Data Structures for Moving Objects

Size: px
Start display at page:

Download "Data Structures for Moving Objects"

Transcription

1 Data Structures for Moving Objects Pankaj K. Agarwal Department of Computer Science Duke University Geometric Data Structures S: Set of geometric objects Points, segments, polygons Ask several queries on S ffl Range searching ffl Nearest-neighbor searching Quad Tree kd Tree BSP Data Structures for Moving Objects 1

2 Moving Objects: Applications Traffic management ffl Location based services ffl Emergency services ffl Air traffic control Digital battlefields Molecular biology Deformable objects Adhoc networks Need data structures for storing, analyzing, querying moving objects. Data Structures for Moving Objects 2 Modeling Motion p(t) =(x(t);y(t)): Position of p at time t. ffl x( );y( ): Polynomials ffl Degree of motion: max degree of x( );y( ). ffl Linear motion: Degree of motion is 1 p(t) =at + b; a; b 2 R 2 p(t) Mostly assume motion to be linear Trajectory of points can change Trajectory can be piecewise linear Issues: Sampled motion Hierarchical motion Uncertainty Data Structures for Moving Objects 3

3 Range Searching S: Set of points Preprocess S into a data structure Report all points of S lying inside a query rectangle Data Structure Space Query Range tree n log n log n + k log log n p kd-tree n n + k External memory data structures also available Example: R-tree Data Structures for Moving Objects 4 Kinetic Range Searching S: Set of points, each moving with fixed velocity in the plane Preprocess S into a data structure: Q1 Given a rectangle R and a time value t, report all points of S(t) R Q2 Given a rectangle R and time values t 1 ;t 2, report all points that pass through R during the time interval [t 1 ;t 2 ]. t t y y x x Data Structures for Moving Objects 5

4 Early Approaches One-dimensional data structures [Wolfson et al , Tayeb et al. 98, Kollios et al. 99] Two-dimensional data structures ffl Map trajectories to higher dimensional points [Kollios et al.] ffl Build index on trajectories [Pfoser et al.] ffl Parametric R-trees [Saltenis et al.] Assumes frequent updates on trajectories Data Structures for Moving Objects 6 Kinetic Range Searching (A., Arge, Erickson, 2001) Partition-tree based approach ffl O(n) space, s p n + k query time ffl log 2 n insertion/deletion/trajectory-change ffl oblivious scheme Kinetic range trees ffl n log n= log log n space, log n + k query ffl Events: x- ory-coordinates of two points become equal ffl (n 2 ) events, each requiring log 2 n time ffl Tradeoff between # events and query time ffl Queries have to arrive in a chronological order Data Structures for Moving Objects 7

5 Partition Tree Based Approach t t xt* yt* t y x y x Trajectory of a point p i is a line `i in R 3 p i (t) 2 R () `i intersects (R; t) `x;`y: Projection of ` onto the xt- &yt-planes ` intersects (R; t), `x intersects (R x ;t) & `y intersects (R y ;t) Use duality and partition trees Data Structures for Moving Objects 8 R-Trees Bounding box hierarchy, B-tree Each node v is associated with a subset S v of points and the smallest rectangle R v containing S v Partition S v into B clusters, each associated with a child of v Several heuristics are proposed for partitioning S v into B clusters F G R1 R2 R1 B E H R5 R3 R4 R5 R6 A R3 C I R2 A B C D E F G H I R4 D Data Structures for Moving Objects 9

6 STAR-Tree Kinetic R-tree Maintain the smallest box enclosing the set of moving points ffl Box is defined by four points ffl The combinatorial structure can change Ω(n) times B(t) ffl Maintain an approximation of the smallest enclosing box Maintaining the clustering kinetically ffl Extend the known heuristics ffl No theoretical nontrivial results known on kinetic clustering Data Structures for Moving Objects 10 Smallest Enclosing Box R(P (t)): Smallest box enclosing P at time t "-core-set: C S"-coreset if 8t (1 ")R(S(t)) R(C(t)) Theorem: 9 "-core-set of size 1= p "; Computation time: n +1=" A more general result on core sets in [A., Har-Peled, Varadarajan] Leads to approximatation algorithms for several problems Data Structures for Moving Objects 11

7 Smallest Enclosing Box 1 1 Quality Kernel Size = 16 Kernel Size = Quality Kernel Size = 16 Kernel Size = Linear Motion, Input Size = 10,000 Quadratic Motion, Input Size = 10, Linear Motion, Kernel Size = 24 Quadratic Motion, Kernel Size = # Events # Events Data Structures for Moving Objects 12 Smallest Enclosing Box STAR-tree: Maintain a box enclosing S v at each node v Compute C v ρ S v for each node in a bottom-up manner ffl Merge the core sets computed at the children of v ffl Prune the merged set Maintain the smallest enclosing box R(C v ) Data Structures for Moving Objects 13

8 Re-Clustering Reorganize the children of a node if the rectangles of their children overlap a lot. u 2 u 3 u 3 w 2 u 1 v w 1 v Collect all the grandchildren of the node Reconstruct a 2-level R-tree on them Data Structures for Moving Objects 14 Experimental Results Synthetic Data 100, ,000 points inside km 2 area with different distributions Points are inserted/deleted dynamically, at any time at least 80% points present Three range of speed: 45 km/h, 75km/h, 180 km/h Search I/O S1 (approx.) S1 (exact) S2 (approx.) S2 (exact) S3 (approx.) S3 (exact) Search I/O Number of points (x 1000) Data Structures for Moving Objects 15

9 Experimental Results Realistic Data Extracted the roads map around Durham, NC, within 120 miles centered at Durham (ß 250; 000 polygonal chains) Computed a planar map of the road network Chose source and destinations randomly with some distribution Computed a good path using Dijkstra s algorithm minimize the length + number of turns Used Douglas Peucker algorithm to simplify the paths Data Structures for Moving Objects 16 Experimental Results Avg. Query I/O Data Structures for Moving Objects 17

10 Tradeoffs in Performance Accuracy vs efficiency ffl Maintain approximate structures Query vs events ffl Combine KDS and time-oblivious approaches Responsive Approach: ffl Near-future queries are more critical than far-future queries ffl Fast query time for near-future queries ffl Measure future by the number of events occurred ffl # events:, query: p =n + k Data Structures for Moving Objects 18 Concluding Remarks Incorporating more realistic motions ffl Use dynamic systems, e.g., Kalman, particle filters, to model trajectories ffl How does one perform geometric computation in this model? ffl Geometric computation under uncertainty Hierarchical representation of motion Kinetic data structure for clustering, similarity searching Data Structures for Moving Objects 19

will assume that each point p i is moving along a straight line at some xed speed, or more formally, that p i (t) = a i t + b i for some a i ; b i 2 R

will assume that each point p i is moving along a straight line at some xed speed, or more formally, that p i (t) = a i t + b i for some a i ; b i 2 R Indexing Moving Points (Extended Abstract) Pankaj K. Agarwal Lars Arge y Je Erickson z Abstract We propose three indexing schemes for storing a set S of N points in the plane, each moving along a linear

More information

CMSC 754 Computational Geometry 1

CMSC 754 Computational Geometry 1 CMSC 754 Computational Geometry 1 David M. Mount Department of Computer Science University of Maryland Fall 2005 1 Copyright, David M. Mount, 2005, Dept. of Computer Science, University of Maryland, College

More information

Algorithms for GIS:! Quadtrees

Algorithms for GIS:! Quadtrees Algorithms for GIS: Quadtrees Quadtree A data structure that corresponds to a hierarchical subdivision of the plane Start with a square (containing inside input data) Divide into 4 equal squares (quadrants)

More information

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein

Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Testing Bipartiteness of Geometric Intersection Graphs David Eppstein Univ. of California, Irvine School of Information and Computer Science Intersection Graphs Given arrangement of geometric objects,

More information

Geometric Algorithms. Geometric search: overview. 1D Range Search. 1D Range Search Implementations

Geometric Algorithms. Geometric search: overview. 1D Range Search. 1D Range Search Implementations Geometric search: overview Geometric Algorithms Types of data:, lines, planes, polygons, circles,... This lecture: sets of N objects. Range searching Quadtrees, 2D trees, kd trees Intersections of geometric

More information

Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018

Spatiotemporal Access to Moving Objects. Hao LIU, Xu GENG 17/04/2018 Spatiotemporal Access to Moving Objects Hao LIU, Xu GENG 17/04/2018 Contents Overview & applications Spatiotemporal queries Movingobjects modeling Sampled locations Linear function of time Indexing structure

More information

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR

Query Processing and Advanced Queries. Advanced Queries (2): R-TreeR Query Processing and Advanced Queries Advanced Queries (2): R-TreeR Review: PAM Given a point set and a rectangular query, find the points enclosed in the query We allow insertions/deletions online Query

More information

Indexing mobile objects using dual transformations

Indexing mobile objects using dual transformations The VLDB Journal (24) / Digital Object Identifier (DOI) 1.17/s778-4-139-z Indexing mobile objects using dual transformations George Kollios 1,, Dimitris Papadopoulos 2, Dimitrios Gunopulos 2,, Vassilis

More information

Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data. Sorelle A. Friedler Google Joint work with David M. Mount

Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data. Sorelle A. Friedler Google Joint work with David M. Mount Spatio-temporal Range Searching Over Compressed Kinetic Sensor Data Sorelle A. Friedler Google Joint work with David M. Mount Motivation Kinetic data: data generated by moving objects Sensors collect data

More information

Fly Cheaply: On the Minimum Fuel Consumption Problem

Fly Cheaply: On the Minimum Fuel Consumption Problem Fly Cheaply: On the Minimum Fuel Consumption Problem Timothy M. Chan Alon Efrat Sariel Har-Peled September 30, 1999 Abstract In planning a flight, stops at intermediate airports are sometimes necessary

More information

Kinetic Medians and kd-trees

Kinetic Medians and kd-trees Kinetic Medians and kd-trees Pankaj K. Agarwal 1,JieGao 2, and Leonidas J. Guibas 2 1 Department of Computer Science, Duke University, Durham, NC 27708, USA pankaj@cs.duke.edu 2 Department of Computer

More information

A cost model for spatio-temporal queries using the TPR-tree

A cost model for spatio-temporal queries using the TPR-tree The Journal of Systems and Software 73 (2004) 101 112 www.elsevier.com/locate/jss A cost model for spatio-temporal queries using the TPR-tree Yong-Jin Choi *, Jun-Ki Min, Chin-Wan Chung Division of Computer

More information

Collision and Proximity Queries

Collision and Proximity Queries Collision and Proximity Queries Dinesh Manocha (based on slides from Ming Lin) COMP790-058 Fall 2013 Geometric Proximity Queries l Given two object, how would you check: If they intersect with each other

More information

Spatial Data Structures

Spatial Data Structures CSCI 420 Computer Graphics Lecture 17 Spatial Data Structures Jernej Barbic University of Southern California Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees [Angel Ch. 8] 1 Ray Tracing Acceleration

More information

Multidimensional Indexing The R Tree

Multidimensional Indexing The R Tree Multidimensional Indexing The R Tree Module 7, Lecture 1 Database Management Systems, R. Ramakrishnan 1 Single-Dimensional Indexes B+ trees are fundamentally single-dimensional indexes. When we create

More information

Spatial Data Structures

Spatial Data Structures CSCI 480 Computer Graphics Lecture 7 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids BSP Trees [Ch. 0.] March 8, 0 Jernej Barbic University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s/

More information

(for all > 0). In particular these bounds prove that none of the extent measures mentioned can change combinatorially more than O(n 2+ ) times. A quad

(for all > 0). In particular these bounds prove that none of the extent measures mentioned can change combinatorially more than O(n 2+ ) times. A quad Submitted to the 1997 ACM Symposium on Computational Geometry Maintaining the Extent of a Moving Point Set Pankaj K. Agarwal Duke University Leonidas J. Guibas y Stanford University John Hershberger Mentor

More information

What we have covered?

What we have covered? What we have covered? Indexing and Hashing Data warehouse and OLAP Data Mining Information Retrieval and Web Mining XML and XQuery Spatial Databases Transaction Management 1 Lecture 6: Spatial Data Management

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors Classic Ideas, New Ideas Yury Lifshits Steklov Institute of Mathematics at St.Petersburg http://logic.pdmi.ras.ru/~yura University of Toronto, July 2007 1 / 39 Outline

More information

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair

External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair External-Memory Algorithms with Applications in GIS - (L. Arge) Enylton Machado Roberto Beauclair {machado,tron}@visgraf.impa.br Theoretical Models Random Access Machine Memory: Infinite Array. Access

More information

Indexing Mobile Objects Using Dual Transformations

Indexing Mobile Objects Using Dual Transformations Indexing Mobile Objects Using Dual Transformations George Kollios Boston University gkollios@cs.bu.edu Dimitris Papadopoulos UC Riverside tsotras@cs.ucr.edu Dimitrios Gunopulos Ý UC Riverside dg@cs.ucr.edu

More information

Computational Geometry for Imprecise Data

Computational Geometry for Imprecise Data Computational Geometry for Imprecise Data November 30, 2008 PDF Version 1 Introduction Computational geometry deals with algorithms on geometric inputs. Historically, geometric algorithms have focused

More information

Geometric data structures:

Geometric data structures: Geometric data structures: Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade Sham Kakade 2017 1 Announcements: HW3 posted Today: Review: LSH for Euclidean distance Other

More information

Spatial Data Structures for Computer Graphics

Spatial Data Structures for Computer Graphics Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November 2008 Spatial Data Structures for Computer Graphics Page 1 of 65 http://www.cse.iitb.ac.in/ sharat November

More information

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro

CMU-Q Lecture 4: Path Planning. Teacher: Gianni A. Di Caro CMU-Q 15-381 Lecture 4: Path Planning Teacher: Gianni A. Di Caro APPLICATION: MOTION PLANNING Path planning: computing a continuous sequence ( a path ) of configurations (states) between an initial configuration

More information

Introduction to Indexing R-trees. Hong Kong University of Science and Technology

Introduction to Indexing R-trees. Hong Kong University of Science and Technology Introduction to Indexing R-trees Dimitris Papadias Hong Kong University of Science and Technology 1 Introduction to Indexing 1. Assume that you work in a government office, and you maintain the records

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) April 1, 2003 [Angel 9.10] Frank Pfenning Carnegie

More information

1 Proximity via Graph Spanners

1 Proximity via Graph Spanners CS273: Algorithms for Structure Handout # 11 and Motion in Biology Stanford University Tuesday, 4 May 2003 Lecture #11: 4 May 2004 Topics: Proximity via Graph Spanners Geometric Models of Molecules, I

More information

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel

Indexing. Week 14, Spring Edited by M. Naci Akkøk, , Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Indexing Week 14, Spring 2005 Edited by M. Naci Akkøk, 5.3.2004, 3.3.2005 Contains slides from 8-9. April 2002 by Hector Garcia-Molina, Vera Goebel Overview Conventional indexes B-trees Hashing schemes

More information

Computational Geometry

Computational Geometry Planar point location Point location Introduction Planar point location Strip-based structure Point location problem: Preprocess a planar subdivision such that for any query point q, the face of the subdivision

More information

Spatial Data Structures

Spatial Data Structures 15-462 Computer Graphics I Lecture 17 Spatial Data Structures Hierarchical Bounding Volumes Regular Grids Octrees BSP Trees Constructive Solid Geometry (CSG) March 28, 2002 [Angel 8.9] Frank Pfenning Carnegie

More information

* a* b * primal. dual

* a* b * primal. dual Indexing Moving Points (Extended Abstract) Pankaj K. Agarwal Lars Arge y Je Erickson z Submitted to 19th ACM Symposium on Principles of Database Systems. November 8, 1999 Abstract We propose three indexing

More information

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012)

Effects needed for Realism. Ray Tracing. Ray Tracing: History. Outline. Foundations of Computer Graphics (Spring 2012) Foundations of omputer Graphics (Spring 202) S 84, Lecture 5: Ray Tracing http://inst.eecs.berkeley.edu/~cs84 Effects needed for Realism (Soft) Shadows Reflections (Mirrors and Glossy) Transparency (Water,

More information

Spatial Data Management

Spatial Data Management Spatial Data Management [R&G] Chapter 28 CS432 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite imagery, where each pixel stores a measured value

More information

Data Structures for Approximate Proximity and Range Searching

Data Structures for Approximate Proximity and Range Searching Data Structures for Approximate Proximity and Range Searching David M. Mount University of Maryland Joint work with: Sunil Arya (Hong Kong U. of Sci. and Tech) Charis Malamatos (Max Plank Inst.) 1 Introduction

More information

Multidimensional Indexes [14]

Multidimensional Indexes [14] CMSC 661, Principles of Database Systems Multidimensional Indexes [14] Dr. Kalpakis http://www.csee.umbc.edu/~kalpakis/courses/661 Motivation Examined indexes when search keys are in 1-D space Many interesting

More information

Spatial Data Management

Spatial Data Management Spatial Data Management Chapter 28 Database management Systems, 3ed, R. Ramakrishnan and J. Gehrke 1 Types of Spatial Data Point Data Points in a multidimensional space E.g., Raster data such as satellite

More information

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry

Balanced Box-Decomposition trees for Approximate nearest-neighbor. Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Balanced Box-Decomposition trees for Approximate nearest-neighbor 11 Manos Thanos (MPLA) Ioannis Emiris (Dept Informatics) Computational Geometry Nearest Neighbor A set S of n points is given in some metric

More information

Level-Balanced B-Trees

Level-Balanced B-Trees Gerth Stølting rodal RICS University of Aarhus Pankaj K. Agarwal Lars Arge Jeffrey S. Vitter Center for Geometric Computing Duke University January 1999 1 -Trees ayer, McCreight 1972 Level 2 Level 1 Leaves

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Clustering Billions of Images with Large Scale Nearest Neighbor Search

Clustering Billions of Images with Large Scale Nearest Neighbor Search Clustering Billions of Images with Large Scale Nearest Neighbor Search Ting Liu, Charles Rosenberg, Henry A. Rowley IEEE Workshop on Applications of Computer Vision February 2007 Presented by Dafna Bitton

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell eading! equired:! Watt, sections 12.5.3 12.5.4, 14.7! Further reading:! A. Glassner.

More information

On Realistic Line Simplification under Area Measure

On Realistic Line Simplification under Area Measure On Realistic Line Simplification under Area Measure Shervin Daneshpajouh Alireza Zarei Mohammad Ghodsi Abstract In this paper, we consider the well-known 2D line simplification problem under area measure.

More information

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages.

Math 126 Final Examination Autumn CHECK that your exam contains 9 problems on 10 pages. Math 126 Final Examination Autumn 2016 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 9 problems on 10 pages. This exam is closed book. You

More information

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell

Anti-aliased and accelerated ray tracing. University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Anti-aliased and accelerated ray tracing University of Texas at Austin CS384G - Computer Graphics Fall 2010 Don Fussell Reading Required: Watt, sections 12.5.3 12.5.4, 14.7 Further reading: A. Glassner.

More information

Collision detection for Point Clouds

Collision detection for Point Clouds Collision detection for Point Clouds Gabriel Zachmann Bonn University zach@cs.uni-bonn.de Motivation Modern acquisition techniques (laser scanners) lead to modern object representation Efficient rendering

More information

Orthogonal range searching. Orthogonal range search

Orthogonal range searching. Orthogonal range search CG Lecture Orthogonal range searching Orthogonal range search. Problem definition and motiation. Space decomposition: techniques and trade-offs 3. Space decomposition schemes: Grids: uniform, non-hierarchical

More information

I/O-Algorithms Lars Arge Aarhus University

I/O-Algorithms Lars Arge Aarhus University I/O-Algorithms Aarhus University April 10, 2008 I/O-Model Block I/O D Parameters N = # elements in problem instance B = # elements that fits in disk block M = # elements that fits in main memory M T =

More information

Spatial Queries. Nearest Neighbor Queries

Spatial Queries. Nearest Neighbor Queries Spatial Queries Nearest Neighbor Queries Spatial Queries Given a collection of geometric objects (points, lines, polygons,...) organize them on disk, to answer efficiently point queries range queries k-nn

More information

Collision processing

Collision processing Collision processing Different types of collisions Collision of a simulated deformable structure with a kinematic structure (easier) Collision with a rigid moving object, the ground, etc. Collision object

More information

Indexing and Querying Constantly Evolving Data Using Time Series Analysis

Indexing and Querying Constantly Evolving Data Using Time Series Analysis Indexing and Querying Constantly Evolving Data Using Time Series Analysis Yuni Xia 1, Sunil Prabhakar 1, Jianzhong Sun 2, and Shan Lei 1 1 Computer Science Department, Purdue University 2 Mathematics Department,

More information

CS535 Fall Department of Computer Science Purdue University

CS535 Fall Department of Computer Science Purdue University Spatial Data Structures and Hierarchies CS535 Fall 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Spatial Data Structures Store geometric information Organize geometric

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 11/05/2018 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Generating Traffic Data

Generating Traffic Data Generating Traffic Data Thomas Brinkhoff Institute for Applied Photogrammetry and Geoinformatics FH Oldenburg/Ostfriesland/Wilhelmshaven (University of Applied Sciences) Ofener Str. 16/19, D-26121 Oldenburg,

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 03/02/2016 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Introduction to Spatial Database Systems

Introduction to Spatial Database Systems Introduction to Spatial Database Systems by Cyrus Shahabi from Ralf Hart Hartmut Guting s VLDB Journal v3, n4, October 1994 Data Structures & Algorithms 1. Implementation of spatial algebra in an integrated

More information

References. Additional lecture notes for 2/18/02.

References. Additional lecture notes for 2/18/02. References Additional lecture notes for 2/18/02. I-COLLIDE: Interactive and Exact Collision Detection for Large-Scale Environments, by Cohen, Lin, Manocha & Ponamgi, Proc. of ACM Symposium on Interactive

More information

Update-efficient indexing of moving objects in road networks

Update-efficient indexing of moving objects in road networks DOI 1.17/s177-8-52-5 Update-efficient indexing of moving objects in road networks Jidong Chen Xiaofeng Meng Received: 22 December 26 / Revised: 1 April 28 / Accepted: 3 April 28 Springer Science + Business

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

R-Trees. Accessing Spatial Data

R-Trees. Accessing Spatial Data R-Trees Accessing Spatial Data In the beginning The B-Tree provided a foundation for R- Trees. But what s a B-Tree? A data structure for storing sorted data with amortized run times for insertion and deletion

More information

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers

An Efficient Algorithm for 2D Euclidean 2-Center with Outliers An Efficient Algorithm for 2D Euclidean 2-Center with Outliers Pankaj K. Agarwal and Jeff M. Phillips Department of Computer Science, Duke University, Durham, NC 27708 Abstract. For a set P of n points

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

Aggregate-Max Nearest Neighbor Searching in the Plane

Aggregate-Max Nearest Neighbor Searching in the Plane CCCG 2013, Waterloo, Ontario, August 8 10, 2013 Aggregate-Max Nearest Neighbor Searching in the Plane Haitao Wang Abstract We study the aggregate nearest neighbor searching for the Max operator in the

More information

Kinetic BV Hierarchies and Collision Detection

Kinetic BV Hierarchies and Collision Detection Kinetic BV Hierarchies and Collision Detection Gabriel Zachmann Clausthal University, Germany zach@tu-clausthal.de Bonn, 25. January 2008 Bounding Volume Hierarchies BVHs are standard DS for collision

More information

Geographical routing 1

Geographical routing 1 Geographical routing 1 Routing in ad hoc networks Obtain route information between pairs of nodes wishing to communicate. Proactive protocols: maintain routing tables at each node that is updated as changes

More information

Acceleration Structures. CS 6965 Fall 2011

Acceleration Structures. CS 6965 Fall 2011 Acceleration Structures Run Program 1 in simhwrt Lab time? Program 2 Also run Program 2 and include that output Inheritance probably doesn t work 2 Boxes Axis aligned boxes Parallelepiped 12 triangles?

More information

On Computing the Centroid of the Vertices of an Arrangement and Related Problems

On Computing the Centroid of the Vertices of an Arrangement and Related Problems On Computing the Centroid of the Vertices of an Arrangement and Related Problems Deepak Ajwani, Saurabh Ray, Raimund Seidel, and Hans Raj Tiwary Max-Planck-Institut für Informatik, Saarbrücken, Germany

More information

Point Cloud Collision Detection

Point Cloud Collision Detection Point Cloud Collision Detection Modern acquisition methods lead to modern object representations. Efficient rendering (splatting & ray-tracing). Only little work on interaction. Goals Fast collision detection

More information

! Good algorithms also extend to higher dimensions. ! Curse of dimensionality. ! Range searching. ! Nearest neighbor.

! Good algorithms also extend to higher dimensions. ! Curse of dimensionality. ! Range searching. ! Nearest neighbor. Geometric search: Overview Geometric Algorithms Types of data. Points, lines, planes, polygons, circles,... This lecture. Sets of N objects. Geometric problems extend to higher dimensions.! Good algorithms

More information

Fast Hierarchical Clustering via Dynamic Closest Pairs

Fast Hierarchical Clustering via Dynamic Closest Pairs Fast Hierarchical Clustering via Dynamic Closest Pairs David Eppstein Dept. Information and Computer Science Univ. of California, Irvine http://www.ics.uci.edu/ eppstein/ 1 My Interest In Clustering What

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include

Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include Shape Representation Basic problem We make pictures of things How do we describe those things? Many of those things are shapes Other things include motion, behavior Graphics is a form of simulation and

More information

A 2D Kinetic Triangulation with Near-Quadratic Topological Changes

A 2D Kinetic Triangulation with Near-Quadratic Topological Changes A 2D Kinetic Triangulation with Near-Quadratic Topological Changes Pankaj K. Agarwal Computer Science Department Box 90129, Duke University Durham, NC 27708-0129, USA pankaj@cs.duke.edu Yusu Wang Computer

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

CPSC / Sonny Chan - University of Calgary. Collision Detection II

CPSC / Sonny Chan - University of Calgary. Collision Detection II CPSC 599.86 / 601.86 Sonny Chan - University of Calgary Collision Detection II Outline Broad phase collision detection: - Problem definition and motivation - Bounding volume hierarchies - Spatial partitioning

More information

8 Project # 2: Bézier curves

8 Project # 2: Bézier curves 8 Project # 2: Bézier curves Let s say that we are given two points, for example the points (1, 1) and (5, 4) shown in Figure 1. The objective of linear interpolation is to define a linear function that

More information

Large Scale 3D Reconstruction by Structure from Motion

Large Scale 3D Reconstruction by Structure from Motion Large Scale 3D Reconstruction by Structure from Motion Devin Guillory Ziang Xie CS 331B 7 October 2013 Overview Rome wasn t built in a day Overview of SfM Building Rome in a Day Building Rome on a Cloudless

More information

Computer Networks. Routing

Computer Networks. Routing Computer Networks Routing Topics Link State Routing (Continued) Hierarchical Routing Broadcast Routing Sending distinct packets Flooding Multi-destination routing Using spanning tree Reverse path forwarding

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Robust PDF Table Locator

Robust PDF Table Locator Robust PDF Table Locator December 17, 2016 1 Introduction Data scientists rely on an abundance of tabular data stored in easy-to-machine-read formats like.csv files. Unfortunately, most government records

More information

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill

Collision Detection. These slides are mainly from Ming Lin s course notes at UNC Chapel Hill Collision Detection These slides are mainly from Ming Lin s course notes at UNC Chapel Hill http://www.cs.unc.edu/~lin/comp259-s06/ Computer Animation ILE5030 Computer Animation and Special Effects 2 Haptic

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b

Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b Advanced Algorithm Design and Analysis (Lecture 12) SW5 fall 2005 Simonas Šaltenis E1-215b simas@cs.aau.dk Range Searching in 2D Main goals of the lecture: to understand and to be able to analyze the kd-trees

More information

Optimal detection of intersections between convex polyhedra

Optimal detection of intersections between convex polyhedra 1 2 Optimal detection of intersections between convex polyhedra Luis Barba Stefan Langerman 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract For a polyhedron P in R d, denote by P its combinatorial complexity,

More information

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts

Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts Subdivision Of Triangular Terrain Mesh Breckon, Chenney, Hobbs, Hoppe, Watts MSc Computer Games and Entertainment Maths & Graphics II 2013 Lecturer(s): FFL (with Gareth Edwards) Fractal Terrain Based on

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection

Algorithms. Algorithms GEOMETRIC APPLICATIONS OF BSTS. 1d range search line segment intersection kd trees interval search trees rectangle intersection Algorithms ROBERT SEDGEWICK KEVIN WAYNE GEOMETRIC APPLICATIONS OF BSTS Algorithms F O U R T H E D I T I O N ROBERT SEDGEWICK KEVIN WAYNE 1d range search line segment intersection kd trees interval search

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors State-of-the-Art Yury Lifshits Steklov Institute of Mathematics at St.Petersburg Yandex Tech Seminar, April 2007 1 / 28 Outline 1 Problem Statement Applications Data Models

More information

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem

Chapter 8. Voronoi Diagrams. 8.1 Post Oce Problem Chapter 8 Voronoi Diagrams 8.1 Post Oce Problem Suppose there are n post oces p 1,... p n in a city. Someone who is located at a position q within the city would like to know which post oce is closest

More information

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday

Announcements. Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday Announcements Written Assignment2 is out, due March 8 Graded Programming Assignment2 next Tuesday 1 Spatial Data Structures Hierarchical Bounding Volumes Grids Octrees BSP Trees 11/7/02 Speeding Up Computations

More information

Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014

Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014 Scalable Nearest Neighbor Algorithms for High Dimensional Data Marius Muja (UBC), David G. Lowe (Google) IEEE 2014 Presenter: Derrick Blakely Department of Computer Science, University of Virginia https://qdata.github.io/deep2read/

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena

Spring 2010: Lecture 9. Ashutosh Saxena. Ashutosh Saxena CS 4758/6758: Robot Learning Spring 2010: Lecture 9 Why planning and control? Video Typical Architecture Planning 0.1 Hz Control 50 Hz Does it apply to all robots and all scenarios? Previous Lecture: Potential

More information

Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects Λ

Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects Λ To Appear in IEEE Transactions on Computers Special Issue on DBMS and Mobile Computing Query Indexing and Velocity Constrained Indexing: Scalable Techniques for Continuous Queries on Moving Objects Λ S.

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

Geometric Computation: Introduction

Geometric Computation: Introduction : Introduction Piotr Indyk Welcome to 6.838! Overview and goals Course Information Syllabus 2D Convex hull Signup sheet Geometric computation occurs everywhere: Geographic Information Systems (GIS): nearest

More information

Approximation Algorithms for Geometric Intersection Graphs

Approximation Algorithms for Geometric Intersection Graphs Approximation Algorithms for Geometric Intersection Graphs Subhas C. Nandy (nandysc@isical.ac.in) Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India. Outline

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 04/06/2015 Reading: Chapter 14.3: Hastie, Tibshirani, Friedman. Additional resources: Center Based Clustering: A Foundational Perspective. Awasthi,

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information