Computer Memory.

Size: px
Start display at page:

Download "Computer Memory."

Transcription

1 Computer Memory

2 Memories - storages Speed Price Capacity (felejtő) Memory Storage (nem felejtő)

3 Memory Control Unit Arithmetical Logical Unit (ALU) Main memory Programs Data Without this: no stored program machines I/O devices Registers Main memory Disk Printer

4 Memory Standard unit: bit (binary unit) 0 or 1 (binary number system) BCD (Binary Coded Decimal) Decimal numbers on 4 bit 4 bit ( nybble ) : 16 possibilities 6 combinations not used 2006: BCD 2006: B Simple conversion embedded systems

5 Addressing modes Operational (main) memory Cells (like a long paper-streak) Cell address serial number squarely identifies the given cell Cell numbers address width k-bit cells (address is independent from k) 10 pcs 8 bit cell address pcs 128 bit cell address: 2 10

6 Addressing modes (Addresses a: 4 bit, b: 3 bit, c: 3 bit) Tanenbaum

7 Addressing modes Cell smallest addressable unit IBM PC 8 bit (1 byte ~ octet) Todays quasi-standard: 8 bit cell Computer Cell size (bits) Burroughs B IBM PC 8 DEC PDP-8 12 IBM DEC PDP XDS Electrologica X8 27 XDS Sigma 9 32 Honeywell CDC CDC Cyber 60

8 Addressing modes Word Consists of cells (bytes) 32 bit word: 4 byte Most of instructions use words (32 bit computer 32 bit words, 64 bit computers 64 bit words)

9 Byte order Bytes of Word right-left big endian (SPARC, IBM) Bytes of Word left-right big endian (Intel) Tanenbaum

10 Error detection codes Memories can fail Eg. Current-peeks (lighting, cosmic radiation) Error Detection Parity bit Bits can flip we have to detect them Parity: eg. even parity: we complement the number of 1- s to even

11 Error detection codes Error detecting resend data What is error? Bit divergence in some positions Codeword: m effective bits + r redundant bits n bit codeword Number of different bit-positions: Hamming-distance eg.: 1001 and Hamming-distance: 2

12 Error detection codes One codeword turns into another with Hamming-distance number of one-bit errors m effective bits 2 m variations n bit 2 n codewords (2 m effective) If codeword is forbidden error Hamming-distance of code-sets: the lowest Hamming-distance of any two codewords from the sets

13 Error detecting codes To recognize d number of one-bit errors, we need d+1 Hamming-distance coding: d:=2 Hamming-dist: 2+1=3 eg.: , , , If 2-bits change, we can detect it (it won t turn into other codeword) Eg.: Now what? Original: ?(2 errors) or (1 error)

14 Error Correcting Codes (ECC) To correct d number of one-bit errors, we need 2d+1 Hamming-distance coding: d:=2 Hamming-distance: 2*2+1 = bit errors is still correctable what is the closest codeword?

15 Error Correcting Codes (ECC) Let s assume we create a code that can correct 1 bit errors, with n-length, where m effective bits r parity bits so n=m+r 2 m pcs effective words n pcs 1 bit error (Hamming-distance=1) 1 pc 0 bit error (n+1)*2 m pcs 1 bit error and without error

16 Error Correcting Codes (ECC) (n+1)*2 m pcs 1 bit error (+1 pc no error) All the codewords: 2 n (n+1)*2 m <= 2 n, n = m + r (m+r+1)*2 m <=2 m+r (m+r+1) <=2 r m is given, as such, we get for r a lower boundary

17 Error Correcting Codes (ECC) How many parity bits (check bits) do we need to be able to correct 1-bit errors? Tanenbaum

18 Error Correcting Codes (ECC) Richard Hamming He found the method for the lower boundary Basic idea: overlaping parity bits, they check each other 1100 to code eg. AB, AC, AD, ABC partition Tanenbaum

19 Error Correcting Codes (ECC) Hamming-code Serial number of bits starts from 1 (not 0) Parity bits position at power of 2 All data bits go to between parity bits Parity bits check for: p1: 1,3,5,7,9,11, (from first parity pos. Every second) p2: 2,3,6,7,10,11, (from second parity: 2 yes, 2 no) p3: 4,5,6,7,12,13,14,15, (from 3rd parity: 4 yes, 4 no)

20 Error Correction Code (ECC) Hamming-code General: b. bit is checked by that b 1,b 2,b 3,..,b j parity bits, for them it s true that the sum of positions of b 1,b 2,b 3,..,b j is b. Eg.: 7. bit is checked by 1., 2. and 4. bit, since 1+2+4=

21 Error Correcting Codes (ECC) Hamming-code Eg.: Word: Code: 10p010p1pp 10p010p1p1 10p010p111 10p

22 Error Correcting Codes (ECC) Hamming-code Generate parity code for the read code If read and generated differs error the sum of serial of parity bits give the position Excel-example

23 Memories cache CPU faster than the memory Development CPU to be faster Memory to be bigger CPU and memory speed difference grows Possible solution CPU waits for the memory (eg. NOP instructions) We could build very fast RAMs Very expensive We can integrate the RAM in a limited size to the CPU We need to make a compromise of Size and Speed: Cache

24 Memories cache Cache s logical position

25 Memories cache Size Mostly in KB-MB sizes Slow access RAM-parts are stored in faster memory Locality-principle temporal locality of reference We read a group of word from memory at once Further access to the cache CPU-s cache the main memory, but the concept works with different peripherals (eg. Hard disk drives) as well. Fast, expensive CPU cache Main mem.

26 Memories cache Speeds c cache access speed m memory access speed h hit ratio (how many read/writes happened from cache) (eg. We read k-times, so once from the slow memory and k-1-times from the cache, thus h=(k-1)/k 1-h fail ratio Average access time: c + (1-h)m h 0 : c+m h 1 : c CPU c cache m Main Mem.

27 Memories cache Unified cache (Neumann) Data and Instruction in same memory More simple to implement Data and Instr. flow in balance Split cache (Harvard-architecture) Data and instruction separated Because of pipelines, instructions (fetch) and operands (load) can go parallel Parallel operation is possible (with the unified memory, it s much harder)

28 Memories - registers CPU ALU Regiszterek Dekódoló, vezérlő egység Inner, temporal storage of CPU Belső sín Bitwidth same as of CPU (64 bit CPU 64 bit Busz vezérlő Cím generáló registers) Instructions work allways with registers

29 Memories - Registers CPU ALU Regiszterek Dekódoló, vezérlő egység Registers affect the speed of CPU Belső they sín should be fast Busz vezérlő Cím generáló Operands, instructions, state-bits Volatile memory no power - erases

30 Memories main memory Primary or. Operative memory RAM (Random Access Memory) Size typical: 128Mb 8Gb Accessible without I/O channels Volatile Modular extensions 256 MB modul First extension per chips Nowadays, chips on an IC SIMM (Single Inline Memory, one cap for both sides) and DIMM (Dual Inline Memory, different caps for both sides) Error Correction Code (ECC) is possible, but consumes much time

31 Memories main memory DIP (Dual Inline Package) eg. 8086, 286 SIPP (Single Inline Package) In some 286 PCs Fragile (pins can brake easily)

32 Memories main memory 32 bit data path 30 and 72 pin SIMM (Single Inline Memory Module) Pins from both sides are the same 30 pins 8 or 9 bit 72 pins 32 or 36 bit

33 Memories main memory 64 bit data path 168 and 184 pin DIMMs (Dual Inline Memory Module) Both sides are different pins (pin number!) 168 pins (SDRAM) 184 pins (DDR RAM)

34 Memories main memory 32 or 64 bit datapath SO-DIMM (Small Outline DIMM) Notebooks Routers Printers mini-mainboards

35 Memories main memory Task: storing programs and data (Neumann) Writable readable (RAM, Random Access: we dont have to read it sequentially) Types Static Dinamic

36 Memories static RAM Static RAM (SRAM) It stores until it has a current input no need for refresh Access time: some nsec-s It s built by bit-cells Eg. SR-latch (NOR) forbidden

37 Memories static RAM Low density not ideal for big capacities, it s also expensive Consumption raises with speedup, as CPU cache very high Simple implementation and design (no need for refresh)

38 Memories dynamic RAM Dynamic RAM (DRAM) Bitcell-array every cell is a transistor and a capacitor Charged / discharged ~ 1 / 0 Charge leaks need for refresh! ( / sec) High density possible (only two components) Mainly used for main memory (SRAM for registers and cache) Access time: some 10 nsec-s

39 Memories dinamic RAM FPM (Fast Page Mode) DRAM Cells in matrix IN: row-, column-address OUT: cells value Maximum speed ~ 176 MBps Asynchronous (address- and data-lines are on different clocks) EDO (Extended Data Output) DRAM Second address reference is possible before first data output (parallelism). In case of rapid read-write, throughput raises Maximum speed ~ 264 MBps Asynchronous

40 Memories dinamic RAM SDRAM (Synchronous DRAM) SRAM and DRAM hybrid Synchronous - clock Request, Read synced by a clock After fix clock number, answer arrives (latency) By 2000, every PC uses this type

41 Memories dinamic RAM RDRAM (Rambus DRAM) 3x faster than SDRAM (400 MHz) Every module has a memory-control (2x-3x more expensive) latency higher (45ns, instead of 7.5ns) Heat dissipation higher Only used in pairs (CRIMM module if needed) In 2002, Two channel DDR-s knocked them out

42 Memories DDR SDRAM DDR (Double Data Rate) SDRAM 2x data rate data transfer at clocks up and down edges as well Lower voltage (SDRAM: 3.3V, DDR: 2.5V)

43 Memories DDR2 SDRAM DDR (Double Data Rate 2) SDRAM Higher clock frequency Lower voltage (1.8 V)

44 Memories DDR3 SDRAM DDR (Double Data Rate 3) SDRAM Not the GDDR3 (but GDDR3 is based on it) Lower voltage (1.5 V) More channels (up to 8) parallel Transcend-info.com MT/s: MegaTransfers per sec 2 MT/s = 1 MHz clock Prefetch: single address, multiple words 8n -8datawords/access

45 Memories ROM ROM (Read Only Memory) Only readable Bitpattern burned at manufacture Content will remain forever Application Basic program (boot program) of machines Cheaper than RAM Too much time between order - manufacture

46 Memories (E)(E)PROM PROM (Programable Read Only Memory) 1x writable, onlye readable Possible user-design ROM-s Programing by burning fuses EPROM (Erasable PROM) Erasable by UV-radiation Programmable EPROM-burner EEPROM (Electrically EPROM) Erase by electric pulses Programable electrically 10th the speed and 100th the capacity of S- and D-RAMs ½ the speed and 1/64 the capacityo of EPROM

47 Memories Flash ROM Similar to EEPROM, but Lower access time (~50 nsec) More cheap Can be written and read in blocks Very resistant (heat, pressure) ~ read/write cycles Many devices uses them (SSD?)

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

Chapter 4 Main Memory

Chapter 4 Main Memory Chapter 4 Main Memory Course Outcome (CO) - CO2 Describe the architecture and organization of computer systems Program Outcome (PO) PO1 Apply knowledge of mathematics, science and engineering fundamentals

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Large and Fast: Exploiting Memory Hierarchy

Large and Fast: Exploiting Memory Hierarchy CSE 431: Introduction to Operating Systems Large and Fast: Exploiting Memory Hierarchy Gojko Babić 10/5/018 Memory Hierarchy A computer system contains a hierarchy of storage devices with different costs,

More information

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types

Basic Organization Memory Cell Operation. CSCI 4717 Computer Architecture. ROM Uses. Random Access Memory. Semiconductor Memory Types CSCI 4717/5717 Computer Architecture Topic: Internal Memory Details Reading: Stallings, Sections 5.1 & 5.3 Basic Organization Memory Cell Operation Represent two stable/semi-stable states representing

More information

Chapter 5. Internal Memory. Yonsei University

Chapter 5. Internal Memory. Yonsei University Chapter 5 Internal Memory Contents Main Memory Error Correction Advanced DRAM Organization 5-2 Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory(ram) Read-write

More information

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University

Memory Overview. Overview - Memory Types 2/17/16. Curtis Nelson Walla Walla University Memory Overview Curtis Nelson Walla Walla University Overview - Memory Types n n n Magnetic tape (used primarily for long term archive) Magnetic disk n Hard disk (File, Directory, Folder) n Floppy disks

More information

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing

INSTITUTO SUPERIOR TÉCNICO. Architectures for Embedded Computing UNIVERSIDADE TÉCNICA DE LISBOA INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Informática Architectures for Embedded Computing MEIC-A, MEIC-T, MERC Lecture Slides Version 3.0 - English Lecture 16

More information

,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics

,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics ,e-pg PATHSHALA- Computer Science Computer Architecture Module 25 Memory Hierarchy Design - Basics The objectives of this module are to discuss about the need for a hierarchical memory system and also

More information

Embedded Systems Design: A Unified Hardware/Software Introduction. Outline. Chapter 5 Memory. Introduction. Memory: basic concepts

Embedded Systems Design: A Unified Hardware/Software Introduction. Outline. Chapter 5 Memory. Introduction. Memory: basic concepts Hardware/Software Introduction Chapter 5 Memory Outline Memory Write Ability and Storage Permanence Common Memory Types Composing Memory Memory Hierarchy and Cache Advanced RAM 1 2 Introduction Memory:

More information

Embedded Systems Design: A Unified Hardware/Software Introduction. Chapter 5 Memory. Outline. Introduction

Embedded Systems Design: A Unified Hardware/Software Introduction. Chapter 5 Memory. Outline. Introduction Hardware/Software Introduction Chapter 5 Memory 1 Outline Memory Write Ability and Storage Permanence Common Memory Types Composing Memory Memory Hierarchy and Cache Advanced RAM 2 Introduction Embedded

More information

Main Memory (RAM) Organisation

Main Memory (RAM) Organisation Main Memory (RAM) Organisation Computers employ many different types of memory (semi-conductor, magnetic disks, USB sticks, DVDs etc.) to hold data and programs. Each type has its own characteristics and

More information

CS 320 February 2, 2018 Ch 5 Memory

CS 320 February 2, 2018 Ch 5 Memory CS 320 February 2, 2018 Ch 5 Memory Main memory often referred to as core by the older generation because core memory was a mainstay of computers until the advent of cheap semi-conductor memory in the

More information

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM

Overview. Memory Classification Read-Only Memory (ROM) Random Access Memory (RAM) Functional Behavior of RAM. Implementing Static RAM Memories Overview Memory Classification Read-Only Memory (ROM) Types of ROM PROM, EPROM, E 2 PROM Flash ROMs (Compact Flash, Secure Digital, Memory Stick) Random Access Memory (RAM) Types of RAM Static

More information

Chapter 8 Memory Basics

Chapter 8 Memory Basics Logic and Computer Design Fundamentals Chapter 8 Memory Basics Charles Kime & Thomas Kaminski 2008 Pearson Education, Inc. (Hyperlinks are active in View Show mode) Overview Memory definitions Random Access

More information

Concept of Memory. The memory of computer is broadly categories into two categories:

Concept of Memory. The memory of computer is broadly categories into two categories: Concept of Memory We have already mentioned that digital computer works on stored programmed concept introduced by Von Neumann. We use memory to store the information, which includes both program and data.

More information

Memory classification:- Topics covered:- types,organization and working

Memory classification:- Topics covered:- types,organization and working Memory classification:- Topics covered:- types,organization and working 1 Contents What is Memory? Cache Memory PC Memory Organisation Types 2 Memory what is it? Usually we consider this to be RAM, ROM

More information

Module 5a: Introduction To Memory System (MAIN MEMORY)

Module 5a: Introduction To Memory System (MAIN MEMORY) Module 5a: Introduction To Memory System (MAIN MEMORY) R E F E R E N C E S : S T A L L I N G S, C O M P U T E R O R G A N I Z A T I O N A N D A R C H I T E C T U R E M O R R I S M A N O, C O M P U T E

More information

EE414 Embedded Systems Ch 5. Memory Part 2/2

EE414 Embedded Systems Ch 5. Memory Part 2/2 EE414 Embedded Systems Ch 5. Memory Part 2/2 Byung Kook Kim School of Electrical Engineering Korea Advanced Institute of Science and Technology Overview 6.1 introduction 6.2 Memory Write Ability and Storage

More information

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory

Memory systems. Memory technology. Memory technology Memory hierarchy Virtual memory Memory systems Memory technology Memory hierarchy Virtual memory Memory technology DRAM Dynamic Random Access Memory bits are represented by an electric charge in a small capacitor charge leaks away, need

More information

Introduction read-only memory random access memory

Introduction read-only memory random access memory Memory Interface Introduction Simple or complex, every microprocessorbased system has a memory system. Almost all systems contain two main types of memory: read-only memory (ROM) and random access memory

More information

COSC 6385 Computer Architecture - Memory Hierarchies (III)

COSC 6385 Computer Architecture - Memory Hierarchies (III) COSC 6385 Computer Architecture - Memory Hierarchies (III) Edgar Gabriel Spring 2014 Memory Technology Performance metrics Latency problems handled through caches Bandwidth main concern for main memory

More information

Memory and Disk Systems

Memory and Disk Systems COMP 212 Computer Organization & Architecture Re-Cap of Lecture #3 Cache system is a compromise between COMP 212 Fall 2008 Lecture 4 Memory and Disk Systems More memory system capacity Faster access speed

More information

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102

Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Semiconductor Memory Types Microprocessor Design & Organisation HCA2102 Internal & External Memory Semiconductor Memory RAM Misnamed as all semiconductor memory is random access Read/Write Volatile Temporary

More information

SAE5C Computer Organization and Architecture. Unit : I - V

SAE5C Computer Organization and Architecture. Unit : I - V SAE5C Computer Organization and Architecture Unit : I - V UNIT-I Evolution of Pentium and Power PC Evolution of Computer Components functions Interconnection Bus Basics of PCI Memory:Characteristics,Hierarchy

More information

Memory memories memory

Memory memories memory Memory Organization Memory Hierarchy Memory is used for storing programs and data that are required to perform a specific task. For CPU to operate at its maximum speed, it required an uninterrupted and

More information

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Computer Memory Basic Concepts. Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University Computer Memory Basic Concepts Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University The Memory Component The memory stores the instructions and data for an

More information

UNIT V (PROGRAMMABLE LOGIC DEVICES)

UNIT V (PROGRAMMABLE LOGIC DEVICES) UNIT V (PROGRAMMABLE LOGIC DEVICES) Introduction There are two types of memories that are used in digital systems: Random-access memory(ram): perform both the write and read operations. Read-only memory(rom):

More information

Memory and Programmable Logic

Memory and Programmable Logic Memory and Programmable Logic Memory units allow us to store and/or retrieve information Essentially look-up tables Good for storing data, not for function implementation Programmable logic device (PLD),

More information

MEMORY AND PROGRAMMABLE LOGIC

MEMORY AND PROGRAMMABLE LOGIC MEMORY AND PROGRAMMABLE LOGIC Memory is a device where we can store and retrieve information It can execute a read and a write Programmable Logic is a device where we can store and retrieve information

More information

Computer Systems Laboratory Sungkyunkwan University

Computer Systems Laboratory Sungkyunkwan University DRAMs Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu Main Memory & Caches Use DRAMs for main memory Fixed width (e.g., 1 word) Connected by fixed-width

More information

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017

Lecture Objectives. Introduction to Computing Chapter 0. Topics. Numbering Systems 04/09/2017 Lecture Objectives Introduction to Computing Chapter The AVR microcontroller and embedded systems using assembly and c Students should be able to: Convert between base and. Explain the difference between

More information

Computer Organization & Assembly Language Programming

Computer Organization & Assembly Language Programming Computer Organization & Assembly Language Programming CSE 2312-002 (Fall 2011) Lecture 5 Memory Junzhou Huang, Ph.D. Department of Computer Science and Engineering Fall 2011 CSE 2312 Computer Organization

More information

Information Storage and Spintronics 10

Information Storage and Spintronics 10 Information Storage and Spintronics 10 Atsufumi Hirohata Department of Electronic Engineering 09:00 Tuesday, 30/October/2018 (J/Q 004) Quick Review over the Last Lecture Flash memory : NAND-flash writing

More information

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology

Multilevel Memories. Joel Emer Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 1 Multilevel Memories Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology Based on the material prepared by Krste Asanovic and Arvind CPU-Memory Bottleneck 6.823

More information

CS311 Lecture 21: SRAM/DRAM/FLASH

CS311 Lecture 21: SRAM/DRAM/FLASH S 14 L21-1 2014 CS311 Lecture 21: SRAM/DRAM/FLASH DARM part based on ISCA 2002 tutorial DRAM: Architectures, Interfaces, and Systems by Bruce Jacob and David Wang Jangwoo Kim (POSTECH) Thomas Wenisch (University

More information

COMPUTER ARCHITECTURES

COMPUTER ARCHITECTURES COMPUTER ARCHITECTURES Random Access Memory Technologies Gábor Horváth BUTE Department of Networked Systems and Services ghorvath@hit.bme.hu Budapest, 2019. 02. 24. Department of Networked Systems and

More information

Semiconductor Memory Types. Computer & Microprocessor Architecture HCA103. Memory Cell Operation. Semiconductor Memory.

Semiconductor Memory Types. Computer & Microprocessor Architecture HCA103. Memory Cell Operation. Semiconductor Memory. Semiconductor Memory Types Computer & Microprocessor Architecture HCA103 Internal & External Memory UTM-RHH Slide Set 5 1 UTM-RHH Slide Set 5 2 Semiconductor Memory RAM Misnamed as all semiconductor memory

More information

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory The basic element of a semiconductor memory is the memory cell. Although a variety of

More information

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors

COMP2121: Microprocessors and Interfacing. Introduction to Microprocessors COMP2121: Microprocessors and Interfacing Introduction to Microprocessors http://www.cse.unsw.edu.au/~cs2121 Lecturer: Hui Wu Session 2, 2017 1 1 Contents Processor architectures Bus Memory hierarchy 2

More information

The Memory Component

The Memory Component The Computer Memory Chapter 6 forms the first of a two chapter sequence on computer memory. Topics for this chapter include. 1. A functional description of primary computer memory, sometimes called by

More information

The Memory Hierarchy & Cache

The Memory Hierarchy & Cache Removing The Ideal Memory Assumption: The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory

More information

Storage Technologies and the Memory Hierarchy

Storage Technologies and the Memory Hierarchy Storage Technologies and the Memory Hierarchy 198:231 Introduction to Computer Organization Lecture 12 Instructor: Nicole Hynes nicole.hynes@rutgers.edu Credits: Slides courtesy of R. Bryant and D. O Hallaron,

More information

Recap: Machine Organization

Recap: Machine Organization ECE232: Hardware Organization and Design Part 14: Hierarchy Chapter 5 (4 th edition), 7 (3 rd edition) http://www.ecs.umass.edu/ece/ece232/ Adapted from Computer Organization and Design, Patterson & Hennessy,

More information

The Memory Hierarchy 1

The Memory Hierarchy 1 The Memory Hierarchy 1 What is a cache? 2 What problem do caches solve? 3 Memory CPU Abstraction: Big array of bytes Memory memory 4 Performance vs 1980 Processor vs Memory Performance Memory is very slow

More information

CENG4480 Lecture 09: Memory 1

CENG4480 Lecture 09: Memory 1 CENG4480 Lecture 09: Memory 1 Bei Yu byu@cse.cuhk.edu.hk (Latest update: November 8, 2017) Fall 2017 1 / 37 Overview Introduction Memory Principle Random Access Memory (RAM) Non-Volatile Memory Conclusion

More information

Lecture 13: Memory and Programmable Logic

Lecture 13: Memory and Programmable Logic Lecture 13: Memory and Programmable Logic Syed M. Mahmud, Ph.D ECE Department Wayne State University Aby K George, ECE Department, Wayne State University Contents Introduction Random Access Memory Memory

More information

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic

Unit 6 1.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2.Programmable Logic EE 200: Digital Logic Circuit Design Dr Radwan E Abdel-Aal, COE Unit 6.Random Access Memory (RAM) Chapter 3 Combinational Logic Design 2. Logic Logic and Computer Design Fundamentals Part Implementation

More information

CENG3420 Lecture 08: Memory Organization

CENG3420 Lecture 08: Memory Organization CENG3420 Lecture 08: Memory Organization Bei Yu byu@cse.cuhk.edu.hk (Latest update: February 22, 2018) Spring 2018 1 / 48 Overview Introduction Random Access Memory (RAM) Interleaving Secondary Memory

More information

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory

Contents. Memory System Overview Cache Memory. Internal Memory. Virtual Memory. Memory Hierarchy. Registers In CPU Internal or Main memory Memory Hierarchy Contents Memory System Overview Cache Memory Internal Memory External Memory Virtual Memory Memory Hierarchy Registers In CPU Internal or Main memory Cache RAM External memory Backing

More information

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM)

UMBC. Select. Read. Write. Output/Input-output connection. 1 (Feb. 25, 2002) Four commonly used memories: Address connection ... Dynamic RAM (DRAM) Memory Types Two basic types: ROM: Read-only memory RAM: Read-Write memory Four commonly used memories: ROM Flash (EEPROM) Static RAM (SRAM) Dynamic RAM (DRAM) Generic pin configuration: Address connection

More information

CS 261 Fall Mike Lam, Professor. Memory

CS 261 Fall Mike Lam, Professor. Memory CS 261 Fall 2016 Mike Lam, Professor Memory Topics Memory hierarchy overview Storage technologies SRAM DRAM PROM / flash Disk storage Tape and network storage I/O architecture Storage trends Latency comparisons

More information

Memory Expansion. Lecture Embedded Systems

Memory Expansion. Lecture Embedded Systems Memory Expansion Lecture 22 22-1 In These Notes... Memory Types Memory Expansion Interfacing Parallel Serial Direct Memory Access controllers 22-2 Memory Characteristics and Issues Volatility - Does it

More information

EE 308: Microcontrollers

EE 308: Microcontrollers EE 308: Microcontrollers AVR Architecture Aly El-Osery Electrical Engineering Department New Mexico Institute of Mining and Technology Socorro, New Mexico, USA January 23, 2018 Aly El-Osery (NMT) EE 308:

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 4: Memory Hierarchy Memory Taxonomy SRAM Basics Memory Organization DRAM Basics Zeshan Chishti Electrical and Computer Engineering Dept Maseeh College of Engineering

More information

ECSE-2610 Computer Components & Operations (COCO)

ECSE-2610 Computer Components & Operations (COCO) ECSE-2610 Computer Components & Operations (COCO) Part 18: Random Access Memory 1 Read-Only Memories 2 Why ROM? Program storage Boot ROM for personal computers Complete application storage for embedded

More information

ECE232: Hardware Organization and Design

ECE232: Hardware Organization and Design ECE232: Hardware Organization and Design Lecture 21: Memory Hierarchy Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Overview Ideally, computer memory would be large and fast

More information

Computer Organization and Assembly Language (CS-506)

Computer Organization and Assembly Language (CS-506) Computer Organization and Assembly Language (CS-506) Muhammad Zeeshan Haider Ali Lecturer ISP. Multan ali.zeeshan04@gmail.com https://zeeshanaliatisp.wordpress.com/ Lecture 2 Memory Organization and Structure

More information

Memory Challenges. Issues & challenges in memory design: Cost Performance Power Scalability

Memory Challenges. Issues & challenges in memory design: Cost Performance Power Scalability Memory Devices 1 Memory Challenges Issues & challenges in memory design: Cost Performance Power Scalability 2 Memory - Overview Definitions: RAM random access memory DRAM dynamic RAM SRAM static RAM Volatile

More information

Computer Memory. Textbook: Chapter 1

Computer Memory. Textbook: Chapter 1 Computer Memory Textbook: Chapter 1 ARM Cortex-M4 User Guide (Section 2.2 Memory Model) STM32F4xx Technical Reference Manual: Chapter 2 Memory and Bus Architecture Chapter 3 Flash Memory Chapter 36 Flexible

More information

COMPUTER ARCHITECTURE

COMPUTER ARCHITECTURE COMPUTER ARCHITECTURE 8 Memory Types & Technologies RA - 8 2018, Škraba, Rozman, FRI Memory types & technologies - objectives 8 Memory types & technologies - objectives: Basic understanding of: The speed

More information

Introduction to cache memories

Introduction to cache memories Course on: Advanced Computer Architectures Introduction to cache memories Prof. Cristina Silvano Politecnico di Milano email: cristina.silvano@polimi.it 1 Summary Summary Main goal Spatial and temporal

More information

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng.

CS 265. Computer Architecture. Wei Lu, Ph.D., P.Eng. CS 265 Computer Architecture Wei Lu, Ph.D., P.Eng. Part 4: Memory Organization Our goal: understand the basic types of memory in computer understand memory hierarchy and the general process to access memory

More information

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy Chapter 5 Large and Fast: Exploiting Memory Hierarchy Review: Major Components of a Computer Processor Devices Control Memory Input Datapath Output Secondary Memory (Disk) Main Memory Cache Performance

More information

ECE 250 / CS250 Introduction to Computer Architecture

ECE 250 / CS250 Introduction to Computer Architecture ECE 250 / CS250 Introduction to Computer Architecture Main Memory Benjamin C. Lee Duke University Slides from Daniel Sorin (Duke) and are derived from work by Amir Roth (Penn) and Alvy Lebeck (Duke) 1

More information

CREATED BY M BILAL & Arslan Ahmad Shaad Visit:

CREATED BY M BILAL & Arslan Ahmad Shaad Visit: CREATED BY M BILAL & Arslan Ahmad Shaad Visit: www.techo786.wordpress.com Q1: Define microprocessor? Short Questions Chapter No 01 Fundamental Concepts Microprocessor is a program-controlled and semiconductor

More information

Computers Are Your Future

Computers Are Your Future Computers Are Your Future 2008 Prentice-Hall, Inc. Computers Are Your Future Chapter 6 Inside the System Unit 2008 Prentice-Hall, Inc. Slide 2 What You Will Learn... Understand how computers represent

More information

This Unit: Main Memory. Building a Memory System. First Memory System Design. An Example Memory System

This Unit: Main Memory. Building a Memory System. First Memory System Design. An Example Memory System This Unit: Main Memory Building a Memory System Application OS Compiler Firmware CPU I/O Memory Digital Circuits Gates & Transistors Memory hierarchy review DRAM technology A few more transistors Organization:

More information

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.)

k -bit address bus n-bit data bus Control lines ( R W, MFC, etc.) THE MEMORY SYSTEM SOME BASIC CONCEPTS Maximum size of the Main Memory byte-addressable CPU-Main Memory Connection, Processor MAR MDR k -bit address bus n-bit data bus Memory Up to 2 k addressable locations

More information

The Memory Hierarchy Part I

The Memory Hierarchy Part I Chapter 6 The Memory Hierarchy Part I The slides of Part I are taken in large part from V. Heuring & H. Jordan, Computer Systems esign and Architecture 1997. 1 Outline: Memory components: RAM memory cells

More information

Memories: Memory Technology

Memories: Memory Technology Memories: Memory Technology Z. Jerry Shi Assistant Professor of Computer Science and Engineering University of Connecticut * Slides adapted from Blumrich&Gschwind/ELE475 03, Peh/ELE475 * Memory Hierarchy

More information

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Memory Pearson Education, Inc., Hoboken, NJ. All rights reserved. 1 Memory + 2 Location Internal (e.g. processor registers, cache, main memory) External (e.g. optical disks, magnetic disks, tapes) Capacity Number of words Number of bytes Unit of Transfer Word Block Access

More information

Memory Hierarchy Technology. The Big Picture: Where are We Now? The Five Classic Components of a Computer

Memory Hierarchy Technology. The Big Picture: Where are We Now? The Five Classic Components of a Computer The Big Picture: Where are We Now? The Five Classic Components of a Computer Processor Control Datapath Today s Topics: technologies Technology trends Impact on performance Hierarchy The principle of locality

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 7: Memory Modules Error Correcting Codes Memory Controllers Zeshan Chishti Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science

More information

ECE 485/585 Microprocessor System Design

ECE 485/585 Microprocessor System Design Microprocessor System Design Lecture 5: Zeshan Chishti DRAM Basics DRAM Evolution SDRAM-based Memory Systems Electrical and Computer Engineering Dept. Maseeh College of Engineering and Computer Science

More information

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week)

(Advanced) Computer Organization & Architechture. Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + (Advanced) Computer Organization & Architechture Prof. Dr. Hasan Hüseyin BALIK (5 th Week) + Outline 2. The computer system 2.1 A Top-Level View of Computer Function and Interconnection 2.2 Cache Memory

More information

Computer Organization

Computer Organization Objectives 5.1 Chapter 5 Computer Organization Source: Foundations of Computer Science Cengage Learning 5.2 After studying this chapter, students should be able to: List the three subsystems of a computer.

More information

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation

Mainstream Computer System Components CPU Core 2 GHz GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation Mainstream Computer System Components CPU Core 2 GHz - 3.0 GHz 4-way Superscaler (RISC or RISC-core (x86): Dynamic scheduling, Hardware speculation One core or multi-core (2-4) per chip Multiple FP, integer

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

Topic 21: Memory Technology

Topic 21: Memory Technology Topic 21: Memory Technology COS / ELE 375 Computer Architecture and Organization Princeton University Fall 2015 Prof. David August 1 Old Stuff Revisited Mercury Delay Line Memory Maurice Wilkes, in 1947,

More information

Basics DRAM ORGANIZATION. Storage element (capacitor) Data In/Out Buffers. Word Line. Bit Line. Switching element HIGH-SPEED MEMORY SYSTEMS

Basics DRAM ORGANIZATION. Storage element (capacitor) Data In/Out Buffers. Word Line. Bit Line. Switching element HIGH-SPEED MEMORY SYSTEMS Basics DRAM ORGANIZATION DRAM Word Line Bit Line Storage element (capacitor) In/Out Buffers Decoder Sense Amps... Bit Lines... Switching element Decoder... Word Lines... Memory Array Page 1 Basics BUS

More information

8051 INTERFACING TO EXTERNAL MEMORY

8051 INTERFACING TO EXTERNAL MEMORY 8051 INTERFACING TO EXTERNAL MEMORY Memory Capacity The number of bits that a semiconductor memory chip can store Called chip capacity It can be in units of Kbits (kilobits), Mbits (megabits), and so on

More information

a) Memory management unit b) CPU c) PCI d) None of the mentioned

a) Memory management unit b) CPU c) PCI d) None of the mentioned 1. CPU fetches the instruction from memory according to the value of a) program counter b) status register c) instruction register d) program status word 2. Which one of the following is the address generated

More information

Unit IV MEMORY SYSTEM PART A (2 MARKS) 1. What is the maximum size of the memory that can be used in a 16-bit computer and 32 bit computer?

Unit IV MEMORY SYSTEM PART A (2 MARKS) 1. What is the maximum size of the memory that can be used in a 16-bit computer and 32 bit computer? Dept.: CSE Sub. Code: CS2253 Unit IV MEMORY SYSTEM PART A (2 MARKS) Sem: IV Sub. Name: C.O.A 1. What is the maximum size of the memory that can be used in a 16-bit computer and 32 bit computer? The maximum

More information

The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs.

The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. The Hierarchical Memory System The Memory Hierarchy & Cache The impact of real memory on CPU Performance. Main memory basic properties: Memory Types: DRAM vs. SRAM The Motivation for The Memory Hierarchy:

More information

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9

Contents Slide Set 9. Final Notes on Textbook Chapter 7. Outline of Slide Set 9. More about skipped sections in Chapter 7. Outline of Slide Set 9 slide 2/41 Contents Slide Set 9 for ENCM 369 Winter 2014 Lecture Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary Winter Term, 2014

More information

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture. This Unit: Main Memory. Readings

Where We Are in This Course Right Now. ECE 152 Introduction to Computer Architecture. This Unit: Main Memory. Readings Introduction to Computer Architecture Main Memory and Virtual Memory Copyright 2012 Daniel J. Sorin Duke University Slides are derived from work by Amir Roth (Penn) Spring 2012 Where We Are in This Course

More information

Computer Systems Organization

Computer Systems Organization The IAS (von Neumann) Machine Computer Systems Organization Input Output Equipment Stored Program concept Main memory storing programs and data ALU operating on binary data Control unit interpreting instructions

More information

Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy

Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy Computer Architecture and System Software Lecture 08: Assembly Language Programming + Memory Hierarchy Instructor: Rob Bergen Applied Computer Science University of Winnipeg Announcements Chapter 6 The

More information

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory

Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Lecture 3 Internal Memory Cache Stallings: Ch 4, Ch 5 Key Characteristics Locality Cache Main Memory Key Characterics of Memories / Storage (Sta06 Table 4.1) 26.1.2010 2 Goals I want my memory lightning

More information

Random Access Memory (RAM)

Random Access Memory (RAM) Random Access Memory (RAM) best known form of computer memory. "random access" because you can access any memory cell directly if you know the row and column that intersect at that cell. 72 Magnetic-core

More information

EECS150 - Digital Design Lecture 16 - Memory

EECS150 - Digital Design Lecture 16 - Memory EECS150 - Digital Design Lecture 16 - Memory October 17, 2002 John Wawrzynek Fall 2002 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: data & program storage general purpose registers buffering table lookups

More information

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved.

Computer Architecture A Quantitative Approach, Fifth Edition. Chapter 2. Memory Hierarchy Design. Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Slide Set 8. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng

Slide Set 8. for ENCM 369 Winter 2018 Section 01. Steve Norman, PhD, PEng Slide Set 8 for ENCM 369 Winter 2018 Section 01 Steve Norman, PhD, PEng Electrical & Computer Engineering Schulich School of Engineering University of Calgary March 2018 ENCM 369 Winter 2018 Section 01

More information

5 Computer Organization

5 Computer Organization 5 Computer Organization 5.1 Foundations of Computer Science ã Cengage Learning Objectives After studying this chapter, the student should be able to: q List the three subsystems of a computer. q Describe

More information

Read and Write Cycles

Read and Write Cycles Read and Write Cycles The read cycle is shown. Figure 41.1a. The RAS and CAS signals are activated one after the other to latch the multiplexed row and column addresses respectively applied at the multiplexed

More information