The NCAR Yellowstone Data Centric Computing Environment. Rory Kelly ScicomP Workshop May 2013

Size: px
Start display at page:

Download "The NCAR Yellowstone Data Centric Computing Environment. Rory Kelly ScicomP Workshop May 2013"

Transcription

1 The NCAR Yellowstone Data Centric Computing Environment Rory Kelly ScicomP Workshop May 2013

2 Computers to Data Center EVERYTHING IS NEW 2

3 NWSC Procurement New facility: the NWSC NCAR Wyoming Supercomputing Center New data center in Cheyenne Wyoming Complex procurement involving multiple resources Supercomputer Data analysis and visualization clusters GLADE shared file system

4 Computing Resources at the NCAR Wyoming Supercomputing Center High-Performance Computing Yellowstone: IBM idataplex Cluster 1.5 PFLOPs Data Analysis and Visualization Geyser: Large-memory and visualization nodes Caldera: GPU computation and data analysis Pronghorn: Intel Xeon Phi compute cluster (May 2013) Centralized Filesystems and Data Storage GLADE: GPFS File system 10.9 PB initially 16.4 PB in 1Q2014 HPSS Data Archive 2 StorageTek SL8500 tape libraries 20k cartridge slots >100 PB capacity with 5 TB cartridges (uncompressed)

5 Yellowstone NWSC High-Performance Computing Resource Batch Computation 4,518 IBM dx360 M4 nodes,16 cores, 32 GB memory per node Intel Sandy Bridge EP (2.6 GHz) 72,288 cores total, 1.50 PFLOPs peak TB total DDR memory 30x increase vs. previous system High-Performance Interconnect Mellanox FDR InfiniBand fat-tree 13.6 GB/s bidirectional bw/node 2.5 µs latency (worst case) 31.7 TB/s bisection bandwidth Login/Interactive 6 IBM x3650 M4 nodes, Intel Sandy Bridge EP (2.6 GHz) 16 cores & 128 GB memory per node

6 NCAR HPC Profile 20x - 30x previous system performance

7 Geyser and Caldera NWSC Data Analysis & Visualization Resources Geyser: Large-memory system 16 IBM x3850 nodes Intel Westmere-EX processors 40 cores, 1 TB memory, 1 NVIDIA GPU per node Mellanox FDR IB interconnect Caldera: GPU compute / analysis 16 IBM dx360 M4 nodes Intel Sandy Bridge EP 16 cores, 64 GB memory per node 2 NVIDIA GPUs per node Mellanox FDR IB interconnect

8 Pronghorn Intel Xeon Phi cluster 16 IBM dx360 M4 nodes 2 Sandy Bridge EP, 2.6 GHz 64 GB DDR Memory 2 Xeon Phi 5110P coprocessors 60 cores, GHz 8 GB GDDR5 Memory PCIe x16 connected Passively Cooled Mellanox FDR IB interconnect Expect installation in May 2013

9 GLADE PB usable capacity PB (2014) Estimated initial file system sizes collections 2 PB RDA, CMIP5 data scratch 5 PB shared, temporary space projects 3 PB long-term, allocated space users 1 PB medium-term work space Disk Storage Subsystem 76 IBM DCS3700 controllers & expansion drawers 90 2-TB NL-SAS drives/controller add 30 3-TB NL-SAS drives/controller (1Q2014) GPFS NSD Servers 91.8 GB/s aggregate I/O bandwidth; 19 IBM x3650 M4 nodes I/O Aggregator Servers (GPFS, HPSS connectivity) 10-GbE & FDR interfaces; 4 IBM x3650 M4 nodes High-performance I/O interconnect to HPC & DAV Mellanox FDR InfiniBand fat-tree 13.6 GB/s bidirectional bandwidth/node

10 Yellowstone Environment Geyser, Caldera and Pronghorn Yellowstone GLADE HPC resource, 1.5 PFLOPS peak Central disk resource 11 PB (2012), 16.4 PB (2014) DAV and Accelerated Computing High Bandwidth Low Latency HPC and I/O Networks FDR InfiniBand and 10Gb Ethernet NCAR HPSS Archive 100 PB capacity ~15 PB/yr growth 1Gb/10Gb Ethernet (40Gb+ future) Science Gateways Data Transfer Services RDA, ESG Remote Vis Partner Sites XSEDE Sites

11 Yellowstone Software System Software LSF-HPC Batch Subsystem / Resource Manager Red Hat Enterprise Linux (RHEL) Version 6 IBM General Parallel File system (GPFS) Mellanox Universal Fabric Manager IBM xcat cluster administration toolkit Compilers, Libraries, Debugger & Performance Tools IBM Parallel Environment (POE), including IBM HPC Toolkit Intel Cluster Studio (Fortran, C++, performance & MPI libraries, trace collector & analyzer) 50 concurrent users Intel VTune Amplifier XE performance optimizer 2 concurrent users PGI CDK (Fortran, C, C++, pgdbg debugger, pgprof) 50 conc. users PGI CDK GPU Version (Fortran, C, C++, pgdbg debugger, pgprof) for DAV systems only, 2 concurrent users PathScale EckoPath (Fortran C, C++, PathDB debugger) 20 concurrent users Rogue Wave TotalView debugger 8,192 floating tokens

12 Managing Complexity in the USER ENVIRONMENT 12

13 Comparison of Previous and Current Supercomputers Bluefire Yellowstone Cores Compute Architectures Compilers MPI Libraries Levels of Switch or 2 3 or 4 1 or 2 4 or or rd Party Software Combinations O(100) O(100) O(1000) 13

14 Integrated Compute Platforms Trying to make all the NWSC resources feel more like one machine instead of a collection of machines Common file systems, schedulers, user environment and software versions One set of commands that users must learn to compile, run, and navigate the systems 14

15 Data Centered Design GLADE Shared file system is designed to increase efficiency of typical workflow by reducing data movement for users and decreasing the number of spaces they have to manage 15

16 Data Centered Workflow One location for all data on accessible from all of our machines. Input Model Output Post Processed Storage spaces and quotas are uniform between machines Don t need to backup, archive, manage multiple spaces, or monitor multiple temporary spaces for scrubbing 16

17 LSF Scheduler From user POV there is one place to submit jobs, regardless of resource Different queues depending on job type (e.g. regular, bigmem, gpgpu) Allows multistage jobs to run on multiple resources Large model run on Yellowstone Dependent Data-Analysis Run on Geyser Sharing between projects managed transparently 17

18 LSF Scheduler User Jobs MBD HPSS Archive jobs SBD Slave LIM Big Memory, Data Analysis Jobs SBD Slave LIM SBD Visualization, GPGPU jobs Slave LIM SBD Master Lim SBD Slave LIM Xeon Phi Accelerated Compute Jobs Large Parallel Compute Jobs SBD I/O Aggr. Nodes Slave LIM Pronghorn Geyser Caldera Yellowstone

19 User Software Environment Complexity of user environment greatly increased with Yellowstone Multiple compilers and libraries, not always mutually compatible Architectural differences between machines Amount of available software Don t want to push this complexity on to our users 19

20 Modules on bluefire (partial listing) 20

21 User Software Environment Use Lmod, an environment modules implementation out of TACC Structured for dynamic updating of software dependencies to maintain consistent user environment Express dependencies between modules in structured module tree Automatically unloads / reloads modules when something they depend on changes in the environment 21

22 Modulefiles Tree modulefiles idep compilers cdep gnuplot intel intel lua lua netcdf lua 22

23 User Software Environment -bash-4.1$ module list! Currently Loaded Modules:! 1) ncarenv/1.0 2) ncarbinlibs/1.0 3) intel/ ) ncarcompilers/1.0! 5) netcdf/4.2! -bash-4.1$ module swap intel pgi! Due to MODULEPATH changes the following modules have been reloaded:! 1) netcdf 2) ncarcompilers! -bash-4.1$ module unload pgi! Inactive Modules:! 1) ncarcompilers 2) netcdf! -bash-4.1$ module list! Currently Loaded Modules:! 1) ncarenv/1.0 2) ncarbinlibs/1.0! Inactive Modules:! 1) ncarcompilers/1.0 2) netcdf/4.2! -bash-4.1$ module load pathscale! Activating Modules:! 1) ncarcompilers/1.0 2) netcdf/4.2! Due to MODULEPATH changes the following modules have been reloaded:! 1) netcdf 2) ncarcompilers! 23

24 User Software Environment Compiler modules export their version as environment variable, used behind the scenes when software must be rebuilt for versions of the same compiler Sets of modules can be saved as defaults, or named environment sets, and shared with other users Only software consistent with the current environment will be listed by the avail command 24

25 User Software Environment -bash-4.1$ module av /glade/apps/opt/modulefiles/compilers cuda/5.0 gnu/4.7.1 gnu/4.8.0 intel/ (default) pathscale/ pgi/12.5 (default) gnu/4.4.6 gnu/4.7.2 (default) intel/ intel/ pathscale/5.0.0 pgi/13.3 gnu/4.6.4 gnu/4.7.3 intel/ pathscale/ (default) pgi/ /glade/apps/opt/modulefiles/idep METv4.0/4.0 debug/0.0 jython/2.5.3 (default) ncl/6.1.0 python/2.7.3-deprecated Panoply/3.1.7 ferret/6.84 jython/2.7-beta1 ncl/6.1.2 (default) python/2.7.3-gs (default) R/ fftw/3.3.2 lapack/3.2.1 ncl/6.2.0 totalview/ R/ opt (default) ftools/1.0 mathematica/9.0 nco/4.2.0 vapor/2.2.0 (default) R/ rmpi gnuplot/4.6.1 matlab/r2012b nco/4.2.3 (default) vapor/2.2.0.rc1 antlr/2.7.7 grads/2.0.2 mpitrace/1.0 ncview/2.1.1 (default) visit/2.6.2 cdo/1.5.5 gsl/1.15 ncarbinlibs/0.0 paraview/ serial (default) cdo/ (default) hwloc/1.5 ncarbinlibs/1.0 (default) paraview/ serial workshop/1.0 cmake/ idl/8.2.1 ncarenv/1.0 pypy/1.9 ddd/ job_mem/1.0 ncl/6.0.0 pypy/2.0-beta1 (default) /glade/apps/opt/modulefiles/cdep/pathscale hdf5-mpi/1.8.9 hdf5/1.8.9 ncarcompilers/1.0 (default) netcdf-mpi/4.2 netcdf/4.2 (default) netcdf/4.3.0-rc4 pnetcdf/

26 User Software Environment Modules can be searched for by string Compiler wrapper scripts are used to make linking and loading of libraries easier by exporting correct link flags and bundling rpath info into executables Autolinking can be disabled, but correct link paths still available for inspection in environment: mpiifort show! -L/glade/apps/opt/netcdf/4.2/intel/default/lib -lnetcdf_c++4 lnetcdff! -lnetcdf -Wl,-rpath,/glade/apps/opt/netcdf/4.2/intel/default/lib! 26

27 Looking toward the next machine BEYOND YELLOWSTONE 27

28 Historical Power and Efficiency of NCAR Systems Name Model Peak GFLOPs Sus Sus Power MFLOP GFLOPs (kw) /Watt Est'd Power Cost/yr Chipeta CRI Cray J90se/ $5,625 Ute SGI Origin2000/ $38,325 Blackforest IBM SP/1308 (318) WH2/NH2 1, $105,000 Bluesky IBM p690/32 (50) Regatta-H/Colony 8, $311,250 Lightning IBM e325/2 (128) Opteron Linux 1, $36,000 Bluevista IBM p575/8 (78) POWER5/HPS 4, $157,950 Blueice IBM p575/16 (112) POWER5+/HPS 13,312 1, $244,050 Bluefire (2008) IBM Power 575 POWER6 DDR-IB 77,005 2, $403,654 Frost (2009) IBM BlueGene/L (4096/2) 22, $62,325 Lynx Cray XT5m (912/76) 8, $26,250 Yellowstone (2012) IBM idataplex/fdr-ib 1,503,590 80,950 1, $1,700,000 28

29 Life after Yellowstone Increasing performance within our power budget expected to require accelerators in next system (GPU, Xeon Phi, etc) We have a large existing codebase (Fortran, C, C++, MPI, OpenMP) We need a way to port models to accelerators with minimal rewriting, and the ability to maintain single version of the source code 29

30 Life after Yellowstone Bringing in test systems to make GPU and MIC computing resources available to modelers Working with flagship users codes to get them running on accelerators and to understand performance characteristics Some work with GPUs over last few years (WRF, CESM), and recent promising results on Xeon Phi Major push ahead of our next procurement 30

31 Questions? 31

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 28, 2011 David L. Hart, CISL

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 28, 2011 David L. Hart, CISL NCAR s Data-Centric Supercomputing Environment Yellowstone November 28, 2011 David L. Hart, CISL dhart@ucar.edu Welcome to the Petascale Yellowstone hardware and software Deployment schedule Allocations

More information

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 29, 2011 David L. Hart, CISL

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 29, 2011 David L. Hart, CISL NCAR s Data-Centric Supercomputing Environment Yellowstone November 29, 2011 David L. Hart, CISL dhart@ucar.edu Welcome to the Petascale Yellowstone hardware and software Deployment schedule Allocations

More information

Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment

Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment Cheyenne NCAR s Next-Generation Data-Centric Supercomputing Environment David Hart, NCAR/CISL User Services Manager June 23, 2016 1 History of computing at NCAR 2 2 Cheyenne Planned production, January

More information

Yellowstone allocations and writing successful requests. November 27, 2012 David L. Hart, CISL

Yellowstone allocations and writing successful requests. November 27, 2012 David L. Hart, CISL Yellowstone allocations and writing successful requests November 27, 2012 David L. Hart, CISL dhart@ucar.edu Welcome to the Petascale Yellowstone environment AllocaCons opportunices at NWSC University,

More information

NCAR Globally Accessible Data Environment (GLADE) Updated: 15 Feb 2017

NCAR Globally Accessible Data Environment (GLADE) Updated: 15 Feb 2017 NCAR Globally Accessible Data Environment (GLADE) Updated: 15 Feb 2017 Overview The Globally Accessible Data Environment (GLADE) provides centralized file storage for HPC computational, data-analysis,

More information

NCAR Workload Analysis on Yellowstone. March 2015 V5.0

NCAR Workload Analysis on Yellowstone. March 2015 V5.0 NCAR Workload Analysis on Yellowstone March 2015 V5.0 Purpose and Scope of the Analysis Understanding the NCAR application workload is a critical part of making efficient use of Yellowstone and in scoping

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

CISL Update Operations and Services

CISL Update Operations and Services CISL Update Operations and Services CISL HPC Advisory Panel Meeting Anke Kamrath anke@ucar.edu Operations and Services Division Computational and Information Systems Laboratory 1 CHAP Meeting A lot happening

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Introduction to Cheyenne. 12 January, 2017 Consulting Services Group Brian Vanderwende

Introduction to Cheyenne. 12 January, 2017 Consulting Services Group Brian Vanderwende Introduction to Cheyenne 12 January, 2017 Consulting Services Group Brian Vanderwende Topics we will cover Technical specs of the Cheyenne supercomputer and expanded GLADE file systems The Cheyenne computing

More information

Introduction to NCAR HPC. 25 May 2017 Consulting Services Group Brian Vanderwende

Introduction to NCAR HPC. 25 May 2017 Consulting Services Group Brian Vanderwende Introduction to NCAR HPC 25 May 2017 Consulting Services Group Brian Vanderwende Topics we will cover Technical overview of our HPC systems The NCAR computing environment Accessing software on Cheyenne

More information

NCAR Workload Analysis on Yellowstone. September 2014 V4.1

NCAR Workload Analysis on Yellowstone. September 2014 V4.1 NCAR Workload Analysis on Yellowstone September 2014 V4.1 Purpose and Scope of the Analysis Understanding the NCAR applica5on workload is a cri5cal part of making efficient use of Yellowstone and in scoping

More information

NCEP HPC Transition. 15 th ECMWF Workshop on the Use of HPC in Meteorology. Allan Darling. Deputy Director, NCEP Central Operations

NCEP HPC Transition. 15 th ECMWF Workshop on the Use of HPC in Meteorology. Allan Darling. Deputy Director, NCEP Central Operations NCEP HPC Transition 15 th ECMWF Workshop on the Use of HPC Allan Darling Deputy Director, NCEP Central Operations WCOSS NOAA Weather and Climate Operational Supercomputing System CURRENT OPERATIONAL CHALLENGE

More information

CISL Update. 29 April Operations and Services Division

CISL Update. 29 April Operations and Services Division CISL Update Operations and Services CISL HPC Advisory Panel Meeting Anke Kamrath anke@ucar.edu Operations and Services Division Computational and Information Systems Laboratory 1 CHAP Meeting 14 May 2009

More information

Illinois Proposal Considerations Greg Bauer

Illinois Proposal Considerations Greg Bauer - 2016 Greg Bauer Support model Blue Waters provides traditional Partner Consulting as part of its User Services. Standard service requests for assistance with porting, debugging, allocation issues, and

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

Introduction to the NCAR HPC Systems. 25 May 2018 Consulting Services Group Brian Vanderwende

Introduction to the NCAR HPC Systems. 25 May 2018 Consulting Services Group Brian Vanderwende Introduction to the NCAR HPC Systems 25 May 2018 Consulting Services Group Brian Vanderwende Topics to cover Overview of the NCAR cluster resources Basic tasks in the HPC environment Accessing pre-built

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

HOKUSAI System. Figure 0-1 System diagram

HOKUSAI System. Figure 0-1 System diagram HOKUSAI System October 11, 2017 Information Systems Division, RIKEN 1.1 System Overview The HOKUSAI system consists of the following key components: - Massively Parallel Computer(GWMPC,BWMPC) - Application

More information

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions How to run applications on Aziz supercomputer Mohammad Rafi System Administrator Fujitsu Technology Solutions Agenda Overview Compute Nodes Storage Infrastructure Servers Cluster Stack Environment Modules

More information

University at Buffalo Center for Computational Research

University at Buffalo Center for Computational Research University at Buffalo Center for Computational Research The following is a short and long description of CCR Facilities for use in proposals, reports, and presentations. If desired, a letter of support

More information

User Training Cray XC40 IITM, Pune

User Training Cray XC40 IITM, Pune User Training Cray XC40 IITM, Pune Sudhakar Yerneni, Raviteja K, Nachiket Manapragada, etc. 1 Cray XC40 Architecture & Packaging 3 Cray XC Series Building Blocks XC40 System Compute Blade 4 Compute Nodes

More information

Leibniz Supercomputer Centre. Movie on YouTube

Leibniz Supercomputer Centre. Movie on YouTube SuperMUC @ Leibniz Supercomputer Centre Movie on YouTube Peak Performance Peak performance: 3 Peta Flops 3*10 15 Flops Mega 10 6 million Giga 10 9 billion Tera 10 12 trillion Peta 10 15 quadrillion Exa

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System X idataplex CINECA, Italy The site selection

More information

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda

HPC Middle East. KFUPM HPC Workshop April Mohamed Mekias HPC Solutions Consultant. Agenda KFUPM HPC Workshop April 29-30 2015 Mohamed Mekias HPC Solutions Consultant Agenda 1 Agenda-Day 1 HPC Overview What is a cluster? Shared v.s. Distributed Parallel v.s. Massively Parallel Interconnects

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information

Genius Quick Start Guide

Genius Quick Start Guide Genius Quick Start Guide Overview of the system Genius consists of a total of 116 nodes with 2 Skylake Xeon Gold 6140 processors. Each with 18 cores, at least 192GB of memory and 800 GB of local SSD disk.

More information

Introduction to CINECA HPC Environment

Introduction to CINECA HPC Environment Introduction to CINECA HPC Environment 23nd Summer School on Parallel Computing 19-30 May 2014 m.cestari@cineca.it, i.baccarelli@cineca.it Goals You will learn: The basic overview of CINECA HPC systems

More information

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University Introduction to High Performance Computing Shaohao Chen Research Computing Services (RCS) Boston University Outline What is HPC? Why computer cluster? Basic structure of a computer cluster Computer performance

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI Systems Andrew Gustafson The Machines at MSI Machine Type: Cluster Source: http://en.wikipedia.org/wiki/cluster_%28computing%29 Machine Type: Cluster

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Smarter Clusters from the Supercomputer Experts

Smarter Clusters from the Supercomputer Experts Smarter Clusters from the Supercomputer Experts Maximize Your Results with Flexible, High-Performance Cray CS500 Cluster Supercomputers In science and business, as soon as one question is answered another

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0) PRACE 16th Call Technical Guidelines for Applicants V1: published on 26/09/17 TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0) The contributing sites and the corresponding computer systems

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Basic Specification of Oakforest-PACS

Basic Specification of Oakforest-PACS Basic Specification of Oakforest-PACS Joint Center for Advanced HPC (JCAHPC) by Information Technology Center, the University of Tokyo and Center for Computational Sciences, University of Tsukuba Oakforest-PACS

More information

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop Before We Start Sign in hpcxx account slips Windows Users: Download PuTTY Google PuTTY First result Save putty.exe to Desktop Research Computing at Virginia Tech Advanced Research Computing Compute Resources

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Introduc)on to Hyades

Introduc)on to Hyades Introduc)on to Hyades Shawfeng Dong Department of Astronomy & Astrophysics, UCSSC Hyades 1 Hardware Architecture 2 Accessing Hyades 3 Compu)ng Environment 4 Compiling Codes 5 Running Jobs 6 Visualiza)on

More information

Introduction to PICO Parallel & Production Enviroment

Introduction to PICO Parallel & Production Enviroment Introduction to PICO Parallel & Production Enviroment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Nicola Spallanzani n.spallanzani@cineca.it

More information

IT4Innovations national supercomputing center. Branislav Jansík

IT4Innovations national supercomputing center. Branislav Jansík IT4Innovations national supercomputing center Branislav Jansík branislav.jansik@vsb.cz Anselm Salomon Data center infrastructure Anselm and Salomon Anselm Intel Sandy Bridge E5-2665 2x8 cores 64GB RAM

More information

SuperMike-II Launch Workshop. System Overview and Allocations

SuperMike-II Launch Workshop. System Overview and Allocations : System Overview and Allocations Dr Jim Lupo CCT Computational Enablement jalupo@cct.lsu.edu SuperMike-II: Serious Heterogeneous Computing Power System Hardware SuperMike provides 442 nodes, 221TB of

More information

Designed for Maximum Accelerator Performance

Designed for Maximum Accelerator Performance Designed for Maximum Accelerator Performance A dense, GPU-accelerated cluster supercomputer that delivers up to 329 double-precision GPU teraflops in one rack. This power- and spaceefficient system can

More information

Blue Waters System Overview. Greg Bauer

Blue Waters System Overview. Greg Bauer Blue Waters System Overview Greg Bauer The Blue Waters EcoSystem Petascale EducaIon, Industry and Outreach Petascale ApplicaIons (CompuIng Resource AllocaIons) Petascale ApplicaIon CollaboraIon Team Support

More information

LRZ SuperMUC One year of Operation

LRZ SuperMUC One year of Operation LRZ SuperMUC One year of Operation IBM Deep Computing 13.03.2013 Klaus Gottschalk IBM HPC Architect Leibniz Computing Center s new HPC System is now installed and operational 2 SuperMUC Technical Highlights

More information

Introduction to GALILEO

Introduction to GALILEO November 27, 2016 Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it SuperComputing Applications and Innovation Department

More information

Fast computers, big/fast storage, fast networks Marla Meehl

Fast computers, big/fast storage, fast networks Marla Meehl Fast computers, big/fast storage, fast networks Marla Meehl Manager, Network Engineering and Telecommunications, NCAR/UCAR, Manager of the Front Range GigaPoP Computational & Information Systems Laboratory

More information

DATARMOR: Comment s'y préparer? Tina Odaka

DATARMOR: Comment s'y préparer? Tina Odaka DATARMOR: Comment s'y préparer? Tina Odaka 30.09.2016 PLAN DATARMOR: Detailed explanation on hard ware What can you do today to be ready for DATARMOR DATARMOR : convention de nommage ClusterHPC REF SCRATCH

More information

2014 LENOVO. ALL RIGHTS RESERVED.

2014 LENOVO. ALL RIGHTS RESERVED. 2014 LENOVO. ALL RIGHTS RESERVED. Parallel System description. Outline p775, p460 and dx360m4, Hardware and Software Compiler options and libraries used. WRF tunable parameters for scaling runs. nproc_x,

More information

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing High Performance Computing at UEA http://rscs.uea.ac.uk/hpc/

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

MILC Performance Benchmark and Profiling. April 2013

MILC Performance Benchmark and Profiling. April 2013 MILC Performance Benchmark and Profiling April 2013 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Arm in HPC. Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm Arm Limited

Arm in HPC. Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm Arm Limited Arm in HPC Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm 2019 Arm Limited Arm Technology Connects the World Arm in IOT 21 billion chips in the past year Mobile/Embedded/IoT/ Automotive/GPUs/Servers

More information

Introduc)on to Pacman

Introduc)on to Pacman Introduc)on to Pacman Don Bahls User Consultant dmbahls@alaska.edu (Significant Slide Content from Tom Logan) Overview Connec)ng to Pacman Hardware Programming Environment Compilers Queuing System Interac)ve

More information

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing High Performance Computing at UEA http://rscs.uea.ac.uk/hpc/

More information

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012 ANSYS Fluent 14 Performance Benchmark and Profiling October 2012 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information

More information

High Performance Computing and Data Resources at SDSC

High Performance Computing and Data Resources at SDSC High Performance Computing and Data Resources at SDSC "! Mahidhar Tatineni (mahidhar@sdsc.edu)! SDSC Summer Institute! August 05, 2013! HPC Resources at SDSC Hardware Overview HPC Systems : Gordon, Trestles

More information

INTRODUCTION TO THE CLUSTER

INTRODUCTION TO THE CLUSTER INTRODUCTION TO THE CLUSTER WHAT IS A CLUSTER? A computer cluster consists of a group of interconnected servers (nodes) that work together to form a single logical system. COMPUTE NODES GATEWAYS SCHEDULER

More information

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved.

Minnesota Supercomputing Institute Regents of the University of Minnesota. All rights reserved. Minnesota Supercomputing Institute Introduction to MSI for Physical Scientists Michael Milligan MSI Scientific Computing Consultant Goals Introduction to MSI resources Show you how to access our systems

More information

Introduction to GALILEO

Introduction to GALILEO Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Alessandro Grottesi a.grottesi@cineca.it SuperComputing Applications and

More information

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

The GPU-Cluster. Sandra Wienke Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky The GPU-Cluster Sandra Wienke wienke@rz.rwth-aachen.de Fotos: Christian Iwainsky Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative computer

More information

Outline. March 5, 2012 CIRMMT - McGill University 2

Outline. March 5, 2012 CIRMMT - McGill University 2 Outline CLUMEQ, Calcul Quebec and Compute Canada Research Support Objectives and Focal Points CLUMEQ Site at McGill ETS Key Specifications and Status CLUMEQ HPC Support Staff at McGill Getting Started

More information

The Why and How of HPC-Cloud Hybrids with OpenStack

The Why and How of HPC-Cloud Hybrids with OpenStack The Why and How of HPC-Cloud Hybrids with OpenStack OpenStack Australia Day Melbourne June, 2017 Lev Lafayette, HPC Support and Training Officer, University of Melbourne lev.lafayette@unimelb.edu.au 1.0

More information

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA STATE OF THE ART 2012 18,688 Tesla K20X GPUs 27 PetaFLOPS FLAGSHIP SCIENTIFIC APPLICATIONS

More information

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit

Analyzing the Performance of IWAVE on a Cluster using HPCToolkit Analyzing the Performance of IWAVE on a Cluster using HPCToolkit John Mellor-Crummey and Laksono Adhianto Department of Computer Science Rice University {johnmc,laksono}@rice.edu TRIP Meeting March 30,

More information

HPC Technology Update Challenges or Chances?

HPC Technology Update Challenges or Chances? HPC Technology Update Challenges or Chances? Swiss Distributed Computing Day Thomas Schoenemeyer, Technology Integration, CSCS 1 Move in Feb-April 2012 1500m2 16 MW Lake-water cooling PUE 1.2 New Datacenter

More information

Introduction to Parallel Programming. Martin Čuma Center for High Performance Computing University of Utah

Introduction to Parallel Programming. Martin Čuma Center for High Performance Computing University of Utah Introduction to Parallel Programming Martin Čuma Center for High Performance Computing University of Utah mcuma@chpc.utah.edu Overview Types of parallel computers. Parallel programming options. How to

More information

19. prosince 2018 CIIRC Praha. Milan Král, IBM Radek Špimr

19. prosince 2018 CIIRC Praha. Milan Král, IBM Radek Špimr 19. prosince 2018 CIIRC Praha Milan Král, IBM Radek Špimr CORAL CORAL 2 CORAL Installation at ORNL CORAL Installation at LLNL Order of Magnitude Leap in Computational Power Real, Accelerated Science ACME

More information

CS500 SMARTER CLUSTER SUPERCOMPUTERS

CS500 SMARTER CLUSTER SUPERCOMPUTERS CS500 SMARTER CLUSTER SUPERCOMPUTERS OVERVIEW Extending the boundaries of what you can achieve takes reliable computing tools matched to your workloads. That s why we tailor the Cray CS500 cluster supercomputer

More information

HPC Capabilities at Research Intensive Universities

HPC Capabilities at Research Intensive Universities HPC Capabilities at Research Intensive Universities Purushotham (Puri) V. Bangalore Department of Computer and Information Sciences and UAB IT Research Computing UAB HPC Resources 24 nodes (192 cores)

More information

Preparing GPU-Accelerated Applications for the Summit Supercomputer

Preparing GPU-Accelerated Applications for the Summit Supercomputer Preparing GPU-Accelerated Applications for the Summit Supercomputer Fernanda Foertter HPC User Assistance Group Training Lead foertterfs@ornl.gov This research used resources of the Oak Ridge Leadership

More information

CPMD Performance Benchmark and Profiling. February 2014

CPMD Performance Benchmark and Profiling. February 2014 CPMD Performance Benchmark and Profiling February 2014 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the supporting

More information

Pedraforca: a First ARM + GPU Cluster for HPC

Pedraforca: a First ARM + GPU Cluster for HPC www.bsc.es Pedraforca: a First ARM + GPU Cluster for HPC Nikola Puzovic, Alex Ramirez We ve hit the power wall ALL computers are limited by power consumption Energy-efficient approaches Multi-core Fujitsu

More information

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky

RWTH GPU-Cluster. Sandra Wienke March Rechen- und Kommunikationszentrum (RZ) Fotos: Christian Iwainsky RWTH GPU-Cluster Fotos: Christian Iwainsky Sandra Wienke wienke@rz.rwth-aachen.de March 2012 Rechen- und Kommunikationszentrum (RZ) The GPU-Cluster GPU-Cluster: 57 Nvidia Quadro 6000 (29 nodes) innovative

More information

HPC Hardware Overview

HPC Hardware Overview HPC Hardware Overview John Lockman III April 19, 2013 Texas Advanced Computing Center The University of Texas at Austin Outline Lonestar Dell blade-based system InfiniBand ( QDR) Intel Processors Longhorn

More information

Intel Parallel Studio XE 2015

Intel Parallel Studio XE 2015 2015 Create faster code faster with this comprehensive parallel software development suite. Faster code: Boost applications performance that scales on today s and next-gen processors Create code faster:

More information

Using Cartesius & Lisa

Using Cartesius & Lisa Using Cartesius & Lisa Introductory course for Cartesius & Lisa Jeroen Engelberts jeroen.engelberts@surfsara.nl Consultant Supercomputing Outline SURFsara About us What we do Cartesius and Lisa Architectures

More information

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016 Analyzing the High Performance Parallel I/O on LRZ HPC systems Sandra Méndez. HPC Group, LRZ. June 23, 2016 Outline SuperMUC supercomputer User Projects Monitoring Tool I/O Software Stack I/O Analysis

More information

Sami Saarinen Peter Towers. 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1

Sami Saarinen Peter Towers. 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1 Acknowledgements: Petra Kogel Sami Saarinen Peter Towers 11th ECMWF Workshop on the Use of HPC in Meteorology Slide 1 Motivation Opteron and P690+ clusters MPI communications IFS Forecast Model IFS 4D-Var

More information

Windows-HPC Environment at RWTH Aachen University

Windows-HPC Environment at RWTH Aachen University Windows-HPC Environment at RWTH Aachen University Christian Terboven, Samuel Sarholz {terboven, sarholz}@rz.rwth-aachen.de Center for Computing and Communication RWTH Aachen University PPCES 2009 March

More information

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer

Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems. Ed Hinkel Senior Sales Engineer Addressing the Increasing Challenges of Debugging on Accelerated HPC Systems Ed Hinkel Senior Sales Engineer Agenda Overview - Rogue Wave & TotalView GPU Debugging with TotalView Nvdia CUDA Intel Phi 2

More information

PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE SHEET) Supply and installation of High Performance Computing System

PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE SHEET) Supply and installation of High Performance Computing System INSTITUTE FOR PLASMA RESEARCH (An Autonomous Institute of Department of Atomic Energy, Government of India) Near Indira Bridge; Bhat; Gandhinagar-382428; India PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE

More information

WVU RESEARCH COMPUTING INTRODUCTION. Introduction to WVU s Research Computing Services

WVU RESEARCH COMPUTING INTRODUCTION. Introduction to WVU s Research Computing Services WVU RESEARCH COMPUTING INTRODUCTION Introduction to WVU s Research Computing Services WHO ARE WE? Division of Information Technology Services Funded through WVU Research Corporation Provide centralized

More information

Mapping MPI+X Applications to Multi-GPU Architectures

Mapping MPI+X Applications to Multi-GPU Architectures Mapping MPI+X Applications to Multi-GPU Architectures A Performance-Portable Approach Edgar A. León Computer Scientist San Jose, CA March 28, 2018 GPU Technology Conference This work was performed under

More information

Using the IBM Opteron 1350 at OSC. October 19-20, 2010

Using the IBM Opteron 1350 at OSC. October 19-20, 2010 Using the IBM Opteron 1350 at OSC October 19-20, 2010 Table of Contents Hardware Overview The Linux Operating System User Environment and Storage 2 Hardware Overview Hardware introduction Login node configuration

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier0) Contributing sites and the corresponding computer systems for this call are: GENCI CEA, France Bull Bullx cluster GCS HLRS, Germany Cray

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

Present and Future Leadership Computers at OLCF

Present and Future Leadership Computers at OLCF Present and Future Leadership Computers at OLCF Al Geist ORNL Corporate Fellow DOE Data/Viz PI Meeting January 13-15, 2015 Walnut Creek, CA ORNL is managed by UT-Battelle for the US Department of Energy

More information

Emerging Technologies for HPC Storage

Emerging Technologies for HPC Storage Emerging Technologies for HPC Storage Dr. Wolfgang Mertz CTO EMEA Unstructured Data Solutions June 2018 The very definition of HPC is expanding Blazing Fast Speed Accessibility and flexibility 2 Traditional

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science

Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science ECSS Symposium, 12/16/14 M. L. Norman, R. L. Moore, D. Baxter, G. Fox (Indiana U), A Majumdar, P Papadopoulos, W Pfeiffer, R. S.

More information

The Arm Technology Ecosystem: Current Products and Future Outlook

The Arm Technology Ecosystem: Current Products and Future Outlook The Arm Technology Ecosystem: Current Products and Future Outlook Dan Ernst, PhD Advanced Technology Cray, Inc. Why is an Ecosystem Important? An Ecosystem is a collection of common material Developed

More information

The RWTH Compute Cluster Environment

The RWTH Compute Cluster Environment The RWTH Compute Cluster Environment Tim Cramer 29.07.2013 Source: D. Both, Bull GmbH Rechen- und Kommunikationszentrum (RZ) The RWTH Compute Cluster (1/2) The Cluster provides ~300 TFlop/s No. 32 in TOP500

More information

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers

Tutorial. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Tutorial Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld dan/lars/bbarth/milfeld@tacc.utexas.edu XSEDE 12 July 16, 2012

More information

Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE

Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE Lustre2.5 Performance Evaluation: Performance Improvements with Large I/O Patches, Metadata Improvements, and Metadata Scaling with DNE Hitoshi Sato *1, Shuichi Ihara *2, Satoshi Matsuoka *1 *1 Tokyo Institute

More information

Introduction to GALILEO

Introduction to GALILEO Introduction to GALILEO Parallel & production environment Mirko Cestari m.cestari@cineca.it Alessandro Marani a.marani@cineca.it Domenico Guida d.guida@cineca.it Maurizio Cremonesi m.cremonesi@cineca.it

More information

Brutus. Above and beyond Hreidar and Gonzales

Brutus. Above and beyond Hreidar and Gonzales Brutus Above and beyond Hreidar and Gonzales Dr. Olivier Byrde Head of HPC Group, IT Services, ETH Zurich Teodoro Brasacchio HPC Group, IT Services, ETH Zurich 1 Outline High-performance computing at ETH

More information

CP2K Performance Benchmark and Profiling. April 2011

CP2K Performance Benchmark and Profiling. April 2011 CP2K Performance Benchmark and Profiling April 2011 Note The following research was performed under the HPC Advisory Council activities Participating vendors: AMD, Dell, Mellanox Compute resource - HPC

More information

OCTOPUS Performance Benchmark and Profiling. June 2015

OCTOPUS Performance Benchmark and Profiling. June 2015 OCTOPUS Performance Benchmark and Profiling June 2015 2 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information on the

More information