsuite Tunkrank Biobench Mummer Tiger MongoDB Server Workload graph500 Nutch Hadoop Social-event web service Olia Key value store Redis

25 Outline 25 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

26 SEESAW: Performance improvement 26 SEESAW observes 3-10% better runtime over baseline

27 27 SEESAW: Performance improvement Out-of-order CPU in-order CPU ~10% performance improvement for 64kB cache in OoO CPUs

28 28 SEESAW: Energy savings 10-20% more energy savings over CPUs using baseline VIPT caches! Approx. one-third of energy savings from coherence

29 SEESAW: TFT analysis and Way-Prediction 29 TFT Analysis SEESAW + Way-prediction 16-entry TFT drives miss-rate under 10% SEESAW+WP shows symbiotic behavior

30 Outline 30 Motivation SEESAW: Concept SEESAW: Micro-architecture Evaluation Methodology Results Conclusion

31 Revisiting L1 Cache Characteristic 31 Fast lookup High hit-rate Energy Efficiency

32 SEESAW: Conclusion L1 caches are optimized for latency VIPT imposes indirect restriction on number of sets in a L1 cache, increasing associativity There is non-linear relation between associativity and access latency/energy of the L1 cache Superpages are often used in modern OSes SEESAW provides low-associative access to superpages, providing both latency and energy benefits Up to 10 % performance improvement and 20 % energy reduction in modern workloads SEESAW has extremely low-overhead and is readily implementable Set Associativity 32

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

VIRTUAL MEMORY II. Jo, Heeseung

VIRTUAL MEMORY II. Jo, Heeseung VIRTUAL MEMORY II Jo, Heeseung TODAY'S TOPICS How to reduce the size of page tables? How to reduce the time for address translation? 2 PAGE TABLES Space overhead of page tables The size of the page table

More information

Virtual Memory. Motivation:

Virtual Memory. Motivation: Virtual Memory Motivation:! Each process would like to see its own, full, address space! Clearly impossible to provide full physical memory for all processes! Processes may define a large address space

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 16: Memory Management and Paging Announcement Homework 2 is out To be posted on ilearn today Due in a week (the end of Feb 19 th ). 2 Recap: Fixed

More information

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Address Translation Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to reduce the size of page tables? How to reduce the time for

More information

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation Kevin Hsieh Accelerating Pointer Chasing in 3D-Stacked : Challenges, Mechanisms, Evaluation Kevin Hsieh Samira Khan, Nandita Vijaykumar, Kevin K. Chang, Amirali Boroumand, Saugata Ghose, Onur Mutlu Executive Summary

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

Chapter 8. Virtual Memory

Chapter 8. Virtual Memory Operating System Chapter 8. Virtual Memory Lynn Choi School of Electrical Engineering Motivated by Memory Hierarchy Principles of Locality Speed vs. size vs. cost tradeoff Locality principle Spatial Locality:

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 3 submission deadline: Nov.

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

ADDRESS TRANSLATION AND TLB

ADDRESS TRANSLATION AND TLB ADDRESS TRANSLATION AND TLB Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 4 submission deadline: Mar.

More information

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) Important from last time We re trying to build efficient virtual address spaces Why?? Virtual / physical translation is done by HW and

More information

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont Lecture 16 Virtual Memory Fall 2018 Jon Beaumont http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin, Brehob, Falsafi, Hill, Hoe, Lipasti, Shen, Smith, Sohi, Tyson, and

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

2-Level Page Tables. Virtual Address Space: 2 32 bytes. Offset or Displacement field in VA: 12 bits

2-Level Page Tables. Virtual Address Space: 2 32 bytes. Offset or Displacement field in VA: 12 bits -Level Page Tables Virtual Address (VA): bits Offset or Displacement field in VA: bits Virtual Address Space: bytes Page Size: bytes = KB Virtual Page Number field in VA: - = bits Number of Virtual Pages:

More information

Computer Science 146. Computer Architecture

Computer Science 146. Computer Architecture Computer Architecture Spring 2004 Harvard University Instructor: Prof. dbrooks@eecs.harvard.edu Lecture 18: Virtual Memory Lecture Outline Review of Main Memory Virtual Memory Simple Interleaving Cycle

More information

The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!!

The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!! The Reuse Cache Downsizing the Shared Last-Level Cache! Jorge Albericio 1, Pablo Ibáñez 2, Víctor Viñals 2, and José M. Llabería 3!!! 1 2 3 Modern CMPs" Intel e5 2600 (2013)! SLLC" AMD Orochi (2012)! SLLC"

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

1. Creates the illusion of an address space much larger than the physical memory

1. Creates the illusion of an address space much larger than the physical memory Virtual memory Main Memory Disk I P D L1 L2 M Goals Physical address space Virtual address space 1. Creates the illusion of an address space much larger than the physical memory 2. Make provisions for

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES

EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES EFFICIENTLY ENABLING CONVENTIONAL BLOCK SIZES FOR VERY LARGE DIE- STACKED DRAM CACHES MICRO 2011 @ Porte Alegre, Brazil Gabriel H. Loh [1] and Mark D. Hill [2][1] December 2011 [1] AMD Research [2] University

More information

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe Virtual Memory: Concepts 5 23 / 8 23: Introduction to Computer Systems 6 th Lecture, Mar. 2, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Address spaces VM as a tool lfor caching VM as a tool for

More information

ECE 30 Introduction to Computer Engineering

ECE 30 Introduction to Computer Engineering ECE 0 Introduction to Computer Engineering Study Problems, Set #9 Spring 01 1. Given the following series of address references given as word addresses:,,, 1, 1, 1,, 8, 19,,,,, 7,, and. Assuming a direct-mapped

More information

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements CS 61C: Great Ideas in Computer Architecture Virtual II Guest Lecturer: Justin Hsia Agenda Review of Last Lecture Goals of Virtual Page Tables Translation Lookaside Buffer (TLB) Administrivia VM Performance

More information

CS 537 Lecture 6 Fast Translation - TLBs

CS 537 Lecture 6 Fast Translation - TLBs CS 537 Lecture 6 Fast Translation - TLBs Michael Swift 9/26/7 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift Faster with TLBS Questions answered in this lecture: Review

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

Virtual Memory. Virtual Memory

Virtual Memory. Virtual Memory Virtual Memory Virtual Memory Main memory is cache for secondary storage Secondary storage (disk) holds the complete virtual address space Only a portion of the virtual address space lives in the physical

More information

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays. CSE420 Virtual Memory Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) Virtual Memory Virtual memory first used to relive programmers from the burden

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 28: More Virtual Memory Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Virtual memory used to protect applications from

More information

Portland State University ECE 587/687. Caches and Memory-Level Parallelism

Portland State University ECE 587/687. Caches and Memory-Level Parallelism Portland State University ECE 587/687 Caches and Memory-Level Parallelism Revisiting Processor Performance Program Execution Time = (CPU clock cycles + Memory stall cycles) x clock cycle time For each

More information

What s Virtual Memory Management. Virtual Memory Management: TLB Prefetching & Page Walk. Memory Management Unit (MMU) Problems to be handled

What s Virtual Memory Management. Virtual Memory Management: TLB Prefetching & Page Walk. Memory Management Unit (MMU) Problems to be handled Virtual Memory Management: TLB Prefetching & Page Walk Yuxin Bai, Yanwei Song CSC456 Seminar Nov 3, 2011 What s Virtual Memory Management Illusion of having a large amount of memory Protection from other

More information

Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation!

Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation! Banshee: Bandwidth-Efficient DRAM Caching via Software/Hardware Cooperation! Xiangyao Yu 1, Christopher Hughes 2, Nadathur Satish 2, Onur Mutlu 3, Srinivas Devadas 1 1 MIT 2 Intel Labs 3 ETH Zürich 1 High-Bandwidth

More information

Survey results. CS 6354: Memory Hierarchy I. Variety in memory technologies. Processor/Memory Gap. SRAM approx. 4 6 transitors/bit optimized for speed

Survey results. CS 6354: Memory Hierarchy I. Variety in memory technologies. Processor/Memory Gap. SRAM approx. 4 6 transitors/bit optimized for speed Survey results CS 6354: Memory Hierarchy I 29 August 2016 1 2 Processor/Memory Gap Variety in memory technologies SRAM approx. 4 6 transitors/bit optimized for speed DRAM approx. 1 transitor + capacitor/bit

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance 6.823, L11--1 Cache Performance and Memory Management: From Absolute Addresses to Demand Paging Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Cache Performance 6.823,

More information

Memory Management. Dr. Yingwu Zhu

Memory Management. Dr. Yingwu Zhu Memory Management Dr. Yingwu Zhu Big picture Main memory is a resource A process/thread is being executing, the instructions & data must be in memory Assumption: Main memory is super big to hold a program

More information

COSC3330 Computer Architecture Lecture 20. Virtual Memory

COSC3330 Computer Architecture Lecture 20. Virtual Memory COSC3330 Computer Architecture Lecture 20. Virtual Memory Instructor: Weidong Shi (Larry), PhD Computer Science Department University of Houston Virtual Memory Topics Reducing Cache Miss Penalty (#2) Use

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

CS 6354: Memory Hierarchy I. 29 August 2016

CS 6354: Memory Hierarchy I. 29 August 2016 1 CS 6354: Memory Hierarchy I 29 August 2016 Survey results 2 Processor/Memory Gap Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Virtual Memory CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructor: Justin Hsia 7/30/2012 Summer 2012 Lecture #24 1 Review of Last Lecture (1/2) Multiple instruction issue increases max speedup, but

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Lecture: DRAM Main Memory. Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3)

Lecture: DRAM Main Memory. Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3) Lecture: DRAM Main Memory Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3) 1 TLB and Cache 2 Virtually Indexed Caches 24-bit virtual address, 4KB page size 12 bits offset and 12 bits

More information

Handout 4 Memory Hierarchy

Handout 4 Memory Hierarchy Handout 4 Memory Hierarchy Outline Memory hierarchy Locality Cache design Virtual address spaces Page table layout TLB design options (MMU Sub-system) Conclusion 2012/11/7 2 Since 1980, CPU has outpaced

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 9, 2015

More information

Chapter 8 Memory Management

Chapter 8 Memory Management Chapter 8 Memory Management Da-Wei Chang CSIE.NCKU Source: Abraham Silberschatz, Peter B. Galvin, and Greg Gagne, "Operating System Concepts", 9th Edition, Wiley. 1 Outline Background Swapping Contiguous

More information

CHAPTER 4 MEMORY HIERARCHIES TYPICAL MEMORY HIERARCHY TYPICAL MEMORY HIERARCHY: THE PYRAMID CACHE PERFORMANCE MEMORY HIERARCHIES CACHE DESIGN

CHAPTER 4 MEMORY HIERARCHIES TYPICAL MEMORY HIERARCHY TYPICAL MEMORY HIERARCHY: THE PYRAMID CACHE PERFORMANCE MEMORY HIERARCHIES CACHE DESIGN CHAPTER 4 TYPICAL MEMORY HIERARCHY MEMORY HIERARCHIES MEMORY HIERARCHIES CACHE DESIGN TECHNIQUES TO IMPROVE CACHE PERFORMANCE VIRTUAL MEMORY SUPPORT PRINCIPLE OF LOCALITY: A PROGRAM ACCESSES A RELATIVELY

More information

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Virtual Memory CS 3410 Computer System Organization & Programming [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Click any letter let me know you re here today. Instead of a DJ Clicker Question today,

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 10

ECE 571 Advanced Microprocessor-Based Design Lecture 10 ECE 571 Advanced Microprocessor-Based Design Lecture 10 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 2 October 2014 Performance Concerns Caches Almost all programming can be

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

Memory Hierarchy. Mehran Rezaei

Memory Hierarchy. Mehran Rezaei Memory Hierarchy Mehran Rezaei What types of memory do we have? Registers Cache (Static RAM) Main Memory (Dynamic RAM) Disk (Magnetic Disk) Option : Build It Out of Fast SRAM About 5- ns access Decoders

More information

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation Virtual Memory 2 To do q Handling bigger address spaces q Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University

Computer Architecture. Memory Hierarchy. Lynn Choi Korea University Computer Architecture Memory Hierarchy Lynn Choi Korea University Memory Hierarchy Motivated by Principles of Locality Speed vs. Size vs. Cost tradeoff Locality principle Temporal Locality: reference to

More information

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources.

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Virtual Memory Stefanos Kaxiras Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Caches Review & Intro Intended to make the slow main memory look fast by

More information

Virtual Memory 2. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. q Handling bigger address spaces q Speeding translation Virtual Memory 2 q Handling bigger address spaces q Speeding translation Two considerations with page tables Mapping must be fast Done on every memory reference, at least 1 per instruction With large address

More information

Virtual Memory. Today. Handling bigger address spaces Speeding translation

Virtual Memory. Today. Handling bigger address spaces Speeding translation Virtual Memory Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least 1

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging 6.823, L8--1 Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Highly-Associative

More information

SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS

SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS SOFTWARE-DEFINED MEMORY HIERARCHIES: SCALABILITY AND QOS IN THOUSAND-CORE SYSTEMS DANIEL SANCHEZ MIT CSAIL IAP MEETING MAY 21, 2013 Research Agenda Lack of technology progress Moore s Law still alive Power

More information

Transla'on, Protec'on, and Virtual Memory. 2/25/16 CS 152 Sec'on 6 Colin Schmidt

Transla'on, Protec'on, and Virtual Memory. 2/25/16 CS 152 Sec'on 6 Colin Schmidt Transla'on, Protec'on, and Virtual Memory 2/25/16 CS 152 Sec'on 6 Colin Schmidt Agenda Protec'on Transla'on Virtual Memory Lab 1 Feedback Ques'ons/Open-ended discussion Hand back Lab 1 Protec'on Why? Supervisor

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

CS 5523 Operating Systems: Memory Management (SGG-8)

CS 5523 Operating Systems: Memory Management (SGG-8) CS 5523 Operating Systems: Memory Management (SGG-8) Instructor: Dr Tongping Liu Thank Dr Dakai Zhu, Dr Palden Lama, and Dr Tim Richards (UMASS) for providing their slides Outline Simple memory management:

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568/668 Part Hierarchy - I Israel Koren ECE568/Koren Part.. 3 4 5 6 7 8 9 A B C D E F 6 blocks 3 4 block

More information

Lecture: DRAM Main Memory. Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3)

Lecture: DRAM Main Memory. Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3) Lecture: DRAM Main Memory Topics: virtual memory wrap-up, DRAM intro and basics (Section 2.3) 1 TLB and Cache Is the cache indexed with virtual or physical address? To index with a physical address, we

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Virtual Instructor: Michael Greenbaum 1 New-School Machine Structures Software Parallel Requests Assigned to computer e.g., Search Katz

More information

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements CS61C L25 Virtual I (1) inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #25 Virtual I 27-8-7 Scott Beamer, Instructor Another View of the Hierarchy Thus far{ Next: Virtual { Regs Instr.

More information

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation Virtual Memory 2 Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

WALL: A Writeback-Aware LLC Management for PCM-based Main Memory Systems

WALL: A Writeback-Aware LLC Management for PCM-based Main Memory Systems : A Writeback-Aware LLC Management for PCM-based Main Memory Systems Bahareh Pourshirazi *, Majed Valad Beigi, Zhichun Zhu *, and Gokhan Memik * University of Illinois at Chicago Northwestern University

More information

Main Memory (Fig. 7.13) Main Memory

Main Memory (Fig. 7.13) Main Memory Main Memory (Fig. 7.13) CPU CPU CPU Cache Multiplexor Cache Cache Bus Bus Bus Memory Memory bank 0 Memory bank 1 Memory bank 2 Memory bank 3 Memory b. Wide memory organization c. Interleaved memory organization

More information

Write only as much as necessary. Be brief!

Write only as much as necessary. Be brief! 1 CIS371 Computer Organization and Design Midterm Exam Prof. Martin Thursday, March 15th, 2012 This exam is an individual-work exam. Write your answers on these pages. Additional pages may be attached

More information

Virtual Memory Overview

Virtual Memory Overview Virtual Memory Overview Virtual address (VA): What your program uses Virtual Page Number Page Offset Physical address (PA): What actually determines where in memory to go Physical Page Number Page Offset

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave

More information

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste!

More information

COS 318: Operating Systems. Virtual Memory and Address Translation

COS 318: Operating Systems. Virtual Memory and Address Translation COS 318: Operating Systems Virtual Memory and Address Translation Andy Bavier Computer Science Department Princeton University http://www.cs.princeton.edu/courses/archive/fall10/cos318/ Today s Topics

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

EITF20: Computer Architecture Part 5.1.1: Virtual Memory

EITF20: Computer Architecture Part 5.1.1: Virtual Memory EITF20: Computer Architecture Part 5.1.1: Virtual Memory Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Virtual memory Case study AMD Opteron Summary 2 Memory hierarchy 3 Cache performance 4 Cache

More information

ECE/CS 757: Homework 1

ECE/CS 757: Homework 1 ECE/CS 757: Homework 1 Cores and Multithreading 1. A CPU designer has to decide whether or not to add a new micoarchitecture enhancement to improve performance (ignoring power costs) of a block (coarse-grain)

More information

Memory Hierarchy Requirements. Three Advantages of Virtual Memory

Memory Hierarchy Requirements. Three Advantages of Virtual Memory CS61C L12 Virtual (1) CS61CL : Machine Structures Lecture #12 Virtual 2009-08-03 Jeremy Huddleston Review!! Cache design choices: "! Size of cache: speed v. capacity "! size (i.e., cache aspect ratio)

More information

Topics to be covered. EEC 581 Computer Architecture. Virtual Memory. Memory Hierarchy Design (II)

Topics to be covered. EEC 581 Computer Architecture. Virtual Memory. Memory Hierarchy Design (II) EEC 581 Computer Architecture Memory Hierarchy Design (II) Department of Electrical Engineering and Computer Science Cleveland State University Topics to be covered Cache Penalty Reduction Techniques Victim

More information

Large Pages and Lightweight Memory Management in Virtualized Environments: Can You Have it Both Ways?

Large Pages and Lightweight Memory Management in Virtualized Environments: Can You Have it Both Ways? Large Pages and Lightweight Memory Management in Virtualized Environments: Can You Have it Both Ways? Binh Pham Ján Veselý Gabriel H. Loh Abhishek Bhattacharjee Department of Computer Science AMD Research

More information

Module 2: Virtual Memory and Caches Lecture 3: Virtual Memory and Caches. The Lecture Contains:

Module 2: Virtual Memory and Caches Lecture 3: Virtual Memory and Caches. The Lecture Contains: The Lecture Contains: Program Optimization for Multi-core: Hardware Side of It Contents RECAP: VIRTUAL MEMORY AND CACHE Why Virtual Memory? Virtual Memory Addressing VM VA to PA Translation Page Fault

More information

Topic 18: Virtual Memory

Topic 18: Virtual Memory Topic 18: Virtual Memory COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Virtual Memory Any time you see virtual, think using a level of indirection

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

Demand Code Paging for NAND Flash in MMU-less Embedded Systems. Jose Baiocchi and Bruce Childers

Demand Code Paging for NAND Flash in MMU-less Embedded Systems. Jose Baiocchi and Bruce Childers Demand Code Paging for NAND Flash in MMU-less Embedded Systems Jose Baiocchi and Pittsburgh PA USA childers@cs.pitt.edu Memory Shadowing Range of embedded systems commonly have both main memory and storage

More information

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668

UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering. Computer Architecture ECE 568/668 UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering Computer Architecture ECE 568/668 Part 11 Memory Hierarchy - I Israel Koren ECE568/Koren Part.11.1 ECE568/Koren Part.11.2 Ideal Memory

More information

Cache Performance (H&P 5.3; 5.5; 5.6)

Cache Performance (H&P 5.3; 5.5; 5.6) Cache Performance (H&P 5.3; 5.5; 5.6) Memory system and processor performance: CPU time = IC x CPI x Clock time CPU performance eqn. CPI = CPI ld/st x IC ld/st IC + CPI others x IC others IC CPI ld/st

More information

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan SE-292 High Performance Computing Memory Hierarchy R. Govindarajan govind@serc Reality Check Question 1: Are real caches built to work on virtual addresses or physical addresses? Question 2: What about

More information

SWAP: EFFECTIVE FINE-GRAIN MANAGEMENT

SWAP: EFFECTIVE FINE-GRAIN MANAGEMENT : EFFECTIVE FINE-GRAIN MANAGEMENT OF SHARED LAST-LEVEL CACHES WITH MINIMUM HARDWARE SUPPORT Xiaodong Wang, Shuang Chen, Jeff Setter, and José F. Martínez Computer Systems Lab Cornell University Page 1

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Memory Hierarchy & Caches Motivation 10000 Performance 1000 100 10 Processor Memory 1 1985 1990 1995 2000 2005 2010 Want memory to appear: As fast as CPU As large as required

More information

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 13: Virtual Memory Management CSC 469H1F Fall 2006 Angela Demke Brown Topics Review virtual memory basics Large (64-bit) virtual address spaces Multiple Page Sizes Placement policy and cache effects

More information

Virtualized and Flexible ECC for Main Memory

Virtualized and Flexible ECC for Main Memory Virtualized and Flexible ECC for Main Memory Doe Hyun Yoon and Mattan Erez Dept. Electrical and Computer Engineering The University of Texas at Austin ASPLOS 2010 1 Memory Error Protection Applying ECC

More information

Caches. Cache Memory. memory hierarchy. CPU memory request presented to first-level cache first

Caches. Cache Memory. memory hierarchy. CPU memory request presented to first-level cache first Cache Memory memory hierarchy CPU memory request presented to first-level cache first if data NOT in cache, request sent to next level in hierarchy and so on CS3021/3421 2017 jones@tcd.ie School of Computer

More information