CS 153 Design of Operating Systems

Size: px
Start display at page:

Download "CS 153 Design of Operating Systems"

Transcription

1 CS 53 Design of Operating Systems Spring 8 Lectre 6: Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals by Dave O hallaron

2 Recap: Address Spaces Linear address space: Ordered set of contigos non-negative integer addresses: {,, 2, 3 } Virtal address space: Set of N = 2 n virtal addresses {,, 2, 3,, N-} Physical address space: Set of M = 2 m physical addresses {,, 2, 3,, M-} Clean distinction between data (bytes) and their attribtes (addresses) Each object can now have mltiple addresses Every byte in main memory: one physical address, one (or more) virtal addresses CS53 Lectre 6 Paging 2

3 Recap: Paging Paging solves the external fragmentation problem by sing fixed sized nits in both physical and virtal memory Virtal Memory Page Page 2 Page 3 Physical Memory Page N CS53 Lectre 6 Paging 3

4 Segmentation and Paging Can combine segmentation and paging The x86 spports segments and paging Use segments to manage logically related nits Modle, procedre, stack, file, data, etc. Segments vary in size, bt sally large (mltiple pages) Use pages to partition segments into fixed size chnks Makes segments easier to manage within physical memory» Segments become pageable rather than moving segments into and ot of memory, jst move page portions of segment Need to allocate page table entries only for those pieces of the segments that have themselves been allocated Tends to be complex CS53 Lectre 6 Paging 4

5 Managing Page Tables Last lectre we compted the size of the page table for a 32-bit address space w/ 4K pages to be 4MB This is far too mch overhead for each process How can we redce this overhead? Observation: Only need to map the portion of the address space actally being sed (tiny fraction of entire addr space) How do we only map what is being sed? Can dynamically extend page table Use another level of indirection: two-level page tables CS53 Lectre 6 Paging 5

6 Two-Level Page Tables Two-level page tables Virtal addresses (VAs) have three parts:» Master page nmber, secondary page nmber, and offset Master page table maps VAs to secondary page table Secondary page table maps page nmber to physical page Offset indicates where in physical page address is located CS53 Lectre 6 Paging 6

7 One-Level Page Lookps Physical Memory Virtal Address Page nmber Offset Page Table Physical Address Page frame Offset Page frame CS53 Lectre 6 Paging 7

8 Two-Level Page Lookps Physical Memory Virtal Address Master page nmber Secondary Offset Page table Physical Address Page frame Offset Master Page Table Page frame Secondary Page Table CS53 Lectre 6 Paging 8

9 Example How many bits in offset? 4K = 2 bits 4KB pages, 4 bytes/pte Want master page table in one page: 4K/4 bytes = K entries Hence, K secondary page tables How many bits? Master page nmber = bits (becase K entries) Offset = 2 bits Secondary page nmber = 32 2 = bits CS53 Lectre 6 Paging 9

10 A Two-Level Page Table Hierarchy Level page table Level 2 page tables Virtal memory VP PTE PTE PTE 2 (nll) PTE 3 (nll) PTE 4 (nll) PTE 5 (nll) PTE 6 (nll) PTE 7 (nll) PTE... PTE 23 PTE... PTE VP 23 VP VP 247 Gap 2K allocated VM pages for code and data 6K nallocated VM pages PTE 8 (K - 9) nll PTEs 23 nll PTEs 32 bit addresses, 4KB pages, 4-byte PTEs PTE nallocated pages VP 925 allocated VM page CS53 Lectre 6 Paging for the stack nallocated pages

11 Two-level Paging Two-level paging redces memory overhead of paging Only need one master page table and one secondary page table when a process begins As address space grows, allocate more secondary page tables and add PTEs to master page table What problem remains? Hint: what abot memory lookps? CS53 Lectre 6 Paging

12 Efficient Translations Recall that or original page table scheme dobled the latency of doing memory lookps One lookp into the page table, another to fetch the data Now two-level page tables triple the latency! Two lookps into the page tables, a third to fetch the data And this assmes the page table is in memory How can we se paging bt also have lookps cost abot the same as fetching from memory? Cache translations in hardware Translation Lookaside Bffer (TLB) TLB managed by Memory Management Unit (MMU) CS53 Lectre 6 Paging 2

13 TLBs Translation Lookaside Bffers Translate virtal page #s into PTEs (not physical addrs) Can be done in a single machine cycle TLBs implemented in hardware Flly associative cache (all entries looked p in parallel)» Keys are virtal page nmbers» Vales are PTEs (entries from page tables) With PTE + offset, can directly calclate physical address Why does this help? Exploits locality: Processes se only handfl of pages at a time» 6-48 entries/pages (64-92K)» Only need those pages to be mapped Hit rates are therefore very important CS53 Lectre 6 Paging 3

14 TLB Hit CPU Chip TLB 2 PTE VPN 3 CPU VA MMU PA 4 Cache/ Memory Data 5 A TLB hit eliminates one or more memory accesses CS53 Lectre 6 Paging 4

15 TLB Miss CPU Chip TLB 4 2 PTE VPN 3 CPU VA MMU PTEA PA Cache/ Memory 5 Data 6 A TLB miss incrs an additional memory access (the PTE) Fortnately, TLB misses are rare. Why? CS53 Lectre 6 Paging 5

16 Managing TLBs Hit rate: Address translations for most instrctions are handled sing the TLB >99% of translations, bt there are misses (TLB miss) Who places translations into the TLB (loads the TLB)? Hardware (Memory Management Unit) [x86]» Knows where page tables are in main memory» OS maintains tables, HW accesses them directly» Tables have to be in HW-defined format (inflexible) Software loaded TLB (OS) [MIPS, Alpha, Sparc, PowerPC]» TLB falts to the OS, OS finds appropriate PTE, loads it in TLB» Mst be fast (bt still 2-2 cycles)» CPU ISA has instrctions for maniplating TLB» Tables can be in any format convenient for OS (flexible) CS53 Lectre 6 Paging 6

17 Managing TLBs (2) OS ensres that TLB and page tables are consistent When it changes the protection bits of a PTE, it needs to invalidate the PTE if it is in the TLB (special hardware instrction) Reload TLB on a process context switch Invalidate all entries Why? Who does it? When the TLB misses and a new PTE has to be loaded, a cached PTE mst be evicted Choosing PTE to evict is called the TLB replacement policy Implemented in hardware, often simple, e.g., Least Recently Used (LRU) CS53 Lectre 6 Paging 7

18 Simple Memory System Example Addressing 4-bit virtal addresses 2-bit physical address Page size = 64 bytes VPN Virtal Page Nmber VPO Virtal Page Offset PPN PPO Physical Page Nmber CS53 Lectre 6 Paging 8 Physical Page Offset

19 Simple Memory System Page Table Only show first 6 entries (ot of 256) VPN PPN Valid VPN PPN Valid A B 4 C 5 6 D 2D 6 E 7 F D CS53 Lectre 6 Paging 9

20 Simple Memory System TLB 6 entries 4-way associative TLBT TLBI VPN VPO Set Tag PPN Valid Tag PPN Valid Tag PPN Valid Tag PPN Valid 3 9 D D 2 4 A CS53 Lectre 6 Paging 2 D A 34 2

21 Simple Memory System Cache 6 lines, 4-byte block size Physically addressed Direct mapped CT CI CO PPN PPO Idx Tag Valid B B B2 B3 Idx Tag Valid B B B2 B A D 2 B A 2D 93 5 DA 3B 3 36 B B D 8F 9 C 2 5 D F D D C2 E B CS53 Lectre 6 Paging 2 DF 3 F 4 D3

22 Address Translation Example # Virtal Address: x3d4 TLBT TLBI VPN VPO xf x3 x3 Y N xd VPN TLBI TLBT TLB Hit? Page Falt? PPN: Physical Address CT CI CO PPN PPO x5 xd Y x36 CO CI CT Hit? Byte: CS53 Lectre 6 Paging 22

23 Address Translation Example #2 Virtal Address: xb8f TLBT TLBI VPN VPO x2e 2 xb N Y TBD VPN TLBI TLBT TLB Hit? Page Falt? PPN: Physical Address CT CI CO PPN PPO CO CI CT Hit? Byte: CS53 Lectre 6 Paging 23

24 Address Translation Example #3 Virtal Address: x2 TLBT TLBI VPN VPO x x N N x28 VPN TLBI TLBT TLB Hit? Page Falt? PPN: Physical Address CT CI CO PPN PPO x8 x28 N Mem CO CI CT Hit? Byte: CS53 Lectre 6 Paging 24

25 Intel Core i7 Memory System Processor package Core x4 Registers Instrction fetch MMU (addr translation) L d-cache 32 KB, 8-way L i-cache 32 KB, 8-way L d-tlb 64 entries, 4-way L i-tlb 28 entries, 4-way L2 nified cache 256 KB, 8-way L2 nified TLB 52 entries, 4-way QickPath interconnect GB/s each To other cores To I/O bridge L3 nified cache 8 MB, 6-way (shared by all cores) DDR3 Memory controller 3 x 64 GB/s 32 GB/s total (shared by all cores) CS53 Lectre 6 PagingMain memory 25

26 End-to-end Core i7 Address Translation CPU Virtal address (VA) /64 Reslt L2, L3, and main memory VPN 32 VPO 4 L hit L miss TLB miss TLBT TLBI... TLB hit L d-cache (64 sets, 8 lines/set)... L TLB (6 sets, 4 entries/set) CR3 9 VPN PTE VPN2 VPN3 VPN4 PTE PTE PTE 4 2 PPN PPO Physical address (PA) CT CI CO Page tables CS53 Lectre 6 Paging 26

27 Core i7 Level -3 Page Table Entries 63 XD 62 Unsed Page table physical base address Unsed G PS A CD WT U/S R/W P= Available for OS (page table location on disk) P= Each entry references a 4K child page table P: Child page table present in physical memory () or not (). R/W: Read-only or read-write access access permission for all reachable pages. U/S: ser or spervisor (kernel) mode access permission for all reachable pages. WT: Write-throgh or write-back cache policy for the child page table. CD: Caching disabled or enabled for the child page table. A: Reference bit (set by MMU on reads and writes, cleared by software). PS: Page size either 4 KB or 4 MB (defined for Level PTEs only). G: Global page (don t evict from TLB on task switch) Page table physical base address: 4 most significant bits of physical page table address (forces page tables to be 4KB aligned) CS53 Lectre 6 Paging 27

28 Smmary Page Optimizations Managing page tables (space) Efficient translations (TLBs) (time) CS53 Lectre 6 Paging 28

29 Next time Advanced Paging Preparation Read Modle 2 CS53 Lectre 6 Paging 29

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 17: Advanced Paging Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 153 Design of Operating Systems Spring 18 Lectre 15: Virtal Address Space Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian OS Abstractions Applications

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 53 Design of Operating Systems Spring 8 Lectre 9: Locality and Cache Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

CS 153 Design of Operating Systems Winter 2016

CS 153 Design of Operating Systems Winter 2016 CS 153 Design of Operating Systems Winter 2016 Lecture 16: Memory Management and Paging Announcement Homework 2 is out To be posted on ilearn today Due in a week (the end of Feb 19 th ). 2 Recap: Fixed

More information

Virtual Memory. Samira Khan Apr 27, 2017

Virtual Memory. Samira Khan Apr 27, 2017 Virtual Memory Samira Khan Apr 27, 27 Virtual Memory Idea: Give the programmer the illusion of a large address space while having a small physical memory So that the programmer does not worry about managing

More information

Systems Programming and Computer Architecture ( ) Timothy Roscoe

Systems Programming and Computer Architecture ( ) Timothy Roscoe Systems Group Department of Computer Science ETH Zürich Systems Programming and Computer Architecture (252-6-) Timothy Roscoe Herbstsemester 26 AS 26 Virtual Memory 8: Virtual Memory Computer Architecture

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 53 Design of Operating Systems Spring 8 Lectre 2: Virtal Memory Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Recap: cache Well-written programs exhibit

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 18: Memory Hierarchy Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14 98:23 Intro to Computer Organization Lecture 4 Virtual Memory 98:23 Introduction to Computer Organization Lecture 4 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Several slides courtesy of

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 23: File Systems (2) Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time Abstractions for the

More information

CSE 120 Principles of Operating Systems Spring 2017

CSE 120 Principles of Operating Systems Spring 2017 CSE 120 Principles of Operating Systems Spring 2017 Lecture 12: Paging Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient translations (TLBs)

More information

Virtual Memory: Systems

Virtual Memory: Systems Virtual Memory: Systems 5-23: Introduction to Computer Systems 8 th Lecture, March 28, 27 Instructor: Franz Franchetti & Seth Copen Goldstein Recap: Hmmm, How Does This Work?! Process Process 2 Process

More information

CSE 120 Principles of Operating Systems

CSE 120 Principles of Operating Systems CSE 120 Principles of Operating Systems Spring 2018 Lecture 10: Paging Geoffrey M. Voelker Lecture Overview Today we ll cover more paging mechanisms: Optimizations Managing page tables (space) Efficient

More information

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011 Virtual Memory CS6, Lecture 5 Prof. Stephen Chong October 2, 2 Announcements Midterm review session: Monday Oct 24 5:3pm to 7pm, 6 Oxford St. room 33 Large and small group interaction 2 Wall of Flame Rob

More information

CS 318 Principles of Operating Systems

CS 318 Principles of Operating Systems CS 318 Principles of Operating Systems Fall 2018 Lecture 10: Virtual Memory II Ryan Huang Slides adapted from Geoff Voelker s lectures Administrivia Next Tuesday project hacking day No class My office

More information

P6/Linux Memory System Nov 11, 2009"

P6/Linux Memory System Nov 11, 2009 P6/Linux Memory System Nov 11, 2009" REMEMBER" 2! 3! Intel P6" P6 Memory System" DRAM" external system bus (e.g. PCI)" L2" cache" cache bus! bus interface unit" inst" TLB" instruction" fetch unit" L1"

More information

Virtual Memory Oct. 29, 2002

Virtual Memory Oct. 29, 2002 5-23 The course that gives CMU its Zip! Virtual Memory Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs class9.ppt Motivations for Virtual Memory Use Physical

More information

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Address Translation. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Address Translation Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics How to reduce the size of page tables? How to reduce the time for

More information

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program Virtual Memory (VM) Overview and motivation VM as tool for caching VM as tool for memory management VM as tool for memory protection Address translation 4 May 22 Virtual Memory Processes Definition: A

More information

Computer Systems. Virtual Memory. Han, Hwansoo

Computer Systems. Virtual Memory. Han, Hwansoo Computer Systems Virtual Memory Han, Hwansoo A System Using Physical Addressing CPU Physical address (PA) 4 Main memory : : 2: 3: 4: 5: 6: 7: 8:... M-: Data word Used in simple systems like embedded microcontrollers

More information

VIRTUAL MEMORY II. Jo, Heeseung

VIRTUAL MEMORY II. Jo, Heeseung VIRTUAL MEMORY II Jo, Heeseung TODAY'S TOPICS How to reduce the size of page tables? How to reduce the time for address translation? 2 PAGE TABLES Space overhead of page tables The size of the page table

More information

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a

This lecture. Virtual Memory. Virtual memory (VM) CS Instructor: Sanjeev Se(a Virtual Memory Instructor: Sanjeev Se(a This lecture (VM) Overview and mo(va(on VM as tool for caching VM as tool for memory management VM as tool for memory protec(on Address transla(on 2 Virtual Memory

More information

CSE 153 Design of Operating Systems

CSE 153 Design of Operating Systems CSE 53 Design of Operating Systems Winter 28 Lecture 6: Paging/Virtual Memory () Some slides modified from originals by Dave O hallaron Today Address spaces VM as a tool for caching VM as a tool for memory

More information

Processes and Virtual Memory Concepts

Processes and Virtual Memory Concepts Processes and Virtual Memory Concepts Brad Karp UCL Computer Science CS 37 8 th February 28 (lecture notes derived from material from Phil Gibbons, Dave O Hallaron, and Randy Bryant) Today Processes Virtual

More information

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition Carnegie Mellon Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, October 24, 27 Instructor: Randy Bryant 2 Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs Virtual Memory Today Motivations for VM Address translation Accelerating translation with TLBs Fabián Chris E. Bustamante, Riesbeck, Fall Spring 2007 2007 A system with physical memory only Addresses generated

More information

Virtual Memory Nov 9, 2009"

Virtual Memory Nov 9, 2009 Virtual Memory Nov 9, 2009" Administrivia" 2! 3! Motivations for Virtual Memory" Motivation #1: DRAM a Cache for Disk" SRAM" DRAM" Disk" 4! Levels in Memory Hierarchy" cache! virtual memory! CPU" regs"

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 27 Instructor: Justin Hsia Teaching Assistants: Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan https://xkcd.com/495/

More information

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura CSE 451: Operating Systems Winter 2013 Page Table Management, TLBs and Other Pragmatics Gary Kimura Moving now from Hardware to how the OS manages memory Two main areas to discuss Page table management,

More information

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space

A Few Problems with Physical Addressing. Virtual Memory Process Abstraction, Part 2: Private Address Space Process Abstraction, Part : Private Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection

More information

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk class8.ppt 5-23 The course that gives CMU its Zip! Virtual Oct. 29, 22 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache

More information

Virtual Memory: Systems

Virtual Memory: Systems Virtual Memory: Systems 5-23 / 8-23: Introduc2on to Computer Systems 7 th Lecture, Mar. 22, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Virtual memory ques7ons and answers Simple memory system example

More information

CISC 360. Virtual Memory Dec. 4, 2008

CISC 360. Virtual Memory Dec. 4, 2008 CISC 36 Virtual Dec. 4, 28 Topics Motivations for VM Address translation Accelerating translation with TLBs Motivations for Virtual Use Physical DRAM as a Cache for the Disk Address space of a process

More information

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk 5-23 March 23, 2 Topics Motivations for VM Address translation Accelerating address translation with TLBs Pentium II/III system Motivation #: DRAM a Cache for The full address space is quite large: 32-bit

More information

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe

Carnegie Mellon. 16 th Lecture, Mar. 20, Instructors: Todd C. Mowry & Anthony Rowe Virtual Memory: Concepts 5 23 / 8 23: Introduction to Computer Systems 6 th Lecture, Mar. 2, 22 Instructors: Todd C. Mowry & Anthony Rowe Today Address spaces VM as a tool lfor caching VM as a tool for

More information

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia

Virtual Memory II. CSE 351 Autumn Instructor: Justin Hsia Virtual Memory II CSE 35 Autumn 26 Instructor: Justin Hsia Teaching Assistants: Chris Ma Hunter Zahn John Kaltenbach Kevin Bi Sachin Mehta Suraj Bhat Thomas Neuman Waylon Huang Xi Liu Yufang Sun https://xkcd.com/495/

More information

Foundations of Computer Systems

Foundations of Computer Systems 8-6 Foundations of Computer Systems Lecture 5: Virtual Memory Concepts and Systems October 8, 27 8-6 SE PL OS CA Required Reading Assignment: Chapter 9 of CS:APP (3 rd edition) by Randy Bryant & Dave O

More information

Roadmap. Java: Assembly language: OS: Machine code: Computer system:

Roadmap. Java: Assembly language: OS: Machine code: Computer system: Roadmap C: car *c = malloc(sizeof(car)); c->miles = ; c->gals = 7; float mpg = get_mpg(c); free(c); Assembly language: Machine code: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp %rbp Java: Car c = new

More information

Lecture 19: Virtual Memory: Concepts

Lecture 19: Virtual Memory: Concepts CSCI-UA.2-3 Computer Systems Organization Lecture 9: Virtual Memory: Concepts Mohamed Zahran (aka Z) mzahran@cs.nyu.edu http://www.mzahran.com Some slides adapted (and slightly modified) from: Clark Barrett

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23: Introduction to Computer Systems 7 th Lecture, March 2, 27 Instructors: Franz Franchetti & Seth Copen Goldstein Hmmm, How Does This Work?! Process Process 2 Process n Solution:

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 25: Dynamic Memory (1) Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts Instructor: Dr. Hyunyoung Lee Based on slides provided by Randy Bryant and Dave O Hallaron Today Address spaces VM as a tool for caching VM as a tool for memory management VM as

More information

Memory System Case Studies Oct. 13, 2008

Memory System Case Studies Oct. 13, 2008 Topics 15-213 Memory System Case Studies Oct. 13, 2008 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping Class15+.ppt Intel P6 (Bob Colwell s Chip,

More information

CSE 351. Virtual Memory

CSE 351. Virtual Memory CSE 351 Virtual Memory Virtual Memory Very powerful layer of indirection on top of physical memory addressing We never actually use physical addresses when writing programs Every address, pointer, etc

More information

Pentium/Linux Memory System March 17, 2005

Pentium/Linux Memory System March 17, 2005 15-213 The course that gives CMU its Zip! Topics Pentium/Linux Memory System March 17, 2005 P6 address translation x86-64 extensions Linux memory management Linux page fault handling Memory mapping 17-linuxmem.ppt

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 3: OS model and Architectral Spport Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time/today

More information

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides

Virtual Memory. Alan L. Cox Some slides adapted from CMU slides Alan L. Cox alc@rice.edu Some slides adapted from CMU 5.23 slides Objectives Be able to explain the rationale for VM Be able to explain how VM is implemented Be able to translate virtual addresses to physical

More information

University of Washington Virtual memory (VM)

University of Washington Virtual memory (VM) Virtual memory (VM) Overview and mo-va-on VM as tool for caching VM as tool for memory management VM as tool for memory protec-on Address transla-on Processes Defini=on: A process is an instance of a running

More information

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15

Virtual Memory. Physical Addressing. Problem 2: Capacity. Problem 1: Memory Management 11/20/15 Memory Addressing Motivation: why not direct physical memory access? Address translation with pages Optimizing translation: translation lookaside buffer Extra benefits: sharing and protection Memory as

More information

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics Systemprogrammering 27 Föreläsning 4 Topics The memory hierarchy Motivations for VM Address translation Accelerating translation with TLBs Random-Access (RAM) Key features RAM is packaged as a chip. Basic

More information

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy Systemprogrammering 29 Föreläsning 4 Topics! The memory hierarchy! Motivations for VM! Address translation! Accelerating translation with TLBs Random-Access (RAM) Key features! RAM is packaged as a chip.!

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 153 Design of Operating Systems Spring 18 Lectre 8: Threads Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Processes P1 P2 Recall that Bt OS A process

More information

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory

Recall: Address Space Map. 13: Memory Management. Let s be reasonable. Processes Address Space. Send it to disk. Freeing up System Memory Recall: Address Space Map 13: Memory Management Biggest Virtual Address Stack (Space for local variables etc. For each nested procedure call) Sometimes Reserved for OS Stack Pointer Last Modified: 6/21/2004

More information

Virtual Memory II CSE 351 Spring

Virtual Memory II CSE 351 Spring Virtual Memory II CSE 351 Spring 2018 https://xkcd.com/1495/ Virtual Memory (VM) Overview and motivation VM as a tool for caching Address translation VM as a tool for memory management VM as a tool for

More information

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8) Important from last time We re trying to build efficient virtual address spaces Why?? Virtual / physical translation is done by HW and

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 12, 2014

More information

Recap: Memory Management

Recap: Memory Management , 4/13/2018 EE445M/EE360L.12 Embedded and Real-Time Systems/ Real-Time Operating Systems : Memory Protection, Virtual Memory, Paging References: T. Anderson, M. Dahlin, Operating Systems: Principles and

More information

Virtual Memory. CS 3410 Computer System Organization & Programming

Virtual Memory. CS 3410 Computer System Organization & Programming Virtual Memory CS 3410 Computer System Organization & Programming These slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, and Sirer. Where are we now and

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 153 Design of Operating Systems Spring 18 Lectre 12: Deadlock Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Deadlock the deadly embrace! Synchronization

More information

CS153: Memory Management 1

CS153: Memory Management 1 1 CS153: Memory Management 1 Chengyu Song Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian 2 Administrivia Lab Lab2 has been released Due Monday June 5th midnight Design document

More information

Opera&ng Systems ECE344

Opera&ng Systems ECE344 Opera&ng Systems ECE344 Lecture 8: Paging Ding Yuan Lecture Overview Today we ll cover more paging mechanisms: Op&miza&ons Managing page tables (space) Efficient transla&ons (TLBs) (&me) Demand paged virtual

More information

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses.

Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. Problem 9. VM address translation. (9 points): The following problem concerns the way virtual addresses are translated into physical addresses. The memory is byte addressable. Memory accesses are to 1-byte

More information

virtual memory Page 1 CSE 361S Disk Disk

virtual memory Page 1 CSE 361S Disk Disk CSE 36S Motivations for Use DRAM a for the Address space of a process can exceed physical memory size Sum of address spaces of multiple processes can exceed physical memory Simplify Management 2 Multiple

More information

VM as a cache for disk

VM as a cache for disk Virtualization Virtual Memory Computer Systems Organization (Spring 2017) CSCI-UA 201, Section 3 Instructor: Joanna Klukowska Virtualization of a resource: presenting a user with a different view of that

More information

Virtual Memory 2. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. q Handling bigger address spaces q Speeding translation Virtual Memory 2 q Handling bigger address spaces q Speeding translation Two considerations with page tables Mapping must be fast Done on every memory reference, at least 1 per instruction With large address

More information

Virtual Memory: Concepts

Virtual Memory: Concepts Virtual Memory: Concepts 5-23 / 8-23: Introduc=on to Computer Systems 6 th Lecture, Mar. 8, 24 Instructors: Anthony Rowe, Seth Goldstein, and Gregory Kesden Today VM Movaon and Address spaces ) VM as a

More information

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown

Lecture 13: Virtual Memory Management. CSC 469H1F Fall 2006 Angela Demke Brown Lecture 13: Virtual Memory Management CSC 469H1F Fall 2006 Angela Demke Brown Topics Review virtual memory basics Large (64-bit) virtual address spaces Multiple Page Sizes Placement policy and cache effects

More information

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 24 CS24: INTRODUCTION TO COMPUTING SYSTEMS Spring 2018 Lecture 24 LAST TIME Extended virtual memory concept to be a cache of memory stored on disk DRAM becomes L4 cache of data stored on L5 disk Extend page

More information

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018

CIS Operating Systems Memory Management Cache and Demand Paging. Professor Qiang Zeng Spring 2018 CIS 3207 - Operating Systems Memory Management Cache and Demand Paging Professor Qiang Zeng Spring 2018 Process switch Upon process switch what is updated in order to assist address translation? Contiguous

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L20-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Virtual Memory. Virtual Memory

Virtual Memory. Virtual Memory Virtual Memory Virtual Memory Main memory is cache for secondary storage Secondary storage (disk) holds the complete virtual address space Only a portion of the virtual address space lives in the physical

More information

Virtual Memory. CS 351: Systems Programming Michael Saelee

Virtual Memory. CS 351: Systems Programming Michael Saelee Virtual Memory CS 351: Systems Programming Michael Saelee registers cache (SRAM) main memory (DRAM) local hard disk drive (HDD/SSD) remote storage (networked drive / cloud) previously: SRAM

More information

1. Creates the illusion of an address space much larger than the physical memory

1. Creates the illusion of an address space much larger than the physical memory Virtual memory Main Memory Disk I P D L1 L2 M Goals Physical address space Virtual address space 1. Creates the illusion of an address space much larger than the physical memory 2. Make provisions for

More information

Handout 4 Memory Hierarchy

Handout 4 Memory Hierarchy Handout 4 Memory Hierarchy Outline Memory hierarchy Locality Cache design Virtual address spaces Page table layout TLB design options (MMU Sub-system) Conclusion 2012/11/7 2 Since 1980, CPU has outpaced

More information

The cache is 4-way set associative, with 4-byte blocks, and 16 total lines

The cache is 4-way set associative, with 4-byte blocks, and 16 total lines Sample Problem 1 Assume the following memory setup: Virtual addresses are 20 bits wide Physical addresses are 15 bits wide The page size if 1KB (2 10 bytes) The TLB is 2-way set associative, with 8 total

More information

Operating Systems. Operating Systems Sina Meraji U of T

Operating Systems. Operating Systems Sina Meraji U of T Operating Systems Operating Systems Sina Meraji U of T Recap Last time we looked at memory management techniques Fixed partitioning Dynamic partitioning Paging Example Address Translation Suppose addresses

More information

Virtual Memory: From Address Translation to Demand Paging

Virtual Memory: From Address Translation to Demand Paging Constructive Computer Architecture Virtual Memory: From Address Translation to Demand Paging Arvind Computer Science & Artificial Intelligence Lab. Massachusetts Institute of Technology November 9, 2015

More information

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1 Virtual Memory Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. L16-1 Reminder: Operating Systems Goals of OS: Protection and privacy: Processes cannot access each other s data Abstraction:

More information

Virtual Memory. Computer Systems Principles

Virtual Memory. Computer Systems Principles Virtual Memory Computer Systems Principles Objectives Virtual Memory What is it? How does it work? Virtual Memory Address Translation /7/25 CMPSCI 23 - Computer Systems Principles 2 Problem Lots of executing

More information

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017

CIS Operating Systems Memory Management Cache. Professor Qiang Zeng Fall 2017 CIS 5512 - Operating Systems Memory Management Cache Professor Qiang Zeng Fall 2017 Previous class What is logical address? Who use it? Describes a location in the logical memory address space Compiler

More information

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis

Multi-level Translation. CS 537 Lecture 9 Paging. Example two-level page table. Multi-level Translation Analysis Multi-level Translation CS 57 Lecture 9 Paging Michael Swift Problem: what if you have a sparse address space e.g. out of GB, you use MB spread out need one PTE per page in virtual address space bit AS

More information

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation

Virtual Memory 2. To do. q Handling bigger address spaces q Speeding translation Virtual Memory 2 To do q Handling bigger address spaces q Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

Page Which had internal designation P5

Page Which had internal designation P5 Intel P6 Internal Designation for Successor to Pentium Which had internal designation P5 Fundamentally Different from Pentium 1 Out-of-order, superscalar operation Designed to handle server applications

More information

CS 153 Design of Operating Systems Spring 18

CS 153 Design of Operating Systems Spring 18 CS 153 Design of Operating Systems Spring 18 Lectre 11: Semaphores Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Last time Worked throgh software implementation

More information

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan

SE-292 High Performance Computing. Memory Hierarchy. R. Govindarajan SE-292 High Performance Computing Memory Hierarchy R. Govindarajan govind@serc Reality Check Question 1: Are real caches built to work on virtual addresses or physical addresses? Question 2: What about

More information

CS 153 Design of Operating Systems

CS 153 Design of Operating Systems CS 153 Design of Operating Systems Spring 18 Lectre 26: Dynamic Memory (2) Instrctor: Chengy Song Slide contribtions from Nael Ab-Ghazaleh, Harsha Madhyvasta and Zhiyn Qian Some slides modified from originals

More information

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources.

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Virtual Memory Stefanos Kaxiras Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources. Caches Review & Intro Intended to make the slow main memory look fast by

More information

Lecture 8: Memory Management

Lecture 8: Memory Management Lecture 8: Memory Management CSE 120: Principles of Opera>ng Systems UC San Diego: Summer Session I, 2009 Frank Uyeda Announcements PeerWise ques>ons due tomorrow. Project 2 is due on Friday. Milestone

More information

Virtual Memory. Today. Handling bigger address spaces Speeding translation

Virtual Memory. Today. Handling bigger address spaces Speeding translation Virtual Memory Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least 1

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Patterson & Hennessey Chapter 5 ELEC 5200/6200 1 Virtual Memory Use main memory as a cache for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs

More information

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon]

Virtual Memory. CS 3410 Computer System Organization & Programming. [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Virtual Memory CS 3410 Computer System Organization & Programming [K. Bala, A. Bracy, E. Sirer, and H. Weatherspoon] Click any letter let me know you re here today. Instead of a DJ Clicker Question today,

More information

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays. CSE420 Virtual Memory Prof. Mokhtar Aboelaze York University Based on Slides by Prof. L. Bhuyan (UCR) Prof. M. Shaaban (RIT) Virtual Memory Virtual memory first used to relive programmers from the burden

More information

Virtual to physical address translation

Virtual to physical address translation Virtual to physical address translation Virtual memory with paging Page table per process Page table entry includes present bit frame number modify bit flags for protection and sharing. Page tables can

More information

Virtual Memory. Motivation:

Virtual Memory. Motivation: Virtual Memory Motivation:! Each process would like to see its own, full, address space! Clearly impossible to provide full physical memory for all processes! Processes may define a large address space

More information

Virtual Memory, Address Translation

Virtual Memory, Address Translation Memory Hierarchy Virtual Memory, Address Translation Slides contents from: Hennessy & Patterson, 5ed Appendix B and Chapter 2 David Wentzlaff, ELE 475 Computer Architecture MJT, High Performance Computing,

More information

Understanding the Design of Virtual Memory. Zhiqiang Lin

Understanding the Design of Virtual Memory. Zhiqiang Lin CS 6V8-05: System Security and Malicious Code Analysis Understanding the Design of Virtual Memory Zhiqiang Lin Department of Computer Science University of Texas at Dallas February 27 th, 202 Outline Basic

More information

Paging. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Paging. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University Paging Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Today s Topics Virtual memory implementation Paging Segmentation 2 Paging (1) Paging Permits

More information

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation

Virtual Memory 2. Today. Handling bigger address spaces Speeding translation Virtual Memory 2 Today Handling bigger address spaces Speeding translation Considerations with page tables Two key issues with page tables Mapping must be fast Done on every memory reference, at least

More information

University*of*Washington*

University*of*Washington* Roadmap C: car c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c); Assembly language: Machine code: Computer system: get_mpg: pushq movq... popq ret %rbp %rsp, %rbp

More information