Impact of Manufacturing Variability in Power Constrained Supercomputing. Koji Inoue. Kyushu University

Size: px
Start display at page:

Download "Impact of Manufacturing Variability in Power Constrained Supercomputing. Koji Inoue. Kyushu University"

Transcription

1 Impact of Manufacturing Variability in Power Constrained Supercomputing Koji Inoue Kyushu University

2 Trends of Supercomputing 1 Exa Flops (10 18 Floating-point Operations Per Second) World-Wide Next Target 1 Exa MW 33.9 Peta MW 30X 1.7X Need to improve power efficiency!

3 Overprovisioned Systems Under-provisioned (Conventional) HW Design ü Ensures the PEAK system power does NOT exceed the limit SW Design ü Tries to maximize the activity of HW components ) ( ) ( ) ( ) ( : ) Over-provisioned HW Design: ü Allows to install HWs w/o considering the power limit ü Provides power-performance knobs SW Design: ü Tunes the knobs to maximize the performance based on SW workloads ü Ensures the ACTUAL system power does NOT exceed the limit ( ) ) )

4 Experimental Setup HPC Challenge: star DGEMM, star STREAM(Triad) NPB: BT, SP, EP Magneto Hydro-Dynamics(MHD) simulation Typical stencil app. to simulate space plasma Calculations and communications appear in turn Fiber benchmark suite: mvmc-mini (mvmc) Blue=EP type Red=With Comm. & Sync. Variational Monte-Carlo simulation for strongly correlated electron system Cab(LLNL) Intel E Sandy Bridge 1, RAPL BG/Q Vulcan (LLNL) IBM PowerPC A2 24, (compute) EMON Teller (SNL) AMD A K Piledriver PI HA8K(Kyushu Univ.) Intel E5-2697v2 Ivy Bridge RAPL

5 Terminology Module CPU CPU Module core core core core memory module memory module memory module memory module core core cache core core cache memory module memory module memory module memory module MC MC CPU Processor chip (including cores, cache, MC, etc.) Module A pair of a CPU and DRAMs directly connected to it

6 Impact on CPU Frequency star DGEMM 140"" 120"" Module"(CPU+DRAM)"power" 30% w/ a uniform power constraint 120# No#power#constraint 110# CPU$power$cap CPU#power#cap Power""[W] 100"" 80"" 60"" CPU$power$ CPU#Power#[W] 100# 90# 80# 40"" 20"" DRAM%power% 70# 60# 0"" 50# 0" 300" 600" 900" 1200" 1500" 1800" 1.5## 2.5## Module"IDs CPU#clock#frequency#[GHz] Power variation is translated into CPU frequency variation applying UI uniform Kyudai Taro,2007 power constraint!

7 Impact on Application Performance star DGEMM Module#(CPU+DRAM)#Power#[W] 140# 130# 120# 110# 100# 90# 80# 70# 60# 50# w/ a uniform power constraint No#power#constraint Cm=110W Cm=100W Cm=90W Cm=80W Cm=Target#Average#Power# Constraint#for#Module Cm=70W 64% 40# 0.8## ## 1.6## 2.4## 2.8## Normalized#ExecuIon#Time 3.2##

8 Problem and Goal Power-Constraint Supercomputing will be applied to future HPC systems Manufacturing Variability leads to performance variation under power constraint Our Goal Mitigate the impact of manufacturing variability on performance of HPC apps. under power constraint!

9 Concept Variation-Aware Power Budgeting W/O power-constraint Power W/ power-constraint (Conventional) W/ power-constraint (Proposed) Power variation Mitigate Variability Same total power budget Performance (=CPU Frequency)

10 Variation-Aware Power Budgeting Strategy Inputs Output HPC Applica+on Source Code Analysis to Insert PMMDs HPC Applica+on with PMMDs Test Runs on a Single Module App. Input Data App. Specific Power Profile Module-level Power Alloca+ons Varia+on-Aware Power Budge+ng Algorithm Power-performance model for all modules Final App. Runs Module Alloca+on (Scheduler) App. level Power Constraint predicted measured

11 Power Model Calibration Application-independent Power Variation Table (PVT) Estimated Application Specific Power Consumption Module 1 Module ID Normalized Power Module ID Power Consumption Module 2 k 1.2 k 120W Module 3 N 0.8 N Obtained once at system installation Test run on a module! Measured power on single module k Power Module ID Consumption k 120W Module N

12 Power Model Calibration Application-independent Power Variation Table (PVT) Estimated Application Specific Power Consumption Module 1 Module ID Normalized Power Module ID Power Consumption Module 2 k 1.2 k 120W Module 3 N 0.8 N (120W/1.2) x 0.8 application dependent average power Measured power on single module k Power Module ID Consumption k 120W Module N

13 Power Model Calibration Application-independent Power Variation Table (PVT) Estimated Application Specific Power Consumption Module 1 Module ID Normalized Power Module ID Power Consumption Module 2 k 1.2 k 120W Module 3 N 0.8 N 80W (120W/1.2) x 0.8 application dependent power on module-n Measured power on single module k Power Module ID Consumption k 120 Module N

14 Options for Power Setting Two options for power settings Power Capping (Pc) using RAPL Frequency Selection (Fs) using CPUFreqlibs Power Capping (Pc) Frequency Selection (Fs) Power Constraint Guaranteed Not guaranteed Performance Equivalence Not guaranteed Guaranteed

15 Tested Power Budgeting Methods Method Name Application Specific Variation Aware Power-Performance Model Pwr. Set. Naive No No Power Cap Pc Yes No Calibration Power Cap VaPc Yes Yes Calibration Power Cap VaFs Yes Yes Calibration Freq. Sel. VaPcOr Yes Yes Oracle Power Cap VaFsOr Yes Yes Oracle Freq. Sel. Va=Variation-Aware, Pc=Power Capping, Fs=Frequency Selection Or=Observed power data are used

16 Speedup Ratios Normalized to Naïve (star DGEMM on 1,920 modules) 1.5## 0.5## 1.5## 6.0## 5.0## 5.0## 140# 4.0## 140# 4.0## 3.0## Cs=ApplicaIon#level#power#constraint 3.0## 130# 130# No#power#constraint 120# 120# Cs=211.2KW 110# 110# Module#(CPU+DRAM)#Power#[W] 100# 90# 80# 70# 60# 50# Cs=192.0kW Cs=172.8kW Cs=153.6kW 64% 0.5## before Cs=134.4kW 40# 0.8## ## 1.6## 2.4## 2.8## 3.2## Normalized#ExecuIon#Time Module#(CPU+DRAM)#power#[W] 100# 90# 80# 70# 60# 50# 3.0## 2.5## 1.5## 0.5## 3.5## 3.0## 2.5## 1.5## 0.5## No#power#constraint Cs=211.2KW Cs=192.0kW# Cs=172.8kW Cs=ApplicaIon#level#power#constraint Cs=153.6kW Cs=134.4kW 12% after 40# 0.8## ## 1.6## 2.4## 2.8## 3.2## Normalized#ExecuIon#Time

17 Speedup Ratios Normalized to Naïve (All results on 1,920 modules) 1.5## 0.5## 6.0## 5.0## 4.0## 3.0## 1.5## 0.5## 5.0## 4.0## 3.0## 3.0## 2.5## 1.5## 0.5## 3.5## 3.0## 2.5## 1.5## 0.5## 5.4X speedup at maximum (NPB-BT) 1.8X speedup in average

18 Conclusions Power constrained computing becomes main-stream! Manufacturing variability causes serious performance issue! Optimize power resource allocation!

19 Acknowledgements This research was supported by JST CREST. Special thanks to Dr. Yuichi Inadomi, Prof. Masaaki Kondo, Dr. Tapasya Patki, Dr. Martin Schulz, and other all members of this project.

Analyzing and Mitigating the Impact of Manufacturing Variability in Power-Constrained Supercomputing

Analyzing and Mitigating the Impact of Manufacturing Variability in Power-Constrained Supercomputing Analyzing and Mitigating the Impact of Manufacturing Variability in Power-Constrained Supercomputing Yuichi Inadomi 1, Tapasya Patki 2, Koji Inoue 1, Mutsumi Aoyagi 1, Barry Rountree 3, Martin Schulz 3,

More information

Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing

Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing Tapasya Patki 1 David Lowenthal 1 Barry Rountree 2 Martin Schulz 2 Bronis de Supinski 2 1 The University of Arizona

More information

System Software Solutions for Exploiting Power Limited HPC Systems

System Software Solutions for Exploiting Power Limited HPC Systems http://scalability.llnl.gov/ System Software Solutions for Exploiting Power Limited HPC Systems 45th Martin Schulz, LLNL/CASC SPEEDUP Workshop on High-Performance Computing September 2016, Basel, Switzerland

More information

Economic Viability of Hardware Overprovisioning in Power- Constrained High Performance Compu>ng

Economic Viability of Hardware Overprovisioning in Power- Constrained High Performance Compu>ng Economic Viability of Hardware Overprovisioning in Power- Constrained High Performance Compu>ng Energy Efficient Supercompu1ng, SC 16 November 14, 2016 This work was performed under the auspices of the U.S.

More information

Power Bounds and Large Scale Computing

Power Bounds and Large Scale Computing 1 Power Bounds and Large Scale Computing Friday, March 1, 2013 Bronis R. de Supinski 1 Tapasya Patki 2, David K. Lowenthal 2, Barry L. Rountree 1 and Martin Schulz 1 2 University of Arizona This work has

More information

Power Constrained HPC

Power Constrained HPC http://scalability.llnl.gov/ Power Constrained HPC Martin Schulz Center or Applied Scientific Computing (CASC) Lawrence Livermore National Laboratory With many collaborators and Co-PIs, incl.: LLNL: Barry

More information

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM

IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM IMPROVING ENERGY EFFICIENCY THROUGH PARALLELIZATION AND VECTORIZATION ON INTEL R CORE TM I5 AND I7 PROCESSORS Juan M. Cebrián 1 Lasse Natvig 1 Jan Christian Meyer 2 1 Depart. of Computer and Information

More information

POWER- AWARE RESOURCE MANAGER Maximizing Data Center Performance Under Strict Power Budget

POWER- AWARE RESOURCE MANAGER Maximizing Data Center Performance Under Strict Power Budget POWER- AWARE RESOURCE MANAGER Maximizing Data Center Performance Under Strict Power Budget Osman Sarood, Akhil Langer*, Abhishek Gupta, Laxmikant Kale Parallel Programming Laboratory Department of Computer

More information

Motivation Goal Idea Proposition for users Study

Motivation Goal Idea Proposition for users Study Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan Computer and Information Science University of Oregon 23 November 2015 Overview Motivation:

More information

Performance and Energy Usage of Workloads on KNL and Haswell Architectures

Performance and Energy Usage of Workloads on KNL and Haswell Architectures Performance and Energy Usage of Workloads on KNL and Haswell Architectures Tyler Allen 1 Christopher Daley 2 Doug Doerfler 2 Brian Austin 2 Nicholas Wright 2 1 Clemson University 2 National Energy Research

More information

Master Informatics Eng.

Master Informatics Eng. Advanced Architectures Master Informatics Eng. 207/8 A.J.Proença The Roofline Performance Model (most slides are borrowed) AJProença, Advanced Architectures, MiEI, UMinho, 207/8 AJProença, Advanced Architectures,

More information

No Tradeoff Low Latency + High Efficiency

No Tradeoff Low Latency + High Efficiency No Tradeoff Low Latency + High Efficiency Christos Kozyrakis http://mast.stanford.edu Latency-critical Applications A growing class of online workloads Search, social networking, software-as-service (SaaS),

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

A High Performance Cluster System Design by Adaptive Power Control

A High Performance Cluster System Design by Adaptive Power Control A High Performance Cluster System Design by Adaptive Power Control Masaaki Kondo, Yoshimichi Ikeda, Hiroshi Nakamura Research Center for Advanced Science and Technology, The University of Tokyo 4-6-1 Komaba,

More information

COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques

COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques COL862: Low Power Computing Maximizing Performance Under a Power Cap: A Comparison of Hardware, Software, and Hybrid Techniques Authors: Huazhe Zhang and Henry Hoffmann, Published: ASPLOS '16 Proceedings

More information

CPU-GPU Heterogeneous Computing

CPU-GPU Heterogeneous Computing CPU-GPU Heterogeneous Computing Advanced Seminar "Computer Engineering Winter-Term 2015/16 Steffen Lammel 1 Content Introduction Motivation Characteristics of CPUs and GPUs Heterogeneous Computing Systems

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

What Could Deskside Supercomputers Do For The Power Grid?

What Could Deskside Supercomputers Do For The Power Grid? What Could Deskside Supercomputers Do For The Power Grid? Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com Joint work with Tao Cui and Cory Thoma

More information

Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning

Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning Identifying Working Data Set of Particular Loop Iterations for Dynamic Performance Tuning Yukinori Sato (JAIST / JST CREST) Hiroko Midorikawa (Seikei Univ. / JST CREST) Toshio Endo (TITECH / JST CREST)

More information

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering.

System Design of Kepler Based HPC Solutions. Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. System Design of Kepler Based HPC Solutions Saeed Iqbal, Shawn Gao and Kevin Tubbs HPC Global Solutions Engineering. Introduction The System Level View K20 GPU is a powerful parallel processor! K20 has

More information

Slurm BOF SC13 Bull s Slurm roadmap

Slurm BOF SC13 Bull s Slurm roadmap Slurm BOF SC13 Bull s Slurm roadmap SC13 Eric Monchalin Head of Extreme Computing R&D 1 Bullx BM values Bullx BM bullx MPI integration ( runtime) Automatic Placement coherency Scalable launching through

More information

MAHA. - Supercomputing System for Bioinformatics

MAHA. - Supercomputing System for Bioinformatics MAHA - Supercomputing System for Bioinformatics - 2013.01.29 Outline 1. MAHA HW 2. MAHA SW 3. MAHA Storage System 2 ETRI HPC R&D Area - Overview Research area Computing HW MAHA System HW - Rpeak : 0.3

More information

Overview. Energy-Efficient and Power-Constrained Techniques for ExascaleComputing. Motivation: Power is becoming a leading design constraint in HPC

Overview. Energy-Efficient and Power-Constrained Techniques for ExascaleComputing. Motivation: Power is becoming a leading design constraint in HPC Energy-Efficient and Power-Constrained Techniques for ExascaleComputing Stephanie Labasan Computer and Information Science University of Oregon 17 October 2016 Overview Motivation: Power is becoming a

More information

ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION

ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION ENERGY-EFFICIENT VISUALIZATION PIPELINES A CASE STUDY IN CLIMATE SIMULATION Vignesh Adhinarayanan Ph.D. (CS) Student Synergy Lab, Virginia Tech INTRODUCTION Supercomputers are constrained by power Power

More information

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

A Row Buffer Locality-Aware Caching Policy for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu A Row Buffer Locality-Aware Caching Policy for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Overview Emerging memories such as PCM offer higher density than

More information

Philippe Thierry Sr Staff Engineer Intel Corp.

Philippe Thierry Sr Staff Engineer Intel Corp. HPC@Intel Philippe Thierry Sr Staff Engineer Intel Corp. IBM, April 8, 2009 1 Agenda CPU update: roadmap, micro-μ and performance Solid State Disk Impact What s next Q & A Tick Tock Model Perenity market

More information

Trends in systems and how to get efficient performance

Trends in systems and how to get efficient performance Trends in systems and how to get efficient performance Martin Hilgeman HPC Consultant martin.hilgeman@dell.com The landscape is changing We are no longer in the general purpose era the argument of tuning

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

Energy Models for DVFS Processors

Energy Models for DVFS Processors Energy Models for DVFS Processors Thomas Rauber 1 Gudula Rünger 2 Michael Schwind 2 Haibin Xu 2 Simon Melzner 1 1) Universität Bayreuth 2) TU Chemnitz 9th Scheduling for Large Scale Systems Workshop July

More information

TFLOP Performance for ANSYS Mechanical

TFLOP Performance for ANSYS Mechanical TFLOP Performance for ANSYS Mechanical Dr. Herbert Güttler Engineering GmbH Holunderweg 8 89182 Bernstadt www.microconsult-engineering.de Engineering H. Güttler 19.06.2013 Seite 1 May 2009, Ansys12, 512

More information

Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing

Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing Tapasya Patki Dept. of Computer Science The University of Arizona tpatki@cs.arizona.edu Martin Schulz Lawrence Livermore

More information

Steve Scott, Tesla CTO SC 11 November 15, 2011

Steve Scott, Tesla CTO SC 11 November 15, 2011 Steve Scott, Tesla CTO SC 11 November 15, 2011 What goal do these products have in common? Performance / W Exaflop Expectations First Exaflop Computer K Computer ~10 MW CM5 ~200 KW Not constant size, cost

More information

Portable Power/Performance Benchmarking and Analysis with WattProf

Portable Power/Performance Benchmarking and Analysis with WattProf Portable Power/Performance Benchmarking and Analysis with WattProf Amir Farzad, Boyana Norris University of Oregon Mohammad Rashti RNET Technologies, Inc. Motivation Energy efficiency is becoming increasingly

More information

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization

Overview. Idea: Reduce CPU clock frequency This idea is well suited specifically for visualization Exploring Tradeoffs Between Power and Performance for a Scientific Visualization Algorithm Stephanie Labasan & Matt Larsen (University of Oregon), Hank Childs (Lawrence Berkeley National Laboratory) 26

More information

Benchmarking CPU Performance. Benchmarking CPU Performance

Benchmarking CPU Performance. Benchmarking CPU Performance Cluster Computing Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance,

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 6

ECE 571 Advanced Microprocessor-Based Design Lecture 6 ECE 571 Advanced Microprocessor-Based Design Lecture 6 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 4 February 2016 HW#3 will be posted HW#1 was graded Announcements 1 First

More information

An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels

An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels An Empirical Study of Computation-Intensive Loops for Identifying and Classifying Loop Kernels Masatomo Hashimoto Masaaki Terai Toshiyuki Maeda Kazuo Minami 26/04/2017 ICPE2017 1 Agenda Performance engineering

More information

Power Capping Linux. Len Brown, Jacob Pan, Srinivas Pandruvada

Power Capping Linux. Len Brown, Jacob Pan, Srinivas Pandruvada Power Capping Linux Len Brown, Jacob Pan, Srinivas Pandruvada Agenda Context System Power Management Issues Power Capping Overview Power capping participants Recommendation Linux Power Capping Framework

More information

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED

Advanced Software for the Supercomputer PRIMEHPC FX10. Copyright 2011 FUJITSU LIMITED Advanced Software for the Supercomputer PRIMEHPC FX10 System Configuration of PRIMEHPC FX10 nodes Login Compilation Job submission 6D mesh/torus Interconnect Local file system (Temporary area occupied

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 16

ECE 571 Advanced Microprocessor-Based Design Lecture 16 ECE 571 Advanced Microprocessor-Based Design Lecture 16 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 21 March 2013 Project Reminder Topic Selection by Tuesday (March 26) Once

More information

PowerExecutive. Tom Brey IBM Agenda. Why PowerExecutive. Fundamentals of PowerExecutive. - The Data Center Power/Cooling Crisis.

PowerExecutive. Tom Brey IBM Agenda. Why PowerExecutive. Fundamentals of PowerExecutive. - The Data Center Power/Cooling Crisis. PowerExecutive IBM Agenda Why PowerExecutive - The Data Center Power/Cooling Crisis Fundamentals of PowerExecutive 1 The Data Center Power/Cooling Crisis Customers want more IT processing cycles to run

More information

Energy-centric DVFS Controlling Method for Multi-core Platforms

Energy-centric DVFS Controlling Method for Multi-core Platforms Energy-centric DVFS Controlling Method for Multi-core Platforms Shin-gyu Kim, Chanho Choi, Hyeonsang Eom, Heon Y. Yeom Seoul National University, Korea MuCoCoS 2012 Salt Lake City, Utah Abstract Goal To

More information

ARCS: Adaptive Runtime Configuration Selection for Power-Constrained OpenMP Applications

ARCS: Adaptive Runtime Configuration Selection for Power-Constrained OpenMP Applications ARCS: Adaptive Runtime Configuration Selection for Power-Constrained OpenMP Applications Md Abdullah Shahneous Bari, Nicholas Chaimov, Abid M. Malik, Kevin A. Huck, Barbara Chapman, Allen D. Malony and

More information

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed

Multicore Performance and Tools. Part 1: Topology, affinity, clock speed Multicore Performance and Tools Part 1: Topology, affinity, clock speed Tools for Node-level Performance Engineering Gather Node Information hwloc, likwid-topology, likwid-powermeter Affinity control and

More information

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories

Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Moneta: A High-Performance Storage Architecture for Next-generation, Non-volatile Memories Adrian M. Caulfield Arup De, Joel Coburn, Todor I. Mollov, Rajesh K. Gupta, Steven Swanson Non-Volatile Systems

More information

Experimental Calibration and Validation of a Speed Scaling Simulator

Experimental Calibration and Validation of a Speed Scaling Simulator IEEE MASCOTS 2016 Experimental Calibration and Validation of a Speed Scaling Simulator Arsham Skrenes Carey Williamson Department of Computer Science University of Calgary Speed Scaling: Inherent Tradeoffs

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 7

ECE 571 Advanced Microprocessor-Based Design Lecture 7 ECE 571 Advanced Microprocessor-Based Design Lecture 7 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 9 February 2017 Announcements HW#4 will be posted, some readings 1 Measuring

More information

Trends in the Infrastructure of Computing

Trends in the Infrastructure of Computing Trends in the Infrastructure of Computing CSCE 9: Computing in the Modern World Dr. Jason D. Bakos My Questions How do computer processors work? Why do computer processors get faster over time? How much

More information

Managing Hardware Power Saving Modes for High Performance Computing

Managing Hardware Power Saving Modes for High Performance Computing Managing Hardware Power Saving Modes for High Performance Computing Second International Green Computing Conference 2011, Orlando Timo Minartz, Michael Knobloch, Thomas Ludwig, Bernd Mohr timo.minartz@informatik.uni-hamburg.de

More information

Making a Case for a Green500 List

Making a Case for a Green500 List Making a Case for a Green500 List S. Sharma, C. Hsu, and W. Feng Los Alamos National Laboratory Virginia Tech Outline Introduction What Is Performance? Motivation: The Need for a Green500 List Challenges

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

Adaptive Power Profiling for Many-Core HPC Architectures

Adaptive Power Profiling for Many-Core HPC Architectures Adaptive Power Profiling for Many-Core HPC Architectures Jaimie Kelley, Christopher Stewart The Ohio State University Devesh Tiwari, Saurabh Gupta Oak Ridge National Laboratory State-of-the-Art Schedulers

More information

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise)

Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Load-Sto-Meter: Generating Workloads for Persistent Memory Damini Chopra, Doug Voigt Hewlett Packard (Enterprise) Application vs. Pure Workloads Benchmarks that reproduce application workloads Assist in

More information

Power Control in Virtualized Data Centers

Power Control in Virtualized Data Centers Power Control in Virtualized Data Centers Jie Liu Microsoft Research liuj@microsoft.com Joint work with Aman Kansal and Suman Nath (MSR) Interns: Arka Bhattacharya, Harold Lim, Sriram Govindan, Alan Raytman

More information

Progress Report on QDP-JIT

Progress Report on QDP-JIT Progress Report on QDP-JIT F. T. Winter Thomas Jefferson National Accelerator Facility USQCD Software Meeting 14 April 16-17, 14 at Jefferson Lab F. Winter (Jefferson Lab) QDP-JIT USQCD-Software 14 1 /

More information

Dealing with Heterogeneous Multicores

Dealing with Heterogeneous Multicores Dealing with Heterogeneous Multicores François Bodin INRIA-UIUC, June 12 th, 2009 Introduction Main stream applications will rely on new multicore / manycore architectures It is about performance not parallelism

More information

Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin

Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin Evaluation of Parallel I/O Performance and Energy with Frequency Scaling on Cray XC30 Suren Byna and Brian Austin Lawrence Berkeley National Laboratory Energy efficiency at Exascale A design goal for future

More information

Fujitsu s Approach to Application Centric Petascale Computing

Fujitsu s Approach to Application Centric Petascale Computing Fujitsu s Approach to Application Centric Petascale Computing 2 nd Nov. 2010 Motoi Okuda Fujitsu Ltd. Agenda Japanese Next-Generation Supercomputer, K Computer Project Overview Design Targets System Overview

More information

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University

Parallel Computing Platforms. Jinkyu Jeong Computer Systems Laboratory Sungkyunkwan University Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Elements of a Parallel Computer Hardware Multiple processors Multiple

More information

Performance and power analysis for high performance computation benchmarks

Performance and power analysis for high performance computation benchmarks Cent. Eur. J. Comp. Sci. 3(1) 2013 1-16 DOI: 10.2478/s13537-013-0101-5 Central European Journal of Computer Science Performance and power analysis for high performance computation benchmarks Research Article

More information

Cray XC Scalability and the Aries Network Tony Ford

Cray XC Scalability and the Aries Network Tony Ford Cray XC Scalability and the Aries Network Tony Ford June 29, 2017 Exascale Scalability Which scalability metrics are important for Exascale? Performance (obviously!) What are the contributing factors?

More information

Fundamentals of Quantitative Design and Analysis

Fundamentals of Quantitative Design and Analysis Fundamentals of Quantitative Design and Analysis Dr. Jiang Li Adapted from the slides provided by the authors Computer Technology Performance improvements: Improvements in semiconductor technology Feature

More information

Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension

Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension Enhancing Energy Efficiency of Processor-Based Embedded Systems thorough Post-Fabrication ISA Extension Hamid Noori, Farhad Mehdipour, Koji Inoue, and Kazuaki Murakami Institute of Systems, Information

More information

Performance and Power Co-Design of Exascale Systems and Applications

Performance and Power Co-Design of Exascale Systems and Applications Performance and Power Co-Design of Exascale Systems and Applications Adolfy Hoisie Work with Kevin Barker, Darren Kerbyson, Abhinav Vishnu Performance and Architecture Lab (PAL) Pacific Northwest National

More information

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package

Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package High Performance Machine Learning Workshop Energy Efficient K-Means Clustering for an Intel Hybrid Multi-Chip Package Matheus Souza, Lucas Maciel, Pedro Penna, Henrique Freitas 24/09/2018 Agenda Introduction

More information

Data Management and Analysis for Energy Efficient HPC Centers

Data Management and Analysis for Energy Efficient HPC Centers Data Management and Analysis for Energy Efficient HPC Centers Presented by Ghaleb Abdulla, Anna Maria Bailey and John Weaver; Copyright 2015 OSIsoft, LLC Data management and analysis for energy efficient

More information

What can/should we measure with benchmarks?

What can/should we measure with benchmarks? What can/should we measure with benchmarks? Jun Makino Department of Planetology, Kobe University FS2020 Project, RIKEN-CCS SC18 BoF 107 Pros and Cons of HPCx benchmarks Nov 13 Overview Last 40 years of

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Performance, Power, Die Yield. CS301 Prof Szajda

Performance, Power, Die Yield. CS301 Prof Szajda Performance, Power, Die Yield CS301 Prof Szajda Administrative HW #1 assigned w Due Wednesday, 9/3 at 5:00 pm Performance Metrics (How do we compare two machines?) What to Measure? Which airplane has the

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

Parallel Computing Platforms

Parallel Computing Platforms Parallel Computing Platforms Jinkyu Jeong (jinkyu@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu SSE3054: Multicore Systems, Spring 2017, Jinkyu Jeong (jinkyu@skku.edu)

More information

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference

Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference The 2017 IEEE International Symposium on Workload Characterization Performance Characterization, Prediction, and Optimization for Heterogeneous Systems with Multi-Level Memory Interference Shin-Ying Lee

More information

DCBench: a Data Center Benchmark Suite

DCBench: a Data Center Benchmark Suite DCBench: a Data Center Benchmark Suite Zhen Jia ( 贾禛 ) http://prof.ict.ac.cn/zhenjia/ Institute of Computing Technology, Chinese Academy of Sciences workshop in conjunction with CCF October 31,2013,Guilin

More information

Potentials and Limitations for Energy Efficiency Auto-Tuning

Potentials and Limitations for Energy Efficiency Auto-Tuning Center for Information Services and High Performance Computing (ZIH) Potentials and Limitations for Energy Efficiency Auto-Tuning Parco Symposium Application Autotuning for HPC (Architectures) Robert Schöne

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu

Row Buffer Locality Aware Caching Policies for Hybrid Memories. HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Row Buffer Locality Aware Caching Policies for Hybrid Memories HanBin Yoon Justin Meza Rachata Ausavarungnirun Rachael Harding Onur Mutlu Executive Summary Different memory technologies have different

More information

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS

Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS Japan s post K Computer Yutaka Ishikawa Project Leader RIKEN AICS HPC User Forum, 7 th September, 2016 Outline of Talk Introduction of FLAGSHIP2020 project An Overview of post K system Concluding Remarks

More information

Exploring Use-cases for Non-Volatile Memories in support of HPC Resilience

Exploring Use-cases for Non-Volatile Memories in support of HPC Resilience Exploring Use-cases for Non-Volatile Memories in support of HPC Resilience Onkar Patil 1, Saurabh Hukerikar 2, Frank Mueller 1, Christian Engelmann 2 1 Dept. of Computer Science, North Carolina State University

More information

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance

Cluster Computing Paul A. Farrell 9/15/2011. Dept of Computer Science Kent State University 1. Benchmarking CPU Performance Many benchmarks available MHz (cycle speed of processor) MIPS (million instructions per second) Peak FLOPS Whetstone Stresses unoptimized scalar performance, since it is designed to defeat any effort to

More information

Center Extreme Scale CS Research

Center Extreme Scale CS Research Center Extreme Scale CS Research Center for Compressible Multiphase Turbulence University of Florida Sanjay Ranka Herman Lam Outline 10 6 10 7 10 8 10 9 cores Parallelization and UQ of Rocfun and CMT-Nek

More information

Parallel and Distributed Programming Introduction. Kenjiro Taura

Parallel and Distributed Programming Introduction. Kenjiro Taura Parallel and Distributed Programming Introduction Kenjiro Taura 1 / 21 Contents 1 Why Parallel Programming? 2 What Parallel Machines Look Like, and Where Performance Come From? 3 How to Program Parallel

More information

Investigating power capping toward energy-efficient scientific applications

Investigating power capping toward energy-efficient scientific applications Received: 2 October 217 Revised: 15 December 217 Accepted: 19 February 218 DOI: 1.12/cpe.4485 SPECIAL ISSUE PAPER Investigating power capping toward energy-efficient scientific applications Azzam Haidar

More information

HPC Cineca Infrastructure: State of the art and towards the exascale

HPC Cineca Infrastructure: State of the art and towards the exascale HPC Cineca Infrastructure: State of the art and towards the exascale HPC Methods for CFD and Astrophysics 13 Nov. 2017, Casalecchio di Reno, Bologna Ivan Spisso, i.spisso@cineca.it Contents CINECA in a

More information

CSE5351: Parallel Processing Part III

CSE5351: Parallel Processing Part III CSE5351: Parallel Processing Part III -1- Performance Metrics and Benchmarks How should one characterize the performance of applications and systems? What are user s requirements in performance and cost?

More information

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group

Aim High. Intel Technical Update Teratec 07 Symposium. June 20, Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Aim High Intel Technical Update Teratec 07 Symposium June 20, 2007 Stephen R. Wheat, Ph.D. Director, HPC Digital Enterprise Group Risk Factors Today s s presentations contain forward-looking statements.

More information

Intel profiling tools and roofline model. Dr. Luigi Iapichino

Intel profiling tools and roofline model. Dr. Luigi Iapichino Intel profiling tools and roofline model Dr. Luigi Iapichino luigi.iapichino@lrz.de Which tool do I use in my project? A roadmap to optimization (and to the next hour) We will focus on tools developed

More information

Bandwidth Avoiding Stencil Computations

Bandwidth Avoiding Stencil Computations Bandwidth Avoiding Stencil Computations By Kaushik Datta, Sam Williams, Kathy Yelick, and Jim Demmel, and others Berkeley Benchmarking and Optimization Group UC Berkeley March 13, 2008 http://bebop.cs.berkeley.edu

More information

Data Centre Energy & Cost Efficiency Simulation Software. Zahl Limbuwala

Data Centre Energy & Cost Efficiency Simulation Software. Zahl Limbuwala Data Centre Energy & Cost Efficiency Simulation Software Zahl Limbuwala BCS Data Centre Simulator Overview of Tools Structure of the BCS Simulator Input Data Sample Output Development Path Overview of

More information

Comparing Memory Systems for Chip Multiprocessors

Comparing Memory Systems for Chip Multiprocessors Comparing Memory Systems for Chip Multiprocessors Jacob Leverich Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark Horowitz, Christos Kozyrakis Computer Systems Laboratory Stanford University

More information

PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS

PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS PAGE PLACEMENT STRATEGIES FOR GPUS WITHIN HETEROGENEOUS MEMORY SYSTEMS Neha Agarwal* David Nellans Mark Stephenson Mike O Connor Stephen W. Keckler NVIDIA University of Michigan* ASPLOS 2015 EVOLVING GPU

More information

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014

Automatic Generation of Algorithms and Data Structures for Geometric Multigrid. Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Automatic Generation of Algorithms and Data Structures for Geometric Multigrid Harald Köstler, Sebastian Kuckuk Siam Parallel Processing 02/21/2014 Introduction Multigrid Goal: Solve a partial differential

More information

Power-Capped DVFS and Thread Allocation with ANN Models on Modern NUMA Systems

Power-Capped DVFS and Thread Allocation with ANN Models on Modern NUMA Systems Power-Capped DVFS and Thread Allocation with ANN Models on Modern NUMA Systems Satoshi Imamura Hiroshi Sasaki Koji Inoue Dimitrios S Nikolopoulos Graduate School and Faculty of Information Science and

More information

Performance Balancing: Software-based On-chip Memory Management for Effective CMP Executions

Performance Balancing: Software-based On-chip Memory Management for Effective CMP Executions Performance Balancing: Software-based On-chip Memory Management for Effective CMP Executions Naoto Fukumoto, Kenichi Imazato, Koji Inoue, Kazuaki Murakami Department of Advanced Information Technology,

More information

A POWER CHARACTERIZATION AND MANAGEMENT OF GPU GRAPH TRAVERSAL

A POWER CHARACTERIZATION AND MANAGEMENT OF GPU GRAPH TRAVERSAL A POWER CHARACTERIZATION AND MANAGEMENT OF GPU GRAPH TRAVERSAL ADAM MCLAUGHLIN *, INDRANI PAUL, JOSEPH GREATHOUSE, SRILATHA MANNE, AND SUDHKAHAR YALAMANCHILI * * GEORGIA INSTITUTE OF TECHNOLOGY AMD RESEARCH

More information

Lecture 1: Introduction

Lecture 1: Introduction Contemporary Computer Architecture Instruction set architecture Lecture 1: Introduction CprE 581 Computer Systems Architecture, Fall 2016 Reading: Textbook, Ch. 1.1-1.7 Microarchitecture; examples: Pipeline

More information

Implicit and Explicit Optimizations for Stencil Computations

Implicit and Explicit Optimizations for Stencil Computations Implicit and Explicit Optimizations for Stencil Computations By Shoaib Kamil 1,2, Kaushik Datta 1, Samuel Williams 1,2, Leonid Oliker 2, John Shalf 2 and Katherine A. Yelick 1,2 1 BeBOP Project, U.C. Berkeley

More information

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620

Introduction to Parallel and Distributed Computing. Linh B. Ngo CPSC 3620 Introduction to Parallel and Distributed Computing Linh B. Ngo CPSC 3620 Overview: What is Parallel Computing To be run using multiple processors A problem is broken into discrete parts that can be solved

More information

KNL tools. Dr. Fabio Baruffa

KNL tools. Dr. Fabio Baruffa KNL tools Dr. Fabio Baruffa fabio.baruffa@lrz.de 2 Which tool do I use? A roadmap to optimization We will focus on tools developed by Intel, available to users of the LRZ systems. Again, we will skip the

More information

IBM HPC DIRECTIONS. Dr Don Grice. ECMWF Workshop November, IBM Corporation

IBM HPC DIRECTIONS. Dr Don Grice. ECMWF Workshop November, IBM Corporation IBM HPC DIRECTIONS Dr Don Grice ECMWF Workshop November, 2008 IBM HPC Directions Agenda What Technology Trends Mean to Applications Critical Issues for getting beyond a PF Overview of the Roadrunner Project

More information

Technologies and application performance. Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017

Technologies and application performance. Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017 Technologies and application performance Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017 The landscape is changing We are no longer in the general purpose era the argument of

More information