Top-Down Network Design

Size: px
Start display at page:

Download "Top-Down Network Design"

Transcription

1 Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Original slides copyright by Cisco Press & Priscilla Oppenheimer

2 General Guidelines for Addressing and Naming Use a structured model for addressing and naming Assign addresses and names hierarchically Decide in advance if you will use Central or distributed authority for addressing and naming Public or private addressing Static or dynamic addressing and naming

3 Simple rules for network layer addressing Design a structured model for addressing before assigning any addresses. Leave room for growth in the addressing model. If you do not plan for growth, you might later have to renumber many devices, which is labor-intensive. Assign blocks of addresses in a hierarchical fashion to foster good scalability and availability. Assign blocks of addresses based on the physical network, not on group membership, to avoid problems when groups or individuals move. If the level of network management expertise in regional and branch offices is high, you can delegate authority for addressing regional and branch-office networks, subnets, servers, and end systems. To maximize flexibility and minimize configuration, use dynamic addressing for end systems. To maximize security and adaptability, use private addresses with Network Address Translation (NAT) in IP environments.

4 Advantages of Structured Models for Addressing & Naming It makes it easier to Read network maps Operate network management software Troubleshoot Recognize devices in protocol analyzer traces Meet goals for usability Design filters on firewalls and routers Implement route summarization

5 When there is no model for addressing Duplicate network and host addresses Illegal addresses that cannot be routed on the Internet Not enough addresses in total, or by group Addressees that cannot be used, and so are wasted

6 Questions regarding public versus private addresses Are public, private, or are both address types required? How many end systems need access to the private network only? How many end systems need to be visible to the public network also? How will translation between private and public addresses occur? Where in the network topology will the boundary between private and public addresses exist?

7 Public IP Addresses Managed by the Internet Assigned Numbers Authority (IANA) Users are assigned IP addresses by Internet service providers (ISPs). ISPs obtain allocations of IP addresses from their appropriate Regional Internet Registry (RIR)

8 Regional Internet Registries (RIR) APNIC (Asia Pacific Network Information Centre) Asia/Pacific Region ARIN (American Registry for Internet Numbers) North America and Sub-Sahara Africa LACNIC (Regional Latin-American and Caribbean IP Address Registry) Latin America and some Caribbean Islands RIPE NCC (Réseaux IP Européens) Europe, the Middle East, Central Asia, and African countries located north of the equator

9 Distributing Authority for Addressing If addressing and configuration will be carried out by inexperienced network administrators, you should keep the model simple If there is a shortage of network administrators, (which there is in many organizations), then simplicity is important as well as minimizing the amount of configuration required In these situations, dynamic addressing is a good recommendation, where very little, if any, configuration is necessary If network administrators in regional and branch offices are inexperienced, you might consider not delegating authority for addressing and naming. A lot of small and medium-size companies maintain strict control of addressing and naming at a corporate (centralized) level Maintaining strict control avoids mistakes that can cause user frustration and network failures

10 Criteria for Static vs Dynamic Addressing The number of end systems When there are more than about 30 systems, dynamic addressing is usually preferable. Renumbering If it is likely you will need to renumber systems in the future and there are many end systems, dynamic address assignment is the better choice Renumbering for public addresses will become necessary if a new ISP is selected In addition, you may plan to renumber because the current plan is not well structured or will run out of numbers soon. High availability Statically assigned IP addresses are available anytime. Dynamically assigned IP addresses have to be acquired from a server first. If the server fails, an address cannot be acquired. To avoid this problem, you can deploy redundant DHCP servers or use static addresses.

11 Criteria for Static vs Dynamic Addressing Security With dynamic address assignment, in most cases, any device that connects to the network can acquire a valid address. This imposes some security risk and may mean that dynamic addressing is not appropriate for a company with a very strict security policy. Address tracking If a management or security policy requires that addresses be tracked, static addressing might be easier to implement than dynamic addressing. Additional parameters If end systems need information beyond an address, dynamic addressing is useful because a server can provide additional parameters to clients along with the address. For example, a DHCP server provides a subnet mask, a default gateway, and optional information such as one or more name server addresses, including Domain Name System (DNS) and Windows Internet Naming Service (WINS) server addresses.

12 IP Dynamic Addressing When the IP protocols were first developed, a network administrator was required to configure each host with its unique IP address. In the mid-1980s, protocols were developed to support diskless stations dynamically learning an address, which was necessary because a diskless station has no storage for saving a configuration. These protocols included the Reverse Address Resolution Protocol (RARP) and BOOTP BOOTP has evolved into DHCP, which has gained considerable popularity since the late 1990s. RARP is limited in scope; the only information returned to a station using RARP is its IP address BOOTP is more sophisticated than RARP, and optionally returns additional information, including the address of the default gateway, the name of a boot file to download, and 64 bytes of vendor-specific information.

13 The Dynamic Host Configuration Protocol DHCP is based on BOOTP BOOTP hosts can interoperate with DHCP hosts, although DHCP adds many enhancements to BOOTP, including a larger vendorspecific information field (called the options field in DHCP) and the automatic allocation of reusable network layer addresses DHCP has bypassed BOOTP in popularity, because it is easier to configure. Unlike BOOTP, DHCP does not require a network administrator to maintain a MAC-to-IP address table. DHCP uses a client/server model. Servers allocate network layer addresses and save information about which addresses have been allocated. Clients dynamically request configuration parameters from servers. The goal of DHCP is that clients should require no manual configuration. In addition, the network manager should not have to enter any per-client configuration parameters into servers.

14 DHCP supports three methods for IP address allocation Automatic allocation A DHCP server assigns a permanent IP address to a client. Dynamic allocation A DHCP server assigns an IP address to a client for a limited period of time, called a lease Manual allocation A network administrator assigns a permanent IP address to a client, and DHCP is used simply to convey the assigned address to the client

15 Dynamic allocation in DHCP Dynamic allocation is the most popular method, partly because its reallocation feature supports environments where hosts are not online all the time, and there are more hosts than addresses. With dynamic allocation, a client requests the use of an address for a limited period of time. The period of time is called a lease. The allocation mechanism guarantees not to reallocate that address within the requested time, and attempts to return the same network layer address each time the client requests an address. The client may extend its lease with subsequent requests. The client may choose to relinquish its lease by sending a DHCP release message to the server. The allocation mechanism can reuse an address if the lease for the address has expired. As a consistency check, the allocating server should probe the reused address before allocating the address. It can do this with an Internet Control Message Protocol (ICMP) echo request (also known as a ping packet). The client should also probe the newly received address. It can do this with a ping packet or an Address Resolution Protocol (ARP) request.

16 DHCP steps When a client boots, it broadcasts a DHCP discover message on its local subnet. A station that has previously received a network layer address and lease can include them in the DHCP discover message to suggest that they be used again. A router can pass the DHCP discover message on to DHCP servers not on the same physical subnet to avoid a requirement that a DHCP server reside on each subnet. (The router acts as a DHCP relay agent.) Each server responds to the DHCP request with a DHCP offer message that includes an available network layer address in the your address (yiaddr) field. The DHCP offer message can include additional configuration parameters in the options field. After the client receives DHCP offer messages from one or more servers, the client chooses one server from which to request configuration parameters. The client broadcasts a DHCP request message that includes the server identifier option to indicate which server it has selected. This DHCP request message is broadcast and relayed through routers if necessary.

17 DHCP steps The server selected in the DHCP request message commits the configuration parameters for the client to persistent storage and responds with a DHCP ACK message, containing the configuration parameters for the requesting client. If a client receives no DHCP offer or DHCP ACK messages, the client times out and retransmits the DHCP discover and request messages. To avoid synchronicity and excessive network traffic, the client uses a randomized exponential backoff algorithm to determine the delay between retransmissions. The delay between retransmissions should be chosen to allow sufficient time for replies from the server, based on the characteristics of the network between the client and server. For example, on a 10-Mbps Ethernet network, the delay before the first retransmission should be 4 seconds, randomized by the value of a uniform random number chosen from the range 1 to +1. The delay before the next retransmission should be 8 seconds, randomized by the value of a uniform number chosen from the range 1 to +1. The retransmission delay should be doubled with subsequent retransmissions up to a maximum of 64 seconds.

18 Private Addressing Private IP addresses are addresses that an enterprise network administrator assigns to internal networks and hosts without any coordination from an ISP or one of the regional registries An ISP or the registry provides public addresses for web servers or other servers that external users access, but public addresses are not necessary for internal hosts and networks Addressing for internal hosts that need access to outside services, such as , FTP, or web servers, can be handled by a Network Address Translation (NAT) gateway IETF reserves the following numbers for addressing nodes on internal private networks

19 Benefits of Private Addressing Security Private network numbers are not advertised to the Internet. In fact, private network numbers must not be advertised to the Internet because they are not globally unique. By not advertising private internal network numbers, a modicum of security is achieved. Adaptability and flexibility Using private addressing makes is easier to change ISPs in the future. If private addressing has been used, when moving to a new ISP, the only address changes required are in the router or firewall providing NAT services and in any public servers. Advertise just one network number, or a small block of network numbers, to the Internet One of the goals of modern Internet practices is that Internet routers should not need to manage huge routing tables. As an enterprise network grows, the network manager can assign private addresses to new networks, rather than requesting additional public network numbers from an ISP or registry. Saves address space During the mid-1990s, as the Internet became commercialized and popularized, a scare rippled through the Internet community regarding the shortage of addresses. Many companies (and many ISPs) were given a small set of addresses that needed to be carefully managed to avoid depletion.

20 Drawbacks of Private Addressing Outsourcing network management is difficult When a company delegates network management responsibility to an outside company, the outside company typically sets up network consoles at its own site that communicate with internetworking devices inside the client's network. With private addressing, however, the consoles cannot reach the client's devices, because no routes to internal networks are advertised to the outside. NAT can be used to translate the private addresses to public addresses, but then there may be problems with interoperability between NAT and network management protocols such as the Simple Network Management Protocol (SNMP). Difficulty of communicating with partners, vendors, suppliers, and so on Because the partner companies are also probably using private addresses, building extranets becomes more difficult. Also, companies that merge with each other face a difficult chore of renumbering any duplicate addresses caused by both companies using the same private addresses. May forget to use a structured model with the private addresses Enterprise network managers, who were once starved for addresses that were carefully doled out by ISPs and the registries, get excited when they move to private addressing and have all of network at their disposal. The excitement should not overshadow the need to assign the new address space in a structured, hierarchical fashion. Hierarchical addressing facilitates route summarization within the enterprise network, which decreases bandwidth consumption by routing protocols, reduces processing on routers, and enhances network resiliency.

21 Network Address Translation Network Address Translation (NAT) converts addresses from an inside network to addresses that are appropriate for an outside network, and vice versa. NAT is useful when hosts that need access to Internet services have private addresses NAT functionality can be implemented in a separate appliance, router, or firewall. The NAT administrator configures a pool of outside addresses that can be used for translation. When an inside host sends a packet, the source address is translated dynamically to an address from the pool of outside addresses. NAT also has a provision for static addresses for servers that need a fixed address for example, a web or mail server that must always map to the same well-known address Some NAT products also offer port translation for mapping several addresses to the same address (port NAT) With port translation, all traffic from an enterprise has the same address Port numbers are used to distinguish separate conversations Port translation reduces the number of required outside addresses Port translation is sometimes called overloading addresses.

22 Network Address Translation When using NAT, all traffic between an enterprise network and the Internet must go through the NAT gateway NAT gateway has superior throughput and low delay, particularly if enterprise users depend on Internet video or voice applications. The NAT gateway should have a fast processor that can examine and change packets very quickly Keep in mind that, in addition to modifying IP addresses, a NAT gateway must modify the IP, TCP, and UDP checksums. (The checksums for TCP and UDP cover a pseudo header that contains source and destination IP addresses.) In many cases, NAT must also modify IP addresses that occur inside the data part of a packet. IP addresses can appear in ICMP, FTP, DNS, SNMP, and other types of packets. Because NAT has the job of translating network layer addresses, it can be tricky to guarantee correct behavior with all applications A NAT gateway should be thoroughly tested in a pilot environment before it is generally deployed

23 Network Address Translation NAT Box (router) takes over the task of the translation Provides transparent IP-level access to internet from a host with a private address NAT Translation Table Creation Manual initialization Outgoing datagrams (records internal host source address and destination address-what about the case where two internal hosts contact the same external host?) Incoming name lookups (a record is created for each lookup and all internal hosts appear to the external world a having the same globally valid IP address of the gateway) 1-to-1 mapping vs multi address NAT For each foreign internet address there are up to k global valid internet addresses (G1, G2,,Gk)

24 Port-mapped NAT Private Address Private Port External Address External Port NAT Port Protocol tcp tcp tcp tcp Internal Datagrams ( , 21023, , 80) ( , 386, , 80) External Datagrams (Unique addr, 14003, , 80) (Unique addr, 14010, , 80)

25 Other NAT issues Interaction between NAT and ICMP What about an incoming ICMP redirect or ICMP destination unreachable message? Interaction between NAT and Applications What about Applications (like FTP) that carry port numbers Changing data values in segments is not the best way to solve the translation problem because On one hand, NAT becomes aware of the application which is not acceptable On the other hand, adding octets in the data stream renders sequence numbers of the segments invalid

26 The Two Parts of an IP Address 32 Bits Prefix Host Prefix Length

27 IP Address Classes Classes are now considered obsolete But you have to learn them because Everyone in the industry still talks about them! You may run into a device whose configuration is affected by the classful system

28 Classful IP Addressing Class First First Byte Prefix Intent Few Bits Length A * 8 Very large networks B Large networks C Small networks D NA IP multicast E NA Experimental *Addresses starting with 127 are reserved for IP traffic local to a host.

29 Division of the Classful Address Space Class Prefix Number of Addresses Length per Network A = 16,777,214 B = 65,534 C = 254

30 Classful IP is Wasteful Class A uses 50% of address space Class B uses 25% of address space Class C uses 12.5% of address space Class D and E use 12.5% of address space

31 Prefix Length An IP address is accompanied by an indication of the prefix length Subnet mask /Length Examples /24

32 Subnet Mask 32 bits long Specifies which part of an IP address is the network/subnet field and which part is the host field The network/subnet portion of the mask is all 1s in binary. The host portion of the mask is all 0s in binary. Convert the binary expression back to dotted-decimal notation for entering into configurations. Alternative Use slash notation (for example /24) Specifies the number of 1s

33 Subnet Mask Example What is this in slash notation? What is this in dotted-decimal notation?

34 Another Subnet Mask Example What is this in slash notation? What is this in dotted-decimal notation?

35 One More Subnet Mask Example What is this in slash notation? What is this in dotted-decimal notation?

36 Designing Networks with Subnets Determining subnet size Computing subnet mask Computing IP addresses

37 Addresses to Avoid When Subnetting A node address of all ones (broadcast) A node address of all zeros (network) The next ones are allowed by the subnet standard A subnet address of all ones (all subnets) A subnet address of all zeros (confusing)

38 Practice Network is You want to divide the network into subnets. You will allow 600 nodes per subnet. What subnet mask should you use? What is the address of the first node on the first subnet? What address would this node use to send to all devices on its subnet?

39 More Practice Network is You have eight LANs, each of which will be its own subnet. What subnet mask should you use? What is the address of the first node on the first subnet? What address would this node use to send to all devices on its subnet?

40 One More Network is You want to divide the network into subnets. You will have approximately 25 nodes per subnet. What subnet mask should you use? What is the address of the last node on the last subnet? What address would this node use to send to all devices on its subnet?

41 Addressing example

42 Addressing example Step One. Count hosts on each subnet, and refer back to the chart showing how many addresses can be assigned for each prefix length. Two of the branch offices have 20 hosts (21 including the router), and the other has 25 hosts (26 including the router). Each of these subnets will require a /27 prefix, since these can handle up to 30 addresses. Of the headquarters subnets, the one with 30 hosts will require another /27, the one with 50 hosts will require a /26, and the two 10 host subnets each require a /28. The three WAN links, each requiring a /30, and the Ethernet connecting the two routers together, which also requires a /30. However, since more hosts might later be added to the Ethernet, we'll assign it a /29 for expansion purposes. Step Two. Assign largest subnets first. The largest subnet is the headquarters subnet with 50 hosts, requiring a /26 prefix. We'll assign to it /26, using numbers from 0 to 63 in the fourth byte. Next we need four /27s (one in the headquarters, and one for each of the branch offices). We'll assign /27, /27, /27, and /27. We've now used numbers from 0 to 191 in the fourth byte. The two /28s will be /28 and /28. That leaves /29 for the Ethernet between the two headquarters routers, and the remaining address space for the three WAN links: /30, /30 and /30.

43 Classless Addressing Prefix/host boundary can be anywhere Less wasteful Supports route summarization Also known as Aggregation Supernetting Classless routing Classless inter-domain routing (CIDR) Prefix routing

44 Supernetting Branch-Office Router Branch-Office Networks Enterprise Core Network Move prefix boundary to the left Branch office advertises /14

45 /14 Summarization Second Octet in Decimal Second Octet in Binary

46 Rules for route summarization The number of subnets to be summarized must be a power of 2 (for example, 2, 4, 8, 16, 32, and so on). The relevant octet in the first address in the block to be summarized must be a multiple of the number of subnets. The following network numbers are defined at a branch office. Can they be summarized? The number of subnets is 8, which is a power of 2, so the first condition is met. The relevant octet (third in this case) is 48, which is a multiple of the number of subnets The subnets can be summarized as /21

47 Discontiguous Subnets Area 0 Network Router A Router B Area 1 Subnets Area 2 Subnets

48 Discontiguous Subnets Classful routing protocols automatically summarize subnets. One side-effect of this is that discontiguous subnets are not supported Subnets must be next to each other that is, contiguous. With a classful routing protocol such as RIP version 1 or IGRP, Router A advertises that it can get to network Router B ignores this advertisement, because it can already get to network The opposite is also true: Router B advertises that it can get to network , but Router A ignores this information This means that the routers cannot reach remote subnets of network

49 A Mobile Host Router A Router B Subnets Host

50 Guidelines for Assigning Names Names should be Short Meaningful Unambiguous Distinct Case insensitive Avoid names with unusual characters Hyphens, underscores, asterisks, and so on

51 Domain Name System (DNS) Maps names to IP addresses Supports hierarchical naming example: frodo.rivendell.middle-earth.com A DNS server has a database of resource records (RRs) that maps names to addresses in the server s zone of authority Client queries server Uses UDP port 53 for name queries and replies Uses TCP port 53 for zone transfers

52 DNS Details Client/server model Client is configured with the IP address of a DNS server Manually or DHCP can provide the address DNS resolver software on the client machine sends a query to the DNS server. Client may ask for recursive lookup.

53 DNS Recursion A DNS server may offer recursion, which allows the server to ask other servers Each server is configured with the IP address of one or more root DNS servers. When a DNS server receives a response from another server, it replies to the resolver client software. The server also caches the information for future requests. The network administrator of the authoritative DNS server for a name defines the length of time that a nonauthoritative server may cache information.

Top-Down Network Design

Top-Down Network Design Top-Down Network Design Chapter Six Designing Models for Addressing and Naming Copyright 2010 Cisco Press & Priscilla Oppenheimer Guidelines for Addressing and Naming Use a structured model for addressing

More information

IP Addressing - Subnetting

IP Addressing - Subnetting IP Addressing - Subnetting The Two Parts of an IP Address 32 Bits Prefix Host Prefix Length IP Address Classes Classes are now considered obsolete But you have to learn them because Everyone in the industry

More information

RSC Part II: Network Layer 3. IP addressing (2nd part)

RSC Part II: Network Layer 3. IP addressing (2nd part) RSC Part II: Network Layer 3. IP addressing (2nd part) Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to the book Computer Networking:

More information

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0

Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 Chapter 7: IP Addressing CCENT Routing and Switching Introduction to Networks v6.0 CCNET v6 13 Chapter 7 - Sections & Objectives 7.1 IPv4 Network Addresses Convert between binary and decimal numbering

More information

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4

CCNA Exploration Network Fundamentals. Chapter 06 Addressing the Network IPv4 CCNA Exploration Network Fundamentals Chapter 06 Addressing the Network IPv4 Updated: 20/05/2008 1 6.0.1 Introduction Addressing is a key function of Network layer protocols that enables data communication

More information

Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office

Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office ExamForce.com 640-822 CCNA ICND Study Guide 31 Chapter 3 - Implement an IP Addressing Scheme and IP Services to Meet Network Requirements for a Small Branch Office Describe the need and role of addressing

More information

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols

Guide to Networking Essentials, 6 th Edition. Chapter 5: Network Protocols Guide to Networking Essentials, 6 th Edition Chapter 5: Network Protocols Objectives Describe the purpose of a network protocol, the layers in the TCP/IP architecture, and the protocols in each TCP/IP

More information

Chapter 18 and 22. IPv4 Address. Data Communications and Networking

Chapter 18 and 22. IPv4 Address. Data Communications and Networking University of Human Development College of Science and Technology Department of Information Technology Chapter 18 and 22 Data Communications and Networking IPv4 Address 1 Lecture Outline IPv4 Addressing

More information

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing

Network layer: Overview. Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask

Unit C - Network Addressing Objectives Purpose of an IP Address and Subnet Mask Purpose of an IP Address and Subnet Mask 1 2 3 4 5 6 7 8 9 10 Unit C - Network Addressing Objectives Describe the purpose of an IP address and Subnet Mask and how they are used on the Internet. Describe the types of IP Addresses available. Describe

More information

Network layer: Overview. Network Layer Functions

Network layer: Overview. Network Layer Functions Network layer: Overview Network layer functions IP Routing and forwarding NAT ARP IPv6 Routing 1 Network Layer Functions Transport packet from sending to receiving hosts Network layer protocols in every

More information

Chapter 8: Subnetting IP Networks

Chapter 8: Subnetting IP Networks Chapter 8: Subnetting IP Networks Designing, implementing and managing an effective IP addressing plan ensures that networks can operate effectively and efficiently. This is especially true as the number

More information

Binary Octet to Decimal Format Conversion

Binary Octet to Decimal Format Conversion IP Address An IP (Internet Protocol) address is a unique address that different computers on a computer network use to identify and communicate with one another. An IP address is used as an identifier

More information

Lecture (03) Internet Protocol tcp/ip> OSI>

Lecture (03) Internet Protocol tcp/ip> OSI> Lecture (03) Internet Protocol Dr. Ahmed M. ElShafee ١ Agenda Introduction Network Layer Interaction with the Data Link Layer Network Layer (Layer 3) Addressing

More information

EEC-684/584 Computer Networks

EEC-684/584 Computer Networks EEC-684/584 Computer Networks Lecture 14 wenbing@ieee.org (Lecture nodes are based on materials supplied by Dr. Louise Moser at UCSB and Prentice-Hall) Outline 2 Review of last lecture Internetworking

More information

TCP/IP Protocol Suite and IP Addressing

TCP/IP Protocol Suite and IP Addressing TCP/IP Protocol Suite and IP Addressing CCNA 1 v3 Module 9 10/11/2005 NESCOT CATC 1 Introduction to TCP/IP U.S. DoD created the TCP/IP model. Provides reliable data transmission to any destination under

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Computer Networking Introduction

Computer Networking Introduction Computer Networking Introduction Halgurd S. Maghdid Software Engineering Department Koya University-Koya, Kurdistan-Iraq Lecture No.13 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram

More information

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements?

1. IPv6 is the latest version of the TCP/IP protocol. What are some of the important IPv6 requirements? 95 Chapter 7 TCP/IP Protocol Suite and IP Addressing This chapter presents an overview of the TCP/IP Protocol Suite. It starts with the history and future of TCP/IP, compares the TCP/IP protocol model

More information

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats

FIGURE 3. Two-Level Internet Address Structure. FIGURE 4. Principle Classful IP Address Formats Classful IP Addressing When IP was first standardized in September 1981, the specification required that each system attached to an IP-based Internet be assigned a unique, 32-bit Internet address value.

More information

Internet Routing Protocols, DHCP, and NAT

Internet Routing Protocols, DHCP, and NAT Internet Routing Protocols, DHCP, and NAT Hwajung Lee Modified from Slides Courtesy of Cisco Networking Academy and the book titled Communication Networks by Leon-Garcia Contents Basic Routing Single Area

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

OSI Data Link & Network Layer

OSI Data Link & Network Layer OSI Data Link & Network Layer Erkki Kukk 1 Layers with TCP/IP and OSI Model Compare OSI and TCP/IP model 2 Layers with TCP/IP and OSI Model Explain protocol data units (PDU) and encapsulation 3 Addressing

More information

Router Architecture Overview

Router Architecture Overview Chapter 4: r Introduction (forwarding and routing) r Review of queueing theory r Router design and operation r IP: Internet Protocol m IPv4 (datagram format, addressing, ICMP, NAT) m Ipv6 r Generalized

More information

The Interconnection Structure of. The Internet. EECC694 - Shaaban

The Interconnection Structure of. The Internet. EECC694 - Shaaban The Internet Evolved from the ARPANET (the Advanced Research Projects Agency Network), a project funded by The U.S. Department of Defense (DOD) in 1969. ARPANET's purpose was to provide the U.S. Defense

More information

6 Chapter 6. Figure 1 Required Unique Addresses

6 Chapter 6. Figure 1 Required Unique Addresses 6 Chapter 6 6.1 Public and Private IP Addresses The stability of the Internet depends directly on the uniqueness of publicly used network addresses. In Figure 1 Required Unique Addresses, there is an issue

More information

A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples.

A few notes. The following slides are NOT from the online curriculum. However, they do cover the same topics using different examples. Objectives This module explores the evolution and extension of IPv4, including the key scalability features that engineers have added to it over the years: Subnetting Classless interdomain routing (CIDR)

More information

1 Connectionless Routing

1 Connectionless Routing UCSD DEPARTMENT OF COMPUTER SCIENCE CS123a Computer Networking, IP Addressing and Neighbor Routing In these we quickly give an overview of IP addressing and Neighbor Routing. Routing consists of: IP addressing

More information

INTRODUCTORY INFORMATION TECHNOLOGY COMMUNICATING OVER NETWORKS. Faramarz Hendessi

INTRODUCTORY INFORMATION TECHNOLOGY COMMUNICATING OVER NETWORKS. Faramarz Hendessi INTRODUCTORY INFORMATION TECHNOLOGY COMMUNICATING OVER NETWORKS Faramarz Hendessi INTRODUCTORY INFORMATION TECHNOLOGY Lecture 6 Fall 2010 Isfahan University of technology Dr. Faramarz Hendessi Overview

More information

Chapter 4: Network Layer

Chapter 4: Network Layer Chapter 4: Introduction (forwarding and routing) Review of queueing theory Routing algorithms Link state, Distance Vector Router design and operation IP: Internet Protocol IPv4 (datagram format, addressing,

More information

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University

Computer Networks. More on Standards & Protocols Quality of Service. Week 10. College of Information Science and Engineering Ritsumeikan University Computer Networks More on Standards & Protocols Quality of Service Week 10 College of Information Science and Engineering Ritsumeikan University Introduction to Protocols l A protocol is a set of rules

More information

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING

Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Networking and IP Addressing TELECOMMUNICATIONS AND NETWORKING Addressing Schemes FLAT 1.Used by Intranetworks 2.Used by Layer 2 3.Used in MAC address 4.Is assigned statically based on next available number

More information

IT220 Network Standards & Protocols. Unit 9: Chapter 9 The Internet

IT220 Network Standards & Protocols. Unit 9: Chapter 9 The Internet IT220 Network Standards & Protocols Unit 9: Chapter 9 The Internet 3 Objectives Identify the major needs and stakeholders for computer networks and network applications. Identify the classifications of

More information

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding.

Integrated Services. Integrated Services. RSVP Resource reservation Protocol. Expedited Forwarding. Assured Forwarding. Integrated Services An architecture for streaming multimedia Aimed at both unicast and multicast applications An example of unicast: a single user streaming a video clip from a news site An example of

More information

CSCD 330 Network Programming Spring 2017

CSCD 330 Network Programming Spring 2017 CSCD 330 Network Programming Spring 2017 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 1996-2007 1

More information

LOGICAL ADDRESSING. Faisal Karim Shaikh.

LOGICAL ADDRESSING. Faisal Karim Shaikh. LOGICAL ADDRESSING Faisal Karim Shaikh faisal.shaikh@faculty.muet.edu.pk DEWSNet Group Dependable Embedded Wired/Wireless Networks www.fkshaikh.com/dewsnet IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

Lecture 8 Network Layer: Logical addressing

Lecture 8 Network Layer: Logical addressing Data Communications ACOE412 Lecture 8 Network Layer: Logical addressing Spring 2009 1 0. Overview In this lecture we will cover the following topics: 14.Network Layer: Logical addressing 14.1 IPv4 Addresses

More information

Internet Technology 3/23/2016

Internet Technology 3/23/2016 Internet Technology // Network Layer Transport Layer (Layer ) Application-to-application communication Internet Technology Network Layer (Layer ) Host-to-host communication. Network Layer Route Router

More information

Chapter 7. IP Addressing Services. IP Addressing Services. Part I

Chapter 7. IP Addressing Services. IP Addressing Services. Part I Chapter 7 IP Addressing Services Part I CCNA4-1 Chapter 7-1 IP Addressing Services Dynamic Host Configuration Protocol (DHCP) CCNA4-2 Chapter 7-1 Dynamic Host Configuration Protocol (DHCP) Every device

More information

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12

TCP/IP Networking. Training Details. About Training. About Training. What You'll Learn. Training Time : 9 Hours. Capacity : 12 TCP/IP Networking Training Details Training Time : 9 Hours Capacity : 12 Prerequisites : There are no prerequisites for this course. About Training About Training TCP/IP is the globally accepted group

More information

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca

CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca CSCI-1680 Network Layer: IP & Forwarding Rodrigo Fonseca Based partly on lecture notes by David Mazières, Phil Levis, John Janno< Administrivia IP out today. Your job: Find partners and tell us Implement

More information

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6

TCP/IP. Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 TCP/IP Model and Layers Bits and Number Bases IPv4 Addressing Subnetting Classless Interdomain Routing IPv6 At the beginning of the course, we discussed two primary conceptual models of networking: OSI

More information

Network+ Guide to Networks 6 th Edition. Chapter 4 Introduction to TCP/IP Protocols

Network+ Guide to Networks 6 th Edition. Chapter 4 Introduction to TCP/IP Protocols Network+ Guide to Networks 6 th Edition Chapter 4 Introduction to TCP/IP Protocols Objectives Identify and explain the functions of the core TCP/IP protocols Explain the TCP/IP model and how it corresponds

More information

NT1210 Introduction to Networking. Unit 9:

NT1210 Introduction to Networking. Unit 9: NT1210 Introduction to Networking Unit 9: Chapter 9, The Internet Objectives Identify the major needs and stakeholders for computer networks and network applications. Identify the classifications of networks

More information

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP)

IT220 Network Standards & Protocols. Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols Unit 8: Chapter 8 The Internet Protocol (IP) IT220 Network Standards & Protocols REMINDER Student Evaluations 4 Objectives Identify the major needs and stakeholders

More information

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing

Last time. Network layer. Introduction. Virtual circuit vs. datagram details. IP: the Internet Protocol. forwarding vs. routing Last time Network layer Introduction forwarding vs. routing Virtual circuit vs. datagram details connection setup, teardown VC# switching forwarding tables, longest prefix matching IP: the Internet Protocol

More information

NETWORK LAYER: IP Addressing

NETWORK LAYER: IP Addressing NETWORK LAYER: IP Addressing McGraw-Hill The McGraw-Hill Companies, Inc., 2004 2000 Position of network layer McGraw-Hill The McGraw-Hill Companies, Inc., 2004 Network layer duties McGraw-Hill The McGraw-Hill

More information

CSCD 330 Network Programming Spring 2018

CSCD 330 Network Programming Spring 2018 CSCD 330 Network Programming Spring 2018 Lecture 14 Network Layer IP Addressing Reading: Chapter 4 Some slides provided courtesy of J.F Kurose and K.W. Ross, All Rights Reserved, copyright 2017 Network

More information

internet technologies and standards

internet technologies and standards Institute of Telecommunications Warsaw University of Technology 2017 internet technologies and standards Piotr Gajowniczek Andrzej Bąk Michał Jarociński Network Layer The majority of slides presented in

More information

Configuring IPv4. Finding Feature Information. This chapter contains the following sections:

Configuring IPv4. Finding Feature Information. This chapter contains the following sections: This chapter contains the following sections: Finding Feature Information, page 1 Information About IPv4, page 2 Virtualization Support for IPv4, page 6 Licensing Requirements for IPv4, page 6 Prerequisites

More information

Chapter 4 Network Layer

Chapter 4 Network Layer Chapter 4 Network Layer Computer Networking A Top-Down Approach These slides are based on the slides made available by Kurose and Ross. All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

CSCI-1680 Network Layer: IP & Forwarding John Jannotti

CSCI-1680 Network Layer: IP & Forwarding John Jannotti CSCI-1680 Network Layer: IP & Forwarding John Jannotti Based partly on lecture notes by David Mazières, Phil Levis, Rodrigo Fonseca Administrivia IP out today. Your job: Find partners, get setup with Github

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: The Internet Protocol Literature: Forouzan: ch 4-9 and ch 27 2004 Image Coding Group, Linköpings Universitet Outline About the network layer Tasks Addressing Routing Protocols 2 Tasks of the

More information

Vorlesung Kommunikationsnetze

Vorlesung Kommunikationsnetze Picture 15 13 Vorlesung Kommunikationsnetze Prof. Dr. H. P. Großmann mit B. Wiegel sowie A. Schmeiser und M. Rabel Sommersemester 2009 Institut für Organisation und Management von Informationssystemen

More information

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia

IP - The Internet Protocol. Based on the slides of Dr. Jorg Liebeherr, University of Virginia IP - The Internet Protocol Based on the slides of Dr. Jorg Liebeherr, University of Virginia Orientation IP (Internet Protocol) is a Network Layer Protocol. IP: The waist of the hourglass IP is the waist

More information

Question 7: What are Asynchronous links?

Question 7: What are Asynchronous links? Question 1:.What is three types of LAN traffic? Unicasts - intended for one host. Broadcasts - intended for everyone. Multicasts - intended for an only a subset or group within an entire network. Question2:

More information

CS118 Discussion, Week 6. Taqi

CS118 Discussion, Week 6. Taqi CS118 Discussion, Week 6 Taqi 1 Outline Network Layer IP NAT DHCP Project 2 spec 2 Network layer: overview Basic functions for network layer Routing Forwarding Connection v.s. connection-less delivery

More information

Chapter 19 Network Layer: Logical Addressing

Chapter 19 Network Layer: Logical Addressing Chapter 19 Network Layer: Logical Addressing 19.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 19.2 19-1 IPv4 ADDRESSES An IPv4 address is a 32-bit address

More information

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi).

CS475 Networks Lecture 8 Chapter 3 Internetworking. Ethernet or Wi-Fi). Assignments Reading for Lecture 9: Section 3.3 3.2 Basic Internetworking (IP) Bridges and LAN switches from last section have limited ability CS475 Networks Lecture 8 Chapter 3 Internetworking is a logical

More information

Networking Potpourri: Plug-n-Play, Next Gen

Networking Potpourri: Plug-n-Play, Next Gen Networking Potpourri: Plug-n-Play, Next Gen 14-740: Fundamentals of Computer Networks Bill Nace Material from Computer Networking: A Top Down Approach, 6 th edition. J.F. Kurose and K.W. Ross Administrivia

More information

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model

Lecture 8. Basic Internetworking (IP) Outline. Basic Internetworking (IP) Basic Internetworking (IP) Service Model Lecture 8 Basic Internetworking (IP) Reminder: Homework 3, Programming Project 2 due on Tuesday. An example internet is shown at right. Routers or gateways are used to connect different physical networks.

More information

1/18/13. Network+ Guide to Networks 5 th Edition. Objectives. Chapter 10 In-Depth TCP/IP Networking

1/18/13. Network+ Guide to Networks 5 th Edition. Objectives. Chapter 10 In-Depth TCP/IP Networking Network+ Guide to Networks 5 th Edition Chapter 10 In-Depth TCP/IP Networking Objectives Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation

More information

DHCP Technology White Paper

DHCP Technology White Paper DHCP Technology White Paper Keywords: DHCP, DHCP server, DHCP relay agent, DHCP client, BOOTP client. Abstract: This document describes DHCP basic concepts and applications, as well as the main functions

More information

IP Training Programme. Module 1: IP Generic Session 3: IP Services

IP Training Programme. Module 1: IP Generic Session 3: IP Services IP Training Programme Module 1: IP Generic Session 3: IP Services Subjects Review The IP Address continued Routing protocols (Concept) Firewalll and NAT DNS server and DNS operation concept DHCP server

More information

Network+ Guide to Networks 5 th Edition. Chapter 10 In-Depth TCP/IP Networking

Network+ Guide to Networks 5 th Edition. Chapter 10 In-Depth TCP/IP Networking Network+ Guide to Networks 5 th Edition Chapter 10 In-Depth TCP/IP Networking Objectives Understand methods of network design unique to TCP/IP networks, including subnetting, CIDR, and address translation

More information

Table of Contents. Cisco TCP/IP

Table of Contents. Cisco TCP/IP Table of Contents TCP/IP Overview...1 TCP/IP Technology...1 TCP...1 IP...2 Routing in IP Environments...4 Interior Routing Protocols...5 RIP...5 IGRP...6 OSPF...6 Integrated IS IS...6 Exterior Routing

More information

Network+ Guide to Networks 5 th Edition. Chapter 4 Introduction to TCP/IP Protocols

Network+ Guide to Networks 5 th Edition. Chapter 4 Introduction to TCP/IP Protocols Network+ Guide to Networks 5 th Edition Chapter 4 Introduction to TCP/IP Protocols Objectives Identify and explain the functions of the core TCP/IP protocols Explain how the TCP/IP protocols correlate

More information

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12

CMPE 150/L : Introduction to Computer Networks. Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 CMPE 150/L : Introduction to Computer Networks Chen Qian Computer Engineering UCSC Baskin Engineering Lecture 12 1 Chapter 4: outline 4.1 introduction 4.2 virtual circuit and datagram networks 4.3 what

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Network Addressing TDC463 Fall 2017 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses at L2? If not, should

More information

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1

Lecture 8. Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Lecture 8 Reminder: Homework 3, Programming Project 2 due on Thursday. Questions? Tuesday, September 20 CS 475 Networks - Lecture 8 1 Outline Chapter 3 - Internetworking 3.1 Switching and Bridging 3.2

More information

Configuring IPv4 Addresses

Configuring IPv4 Addresses This chapter contains information about, and instructions for configuring IPv4 addresses on interfaces that are part of a networking device. Note All further references to IPv4 addresses in this document

More information

2/22/2008. Outline Computer Networking Lecture 9 IP Protocol. Hop-by-Hop Packet Forwarding in the Internet. Internetworking.

2/22/2008. Outline Computer Networking Lecture 9 IP Protocol. Hop-by-Hop Packet Forwarding in the Internet. Internetworking. Outline 5-44 Computer Networking Lecture 9 Protocol Traditional addressing CIDR addressing Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Forwarding examples 5-44

More information

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.

IPv4 addressing, NAT. Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley. IPv4 addressing, NAT http://xkcd.com/195/ Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Some materials copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights

More information

End-to-End Communication

End-to-End Communication End-to-End Communication Goal: Interconnect multiple LANs. Why? Diverse LANs speak different languages need to make them talk to each other Management flexibility global vs. local Internet Problems: How

More information

Chapter 4 Network Layer: The Data Plane

Chapter 4 Network Layer: The Data Plane Chapter 4 Network Layer: The Data Plane A note on the use of these Powerpoint slides: We re making these slides freely available to all (faculty, students, readers). They re in PowerPoint form so you see

More information

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018

CS 43: Computer Networks. 21: The Network Layer & IP November 7, 2018 CS 43: Computer Networks 21: The Network Layer & IP November 7, 2018 The Network Layer! Application: the application (e.g., the Web, Email) Transport: end-to-end connections, reliability Network: routing

More information

CSCE 463/612 Networks and Distributed Processing Spring 2018

CSCE 463/612 Networks and Distributed Processing Spring 2018 CSCE 463/612 Networks and Distributed Processing Spring 2018 Network Layer II Dmitri Loguinov Texas A&M University April 3, 2018 Original slides copyright 1996-2004 J.F Kurose and K.W. Ross 1 Chapter 4:

More information

IPv4. Christian Grothoff.

IPv4. Christian Grothoff. IPv4 christian@grothoff.org http://grothoff.org/christian/ Sites need to be able to interact in one single, universal space. Tim Berners-Lee 1 The Network Layer Transports datagrams from sending to receiving

More information

2 Understanding TCP/IP

2 Understanding TCP/IP 2 Understanding TCP/IP Exam Objectives in this Chapter: Troubleshoot TCP/IP addressing. Diagnose and resolve issues related to incorrect configuration. Why This Chapter Matters As a network administrator,

More information

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics

Guide to TCP/IP Fourth Edition. Chapter 2: IP Addressing and Related Topics Guide to TCP/IP Fourth Edition Chapter 2: IP Addressing and Related Topics Objectives Describe IP addressing, anatomy and structures, and addresses from a computer s point of view Recognize and describe

More information

Module 7: Configuring and Supporting TCP/IP

Module 7: Configuring and Supporting TCP/IP Module 7: Configuring and Supporting TCP/IP Contents Overview 1 Introduction to TCP/IP 2 Examining Classful IP Addressing 10 Defining Subnets 17 Using Classless Inter-Domain Routing 29 Configuring IP Addresses

More information

Networking Fundamentals

Networking Fundamentals Networking Fundamentals Network Startup Resource Center www.nsrc.org These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/)

More information

Internet Network Protocols IPv4/ IPv6

Internet Network Protocols IPv4/ IPv6 Internet Network Protocols IPv4/ IPv6 Prof. Anja Feldmann, Ph.D. anja@inet.tu-berlin.de TCP/IP Illustrated, Volume 1, W. Richard Stevens http://www.kohala.com/start 1 IP Interfaces IP address: identifier

More information

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2.

CS 356: Computer Network Architectures. Lecture 14: Switching hardware, IP auxiliary functions, and midterm review. [PD] chapter 3.4.1, 3.2. CS 356: Computer Network Architectures Lecture 14: Switching hardware, IP auxiliary functions, and midterm review [PD] chapter 3.4.1, 3.2.7 Xiaowei Yang xwy@cs.duke.edu Switching hardware Software switch

More information

Aside: Interaction with Link Layer Computer Networking. Caching ARP Entries. ARP Cache Example

Aside: Interaction with Link Layer Computer Networking. Caching ARP Entries. ARP Cache Example Aside: Interaction with Link Layer 15-441 Computer Networking Lecture 8 Addressing & Packets How does one find the Ethernet address of a? ARP Broadcast search for address E.g., who-has 128.2.184.45 tell

More information

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough

CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1. Brian Harrington. February 13, University of Toronto Scarborough CSCD58 WINTER 2018 WEEK 6 - NETWORK LAYER PART 1 Brian Harrington University of Toronto Scarborough February 13, 2018 ADMIN Assignments Midterm after reading week (Feb 27) In class Covering everything

More information

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4 IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 12.4 Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

More information

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S

IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S IP Addressing: IPv4 Addressing Configuration Guide, Cisco IOS Release 15S Americas Headquarters Cisco Systems, Inc. 170 West Tasman Drive San Jose, CA 95134-1706 USA http://www.cisco.com Tel: 408 526-4000

More information

Computer Networks and Data Systems

Computer Networks and Data Systems Computer Networks and Data Systems Internet Protocol (IP) Addressing TDC463 Winter 2011/12 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

IP Addressing and Subnetting

IP Addressing and Subnetting IP Addressing and Subnetting Internet Layer The purpose of the Internet layer is to send packets from a network node and have them arrive at the destination node independent of the path taken. Internet

More information

01/17/08 TDC /17/08 TDC363-03

01/17/08 TDC /17/08 TDC363-03 Introduction to LAN TDC 363 Week 3 Network Protocols Book: Chapter 4 & 11 1 Outline The TCP/IP model vs. the OSI Model IP Address Address Resolution Protocol (ARP) IPX/SPX and NetBIOS Protocols on Windows

More information

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322

06/02/ Local & Metropolitan Area Networks 0. INTRODUCTION. 1. History and Future of TCP/IP ACOE322 1 Local & Metropolitan Area Networks ACOE322 Lecture 5 TCP/IP Protocol suite and IP addressing 1 0. INTRODUCTION We shall cover in this topic: 1. The relation of TCP/IP with internet and OSI model 2. Internet

More information

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer

CPSC 826 Internetworking. The Network Layer: Routing & Addressing Outline. The Network Layer 1 CPSC 826 Intering The Network Layer: Routing & Addressing Outline The Network Layer Michele Weigle Department of Computer Science Clemson University mweigle@cs.clemson.edu November 10, 2004 Network layer

More information

TDC 563 Protocols and Techniques for Data Networks

TDC 563 Protocols and Techniques for Data Networks TDC 563 Protocols and Techniques for Data Networks Network Addressing TDC563 Autumn 2015/16 John Kristoff - DePaul University 1 Why have addresses at layer 3? Aren't there already globally unique addresses

More information

Module 10. (Reconnaissance Whois and DNS)

Module 10. (Reconnaissance Whois and DNS) (Reconnaissance Whois and DNS) At the end of this module, you should what Domain Names and IPv4 Address are and how they are related by the Domain Name Service. You should also have an idea of what kind

More information

Full file at

Full file at ch02 True/False Indicate whether the statement is true or false. 1. IP addresses have links to domain names to make it possible for users to identify and access resources on a network. 2. As a frame moves

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Network Layer IPv4, Format and Addressing,, IPv6 Prof. Lina Battestilli Fall 2017 Chapter 4 Outline Network Layer: Data Plane 4.1 Overview of Network layer

More information

TSIN02 - Internetworking

TSIN02 - Internetworking Lecture 2: Internet Protocol Literature: Forouzan: ch (4-6), 7-9 and ch 31 2004 Image Coding Group, Linköpings Universitet Lecture 2: IP Goals: Understand the benefits Understand the architecture IPv4

More information

IP: Addressing, ARP, Routing

IP: Addressing, ARP, Routing IP: Addressing, ARP, Routing Network Protocols and Standards Autumn 2004-2005 Oct 21, 2004 CS573: Network Protocols and Standards 1 IPv4 IP Datagram Format IPv4 Addressing ARP and RARP IP Routing Basics

More information

TCP/IP Protocol Suite

TCP/IP Protocol Suite TCP/IP Protocol Suite Computer Networks Lecture 5 http://goo.gl/pze5o8 TCP/IP Network protocols used in the Internet also used in today's intranets TCP layer 4 protocol Together with UDP IP - layer 3 protocol

More information