Leibniz Supercomputer Centre. Movie on YouTube

Size: px
Start display at page:

Download "Leibniz Supercomputer Centre. Movie on YouTube"

Transcription

1 Leibniz Supercomputer Centre Movie on YouTube

2 Peak Performance Peak performance: 3 Peta Flops 3*10 15 Flops Mega 10 6 million Giga 10 9 billion Tera trillion Peta quadrillion Exa quintillion Zetta sextillion Flops: Floating Point Operations per Seconds

3 Distributed Memory Architecture 18 partitions called islands with 512 nodes Node is a shared memory system with 2 processors Sandy Bridge-EP Intel Xeon E C 2.7 GHz (Turbo 3.5 GHz) 32 GByte memory Inifiniband network interface Processor has 8 cores 2-way hyperthreading GHz per core GFlops per processor

4 Sandy Bridge Processor Latency: 4 cycles 12 cycles 31 cycles Core L1 32KB L2 256KB 8 multithreaded cores Core L1 32KB L2 256KB Bandwidth: 2*16/cycle 32 / cycle 32 / cycle L3 2.5 MB Shared L3 L3 2.5 MB Network frequency equal to core frequency Memory QPI PCIe L3 cache Partitioned with cache coherence based on core valid bits Physical addresses distributed by a hash function

5 NUMA Node 4GB 2 QPI links 4GB 4GB 4GB Sandy Bridge Each 2 GT/s Sandy Bridge 4GB 4GB 4GB 4GB 8xPCIe3.0 (8GB/s) Infiniband 2 processors with 32 GB of memory Aggregate memory bandwidth per node GB/s Latency local ~50ns (~135 GHz) remote ~90ns (~240 cycles)

6 Interconnection Network Infiniband FDR-10 FDR means fourteen data rate FDR-10 has an effective data rate of Gb/s Latency: 100 nsec per switch, 1usec MPI Vendor: Mellanox Intra-Island Topology: non-blocking tree 256 communication pairs can talk in parallel. Inter-Island Topology: Pruned Tree 4:1 128 links per island to next level

7 Peak Performance 126 spine 36 port switch 36 port switch switches 19 links Rest for fat node and IO 126 links 648 port switch 516 nodes 516 links 18 islands + IO island 648 port switch

8 9288 Compute Nodes Cold Corridoor Infiniband (red) and Ethernet (green) cabling Matthias Brehm, Herbert Huber, LRZ High Performance Systems Division

9 Infiniband Interconnect 19 Orcas 126 Spine Switches Infiniband Cables Matthias Brehm, Herbert Huber, LRZ High Performance Systems Division

10 IO System Spine Infiniband Switches GPFS for $WORK and $SCRATCH Login nodes $HOME Archive GB/s 5 80 Gb/s 30 10GbE

11 Parallel File System GPFS 10 Pbyte, 200 GigaByte/s I/O Bandwidth 9 DDN SFA 12k Controller TByte SATA Disks Matthias Brehm, Herbert Huber, LRZ High Performance Systems Division

12 SuperMIC Intel Xeon Phi Cluster 32 Nodes 2 Xeon Ivy-Bridge processors E cores each 2.6 GHz clock frequency 2 Intel Xeon Phi coprocessors 5110P GHz Memory 64 GB host memory 2x8 GB Xeon Phi

13 Intel Xeon Phi Number of cores 60 Frequency of cores GDDR5 memory size Number of hardware threads per core SIMD vector registers Flops/cycle Theoretical peak performance L2 cache per core 1.1 GHz 8 GB 4 32 (512-bit wide) per thread context 16 (DP), 32 (SP) 1 TFlop/s (DP), 2 TFlop/s (SP) 512 kb Connection to host 6.2 GB/s

14 Nodes with Coprocessors

15 Access to SuperMIC Login to SuperMUC Login to SuperMIC ssh supermic.smuc.lrz.de Load leveler script with class phi Interactive access to nodes and coprocessors Submit batch script with sleep command. Login to compute nodes ssh i01r13??? Login to MIC coprocessors ssh i01r13???-mic0 ssh i01r13???-mic1 PPK required

16 The Compute Cube of LRZ Rückkühlwerke Hö Höchstleistungsrechner (säulenfrei) (sä Zugangsbrücke Zugangsbrücke Server/Netz Archiv/Backup Archiv/Backup Klima Klima Elektro

17 Run jobs in batch Advantages Reproducable performance Run larger jobs No need to interactive poll for resources Test queue Max 1 island, 32 nodes, 2h, 1 job in queue General queue Max 1 island, 512 nodes, 48 h Large Max 4 islands, 2048 nodes, 48 h Special Max 18 islands

18 Job Script #!/bin/bash wall_clock_limit = 00:4:00 #@ job_name = add #@ job_type = parallel #@ class = test #@ network.mpi = sn_all,not_shared,us #@ output = job$(jobid).out llsubmit job.scp Submission to batch system llq u $USER Check status of own jobs llcancel <jobid> Kill job if no longer needed #@ error = job$(jobid).out #@ node = 2 #@ total_tasks=4 #@ node_usage = not_shared #@ queue. /etc/profile cd ~/apptest/application poe appl

19 Limited CPU Hours available Please Specify job execution as tight as possible. Do not request more nodes than required. We have to pay for all allocated cores, not only the used ones. SHORT (<1sec) sequential runs can be done on the login node. Even SHORT OMP runs can be done on the login node.

20 Login to SuperMUC, Documentation First change the standard password Login via lxhalle due to restriction on connecting machines ssh No outgoing connections allowed Documentation Intel compiler: mposerxe/en-us/2011update/cpp/lin/index.htm

21 Batch Script Parameters energy_policy_tag = NONE Switch of automatic adaptation of core frequency for performance measurements #@ node = 2 #@ total_tasks= 4 #@ task_geometry = {(0,2) (1,3)} #@ tasks_per_node = 2 Limitations on combination documented at LRZ web page

22 Compiler Intel C++ icc Version 12.1 Editors vi emacs xedit

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 13 th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System x idataplex CINECA, Italy Lenovo System

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 11th CALL (T ier-0) Contributing sites and the corresponding computer systems for this call are: BSC, Spain IBM System X idataplex CINECA, Italy The site selection

More information

UAntwerpen, 24 June 2016

UAntwerpen, 24 June 2016 Tier-1b Info Session UAntwerpen, 24 June 2016 VSC HPC environment Tier - 0 47 PF Tier -1 623 TF Tier -2 510 Tf 16,240 CPU cores 128/256 GB memory/node IB EDR interconnect Tier -3 HOPPER/TURING STEVIN THINKING/CEREBRO

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 6 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx

More information

Tools for Intel Xeon Phi: VTune & Advisor Dr. Fabio Baruffa - LRZ,

Tools for Intel Xeon Phi: VTune & Advisor Dr. Fabio Baruffa - LRZ, Tools for Intel Xeon Phi: VTune & Advisor Dr. Fabio Baruffa - fabio.baruffa@lrz.de LRZ, 27.6.- 29.6.2016 Architecture Overview Intel Xeon Processor Intel Xeon Phi Coprocessor, 1st generation Intel Xeon

More information

Introduc)on to Hyades

Introduc)on to Hyades Introduc)on to Hyades Shawfeng Dong Department of Astronomy & Astrophysics, UCSSC Hyades 1 Hardware Architecture 2 Accessing Hyades 3 Compu)ng Environment 4 Compiling Codes 5 Running Jobs 6 Visualiza)on

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

n N c CIni.o ewsrg.au

n N c CIni.o ewsrg.au @NCInews NCI and Raijin National Computational Infrastructure 2 Our Partners General purpose, highly parallel processors High FLOPs/watt and FLOPs/$ Unit of execution Kernel Separate memory subsystem GPGPU

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson adrianj@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past, computers

More information

LRZ SuperMUC One year of Operation

LRZ SuperMUC One year of Operation LRZ SuperMUC One year of Operation IBM Deep Computing 13.03.2013 Klaus Gottschalk IBM HPC Architect Leibniz Computing Center s new HPC System is now installed and operational 2 SuperMUC Technical Highlights

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS)

DELIVERABLE D5.5 Report on ICARUS visualization cluster installation. John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) DELIVERABLE D5.5 Report on ICARUS visualization cluster installation John BIDDISCOMBE (CSCS) Jerome SOUMAGNE (CSCS) 02 May 2011 NextMuSE 2 Next generation Multi-mechanics Simulation Environment Cluster

More information

High Performance Computing. What is it used for and why?

High Performance Computing. What is it used for and why? High Performance Computing What is it used for and why? Overview What is it used for? Drivers for HPC Examples of usage Why do you need to learn the basics? Hardware layout and structure matters Serial

More information

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER Adrian Jackson a.jackson@epcc.ed.ac.uk @adrianjhpc Processors The power used by a CPU core is proportional to Clock Frequency x Voltage 2 In the past,

More information

OpenSees on Teragrid

OpenSees on Teragrid OpenSees on Teragrid Frank McKenna UC Berkeley OpenSees Parallel Workshop Berkeley, CA What isteragrid? An NSF sponsored computational science facility supported through a partnership of 13 institutions.

More information

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins

Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Intel Many Integrated Core (MIC) Matt Kelly & Ryan Rawlins Outline History & Motivation Architecture Core architecture Network Topology Memory hierarchy Brief comparison to GPU & Tilera Programming Applications

More information

Outline. March 5, 2012 CIRMMT - McGill University 2

Outline. March 5, 2012 CIRMMT - McGill University 2 Outline CLUMEQ, Calcul Quebec and Compute Canada Research Support Objectives and Focal Points CLUMEQ Site at McGill ETS Key Specifications and Status CLUMEQ HPC Support Staff at McGill Getting Started

More information

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes

Introduction: Modern computer architecture. The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Introduction: Modern computer architecture The stored program computer and its inherent bottlenecks Multi- and manycore chips and nodes Motivation: Multi-Cores where and why Introduction: Moore s law Intel

More information

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions

How to run applications on Aziz supercomputer. Mohammad Rafi System Administrator Fujitsu Technology Solutions How to run applications on Aziz supercomputer Mohammad Rafi System Administrator Fujitsu Technology Solutions Agenda Overview Compute Nodes Storage Infrastructure Servers Cluster Stack Environment Modules

More information

HPC Hardware Overview

HPC Hardware Overview HPC Hardware Overview John Lockman III April 19, 2013 Texas Advanced Computing Center The University of Texas at Austin Outline Lonestar Dell blade-based system InfiniBand ( QDR) Intel Processors Longhorn

More information

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014 InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment TOP500 Supercomputers, June 2014 TOP500 Performance Trends 38% CAGR 78% CAGR Explosive high-performance

More information

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop

Before We Start. Sign in hpcxx account slips Windows Users: Download PuTTY. Google PuTTY First result Save putty.exe to Desktop Before We Start Sign in hpcxx account slips Windows Users: Download PuTTY Google PuTTY First result Save putty.exe to Desktop Research Computing at Virginia Tech Advanced Research Computing Compute Resources

More information

Simulation using MIC co-processor on Helios

Simulation using MIC co-processor on Helios Simulation using MIC co-processor on Helios Serhiy Mochalskyy, Roman Hatzky PRACE PATC Course: Intel MIC Programming Workshop High Level Support Team Max-Planck-Institut für Plasmaphysik Boltzmannstr.

More information

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D. Resources Current and Future Systems Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Most likely talk to be out of date History of Top 500 Issues with building bigger machines Current and near future academic

More information

Thread and Data parallelism in CPUs - will GPUs become obsolete?

Thread and Data parallelism in CPUs - will GPUs become obsolete? Thread and Data parallelism in CPUs - will GPUs become obsolete? USP, Sao Paulo 25/03/11 Carsten Trinitis Carsten.Trinitis@tum.de Lehrstuhl für Rechnertechnik und Rechnerorganisation (LRR) Institut für

More information

Philippe Thierry Sr Staff Engineer Intel Corp.

Philippe Thierry Sr Staff Engineer Intel Corp. HPC@Intel Philippe Thierry Sr Staff Engineer Intel Corp. IBM, April 8, 2009 1 Agenda CPU update: roadmap, micro-μ and performance Solid State Disk Impact What s next Q & A Tick Tock Model Perenity market

More information

LBRN - HPC systems : CCT, LSU

LBRN - HPC systems : CCT, LSU LBRN - HPC systems : CCT, LSU HPC systems @ CCT & LSU LSU HPC Philip SuperMike-II SuperMIC LONI HPC Eric Qeenbee2 CCT HPC Delta LSU HPC Philip 3 Compute 32 Compute Two 2.93 GHz Quad Core Nehalem Xeon 64-bit

More information

The Stampede is Coming: A New Petascale Resource for the Open Science Community

The Stampede is Coming: A New Petascale Resource for the Open Science Community The Stampede is Coming: A New Petascale Resource for the Open Science Community Jay Boisseau Texas Advanced Computing Center boisseau@tacc.utexas.edu Stampede: Solicitation US National Science Foundation

More information

Computing architectures Part 2 TMA4280 Introduction to Supercomputing

Computing architectures Part 2 TMA4280 Introduction to Supercomputing Computing architectures Part 2 TMA4280 Introduction to Supercomputing NTNU, IMF January 16. 2017 1 Supercomputing What is the motivation for Supercomputing? Solve complex problems fast and accurately:

More information

Introduction to Xeon Phi. Bill Barth January 11, 2013

Introduction to Xeon Phi. Bill Barth January 11, 2013 Introduction to Xeon Phi Bill Barth January 11, 2013 What is it? Co-processor PCI Express card Stripped down Linux operating system Dense, simplified processor Many power-hungry operations removed Wider

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0) PRACE 16th Call Technical Guidelines for Applicants V1: published on 26/09/17 TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0) The contributing sites and the corresponding computer systems

More information

Advanced Parallel Programming I

Advanced Parallel Programming I Advanced Parallel Programming I Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2016 22.09.2016 1 Levels of Parallelism RISC Software GmbH Johannes Kepler University

More information

GPUs and Emerging Architectures

GPUs and Emerging Architectures GPUs and Emerging Architectures Mike Giles mike.giles@maths.ox.ac.uk Mathematical Institute, Oxford University e-infrastructure South Consortium Oxford e-research Centre Emerging Architectures p. 1 CPUs

More information

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0)

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier-0) TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 14 th CALL (T ier0) Contributing sites and the corresponding computer systems for this call are: GENCI CEA, France Bull Bullx cluster GCS HLRS, Germany Cray

More information

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters

Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters Designing Optimized MPI Broadcast and Allreduce for Many Integrated Core (MIC) InfiniBand Clusters K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy and D. K. Panda Presented by Dr. Xiaoyi

More information

Intel Architecture for HPC

Intel Architecture for HPC Intel Architecture for HPC Georg Zitzlsberger georg.zitzlsberger@vsb.cz 1st of March 2018 Agenda Salomon Architectures Intel R Xeon R processors v3 (Haswell) Intel R Xeon Phi TM coprocessor (KNC) Ohter

More information

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing

Accelerating HPC. (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing Accelerating HPC (Nash) Dr. Avinash Palaniswamy High Performance Computing Data Center Group Marketing SAAHPC, Knoxville, July 13, 2010 Legal Disclaimer Intel may make changes to specifications and product

More information

Modern CPU Architectures

Modern CPU Architectures Modern CPU Architectures Alexander Leutgeb, RISC Software GmbH RISC Software GmbH Johannes Kepler University Linz 2014 16.04.2014 1 Motivation for Parallelism I CPU History RISC Software GmbH Johannes

More information

Introduction to CUDA Programming

Introduction to CUDA Programming Introduction to CUDA Programming Steve Lantz Cornell University Center for Advanced Computing October 30, 2013 Based on materials developed by CAC and TACC Outline Motivation for GPUs and CUDA Overview

More information

NAMD Performance Benchmark and Profiling. January 2015

NAMD Performance Benchmark and Profiling. January 2015 NAMD Performance Benchmark and Profiling January 2015 2 Note The following research was performed under the HPC Advisory Council activities Participating vendors: Intel, Dell, Mellanox Compute resource

More information

the Intel Xeon Phi coprocessor

the Intel Xeon Phi coprocessor the Intel Xeon Phi coprocessor 1 Introduction about the Intel Xeon Phi coprocessor comparing Phi with CUDA the Intel Many Integrated Core architecture 2 Programming the Intel Xeon Phi Coprocessor with

More information

arxiv: v1 [physics.comp-ph] 4 Nov 2013

arxiv: v1 [physics.comp-ph] 4 Nov 2013 arxiv:1311.0590v1 [physics.comp-ph] 4 Nov 2013 Performance of Kepler GTX Titan GPUs and Xeon Phi System, Weonjong Lee, and Jeonghwan Pak Lattice Gauge Theory Research Center, CTP, and FPRD, Department

More information

LAB. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers

LAB. Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers LAB Preparing for Stampede: Programming Heterogeneous Many-Core Supercomputers Dan Stanzione, Lars Koesterke, Bill Barth, Kent Milfeld dan/lars/bbarth/milfeld@tacc.utexas.edu XSEDE 12 July 16, 2012 1 Discovery

More information

Illinois Proposal Considerations Greg Bauer

Illinois Proposal Considerations Greg Bauer - 2016 Greg Bauer Support model Blue Waters provides traditional Partner Consulting as part of its User Services. Standard service requests for assistance with porting, debugging, allocation issues, and

More information

Cluster Network Products

Cluster Network Products Cluster Network Products Cluster interconnects include, among others: Gigabit Ethernet Myrinet Quadrics InfiniBand 1 Interconnects in Top500 list 11/2009 2 Interconnects in Top500 list 11/2008 3 Cluster

More information

Intel Many Integrated Core (MIC) Architecture

Intel Many Integrated Core (MIC) Architecture Intel Many Integrated Core (MIC) Architecture Karl Solchenbach Director European Exascale Labs BMW2011, November 3, 2011 1 Notice and Disclaimers Notice: This document contains information on products

More information

Interconnect Your Future

Interconnect Your Future Interconnect Your Future Gilad Shainer 2nd Annual MVAPICH User Group (MUG) Meeting, August 2014 Complete High-Performance Scalable Interconnect Infrastructure Comprehensive End-to-End Software Accelerators

More information

Parallel Computer Architecture - Basics -

Parallel Computer Architecture - Basics - Parallel Computer Architecture - Basics - Christian Terboven 29.07.2013 / Aachen, Germany Stand: 22.07.2013 Version 2.3 Rechen- und Kommunikationszentrum (RZ) Agenda Overview:

More information

BlueGene/L (No. 4 in the Latest Top500 List)

BlueGene/L (No. 4 in the Latest Top500 List) BlueGene/L (No. 4 in the Latest Top500 List) first supercomputer in the Blue Gene project architecture. Individual PowerPC 440 processors at 700Mhz Two processors reside in a single chip. Two chips reside

More information

Symmetric Computing. SC 14 Jerome VIENNE

Symmetric Computing. SC 14 Jerome VIENNE Symmetric Computing SC 14 Jerome VIENNE viennej@tacc.utexas.edu Symmetric Computing Run MPI tasks on both MIC and host Also called heterogeneous computing Two executables are required: CPU MIC Currently

More information

Habanero Operating Committee. January

Habanero Operating Committee. January Habanero Operating Committee January 25 2017 Habanero Overview 1. Execute Nodes 2. Head Nodes 3. Storage 4. Network Execute Nodes Type Quantity Standard 176 High Memory 32 GPU* 14 Total 222 Execute Nodes

More information

Carlo Cavazzoni, HPC department, CINECA

Carlo Cavazzoni, HPC department, CINECA Introduction to Shared memory architectures Carlo Cavazzoni, HPC department, CINECA Modern Parallel Architectures Two basic architectural scheme: Distributed Memory Shared Memory Now most computers have

More information

Overview of Tianhe-2

Overview of Tianhe-2 Overview of Tianhe-2 (MilkyWay-2) Supercomputer Yutong Lu School of Computer Science, National University of Defense Technology; State Key Laboratory of High Performance Computing, China ytlu@nudt.edu.cn

More information

Co-designing an Energy Efficient System

Co-designing an Energy Efficient System Co-designing an Energy Efficient System Luigi Brochard Distinguished Engineer, HPC&AI Lenovo lbrochard@lenovo.com MaX International Conference 2018 Trieste 29.01.2018 Industry Thermal Challenges NVIDIA

More information

The Energy Challenge in HPC

The Energy Challenge in HPC ARNDT BODE Professor Arndt Bode is the Chair for Computer Architecture at the Leibniz-Supercomputing Center. He is Full Professor for Informatics at TU Mü nchen. His main research includes computer architecture,

More information

Introduc)on to Xeon Phi

Introduc)on to Xeon Phi Introduc)on to Xeon Phi ACES Aus)n, TX Dec. 04 2013 Kent Milfeld, Luke Wilson, John McCalpin, Lars Koesterke TACC What is it? Co- processor PCI Express card Stripped down Linux opera)ng system Dense, simplified

More information

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors

COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors COSC 6385 Computer Architecture - Data Level Parallelism (III) The Intel Larrabee, Intel Xeon Phi and IBM Cell processors Edgar Gabriel Fall 2018 References Intel Larrabee: [1] L. Seiler, D. Carmean, E.

More information

Genius Quick Start Guide

Genius Quick Start Guide Genius Quick Start Guide Overview of the system Genius consists of a total of 116 nodes with 2 Skylake Xeon Gold 6140 processors. Each with 18 cores, at least 192GB of memory and 800 GB of local SSD disk.

More information

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016

Analyzing the High Performance Parallel I/O on LRZ HPC systems. Sandra Méndez. HPC Group, LRZ. June 23, 2016 Analyzing the High Performance Parallel I/O on LRZ HPC systems Sandra Méndez. HPC Group, LRZ. June 23, 2016 Outline SuperMUC supercomputer User Projects Monitoring Tool I/O Software Stack I/O Analysis

More information

Introduction to HPC Numerical libraries on FERMI and PLX

Introduction to HPC Numerical libraries on FERMI and PLX Introduction to HPC Numerical libraries on FERMI and PLX HPC Numerical Libraries 11-12-13 March 2013 a.marani@cineca.it WELCOME!! The goal of this course is to show you how to get advantage of some of

More information

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012

ANSYS Fluent 14 Performance Benchmark and Profiling. October 2012 ANSYS Fluent 14 Performance Benchmark and Profiling October 2012 Note The following research was performed under the HPC Advisory Council activities Special thanks for: HP, Mellanox For more information

More information

6/14/2017. The Intel Xeon Phi. Setup. Xeon Phi Internals. Fused Multiply-Add. Getting to rabbit and setting up your account. Xeon Phi Peak Performance

6/14/2017. The Intel Xeon Phi. Setup. Xeon Phi Internals. Fused Multiply-Add. Getting to rabbit and setting up your account. Xeon Phi Peak Performance The Intel Xeon Phi 1 Setup 2 Xeon system Mike Bailey mjb@cs.oregonstate.edu rabbit.engr.oregonstate.edu 2 E5-2630 Xeon Processors 8 Cores 64 GB of memory 2 TB of disk NVIDIA Titan Black 15 SMs 2880 CUDA

More information

Submitting and running jobs on PlaFRIM2 Redouane Bouchouirbat

Submitting and running jobs on PlaFRIM2 Redouane Bouchouirbat Submitting and running jobs on PlaFRIM2 Redouane Bouchouirbat Summary 1. Submitting Jobs: Batch mode - Interactive mode 2. Partition 3. Jobs: Serial, Parallel 4. Using generic resources Gres : GPUs, MICs.

More information

The Mont-Blanc approach towards Exascale

The Mont-Blanc approach towards Exascale http://www.montblanc-project.eu The Mont-Blanc approach towards Exascale Alex Ramirez Barcelona Supercomputing Center Disclaimer: Not only I speak for myself... All references to unavailable products are

More information

The RWTH Compute Cluster Environment

The RWTH Compute Cluster Environment The RWTH Compute Cluster Environment Tim Cramer 29.07.2013 Source: D. Both, Bull GmbH Rechen- und Kommunikationszentrum (RZ) The RWTH Compute Cluster (1/2) The Cluster provides ~300 TFlop/s No. 32 in TOP500

More information

Benchmark results on Knight Landing (KNL) architecture

Benchmark results on Knight Landing (KNL) architecture Benchmark results on Knight Landing (KNL) architecture Domenico Guida, CINECA SCAI (Bologna) Giorgio Amati, CINECA SCAI (Roma) Roma 23/10/2017 KNL, BDW, SKL A1 BDW A2 KNL A3 SKL cores per node 2 x 18 @2.3

More information

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU Parallel Applications on Distributed Memory Systems Le Yan HPC User Services @ LSU Outline Distributed memory systems Message Passing Interface (MPI) Parallel applications 6/3/2015 LONI Parallel Programming

More information

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA

EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA EARLY EVALUATION OF THE CRAY XC40 SYSTEM THETA SUDHEER CHUNDURI, SCOTT PARKER, KEVIN HARMS, VITALI MOROZOV, CHRIS KNIGHT, KALYAN KUMARAN Performance Engineering Group Argonne Leadership Computing Facility

More information

Symmetric Computing. Jerome Vienne Texas Advanced Computing Center

Symmetric Computing. Jerome Vienne Texas Advanced Computing Center Symmetric Computing Jerome Vienne Texas Advanced Computing Center Symmetric Computing Run MPI tasks on both MIC and host Also called heterogeneous computing Two executables are required: CPU MIC Currently

More information

NCAR Workload Analysis on Yellowstone. March 2015 V5.0

NCAR Workload Analysis on Yellowstone. March 2015 V5.0 NCAR Workload Analysis on Yellowstone March 2015 V5.0 Purpose and Scope of the Analysis Understanding the NCAR application workload is a critical part of making efficient use of Yellowstone and in scoping

More information

NERSC. National Energy Research Scientific Computing Center

NERSC. National Energy Research Scientific Computing Center NERSC National Energy Research Scientific Computing Center Established 1974, first unclassified supercomputer center Original mission: to enable computational science as a complement to magnetically controlled

More information

Accelerated Earthquake Simulations

Accelerated Earthquake Simulations Accelerated Earthquake Simulations Alex Breuer Technische Universität München Germany 1 Acknowledgements Volkswagen Stiftung Project ASCETE: Advanced Simulation of Coupled Earthquake-Tsunami Events Bavarian

More information

Intel Xeon Phi Coprocessors

Intel Xeon Phi Coprocessors Intel Xeon Phi Coprocessors Reference: Parallel Programming and Optimization with Intel Xeon Phi Coprocessors, by A. Vladimirov and V. Karpusenko, 2013 Ring Bus on Intel Xeon Phi Example with 8 cores Xeon

More information

Description of Power8 Nodes Available on Mio (ppc[ ])

Description of Power8 Nodes Available on Mio (ppc[ ]) Description of Power8 Nodes Available on Mio (ppc[001-002]) Introduction: HPC@Mines has released two brand-new IBM Power8 nodes (identified as ppc001 and ppc002) to production, as part of our Mio cluster.

More information

Transitioning to Leibniz and CentOS 7

Transitioning to Leibniz and CentOS 7 Transitioning to Leibniz and CentOS 7 Fall 2017 Overview Introduction: some important hardware properties of leibniz Working on leibniz: Logging on to the cluster Selecting software: toolchains Activating

More information

GPU Acceleration of Matrix Algebra. Dr. Ronald C. Young Multipath Corporation. fmslib.com

GPU Acceleration of Matrix Algebra. Dr. Ronald C. Young Multipath Corporation. fmslib.com GPU Acceleration of Matrix Algebra Dr. Ronald C. Young Multipath Corporation FMS Performance History Machine Year Flops DEC VAX 1978 97,000 FPS 164 1982 11,000,000 FPS 164-MAX 1985 341,000,000 DEC VAX

More information

New User Seminar: Part 2 (best practices)

New User Seminar: Part 2 (best practices) New User Seminar: Part 2 (best practices) General Interest Seminar January 2015 Hugh Merz merz@sharcnet.ca Session Outline Submitting Jobs Minimizing queue waits Investigating jobs Checkpointing Efficiency

More information

OBTAINING AN ACCOUNT:

OBTAINING AN ACCOUNT: HPC Usage Policies The IIA High Performance Computing (HPC) System is managed by the Computer Management Committee. The User Policies here were developed by the Committee. The user policies below aim to

More information

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing High Performance Computing at UEA http://rscs.uea.ac.uk/hpc/

More information

HPC Architectures. Types of resource currently in use

HPC Architectures. Types of resource currently in use HPC Architectures Types of resource currently in use Reusing this material This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_us

More information

Our new HPC-Cluster An overview

Our new HPC-Cluster An overview Our new HPC-Cluster An overview Christian Hagen Universität Regensburg Regensburg, 15.05.2009 Outline 1 Layout 2 Hardware 3 Software 4 Getting an account 5 Compiling 6 Queueing system 7 Parallelization

More information

Using Cartesius & Lisa

Using Cartesius & Lisa Using Cartesius & Lisa Introductory course for Cartesius & Lisa Jeroen Engelberts jeroen.engelberts@surfsara.nl Consultant Supercomputing Outline SURFsara About us What we do Cartesius and Lisa Architectures

More information

Lecture 3: Intro to parallel machines and models

Lecture 3: Intro to parallel machines and models Lecture 3: Intro to parallel machines and models David Bindel 1 Sep 2011 Logistics Remember: http://www.cs.cornell.edu/~bindel/class/cs5220-f11/ http://www.piazza.com/cornell/cs5220 Note: the entire class

More information

Interconnection Network for Tightly Coupled Accelerators Architecture

Interconnection Network for Tightly Coupled Accelerators Architecture Interconnection Network for Tightly Coupled Accelerators Architecture Toshihiro Hanawa, Yuetsu Kodama, Taisuke Boku, Mitsuhisa Sato Center for Computational Sciences University of Tsukuba, Japan 1 What

More information

ECE 574 Cluster Computing Lecture 4

ECE 574 Cluster Computing Lecture 4 ECE 574 Cluster Computing Lecture 4 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 31 January 2017 Announcements Don t forget about homework #3 I ran HPCG benchmark on Haswell-EP

More information

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 28, 2011 David L. Hart, CISL

NCAR s Data-Centric Supercomputing Environment Yellowstone. November 28, 2011 David L. Hart, CISL NCAR s Data-Centric Supercomputing Environment Yellowstone November 28, 2011 David L. Hart, CISL dhart@ucar.edu Welcome to the Petascale Yellowstone hardware and software Deployment schedule Allocations

More information

Job Management on LONI and LSU HPC clusters

Job Management on LONI and LSU HPC clusters Job Management on LONI and LSU HPC clusters Le Yan HPC Consultant User Services @ LONI Outline Overview Batch queuing system Job queues on LONI clusters Basic commands The Cluster Environment Multiple

More information

Intel MIC Programming Workshop, Hardware Overview & Native Execution. IT4Innovations, Ostrava,

Intel MIC Programming Workshop, Hardware Overview & Native Execution. IT4Innovations, Ostrava, , Hardware Overview & Native Execution IT4Innovations, Ostrava, 3.2.- 4.2.2016 1 Agenda Intro @ accelerators on HPC Architecture overview of the Intel Xeon Phi (MIC) Programming models Native mode programming

More information

Intel Architecture for Software Developers

Intel Architecture for Software Developers Intel Architecture for Software Developers 1 Agenda Introduction Processor Architecture Basics Intel Architecture Intel Core and Intel Xeon Intel Atom Intel Xeon Phi Coprocessor Use Cases for Software

More information

Scalability and Classifications

Scalability and Classifications Scalability and Classifications 1 Types of Parallel Computers MIMD and SIMD classifications shared and distributed memory multicomputers distributed shared memory computers 2 Network Topologies static

More information

Intel Knights Landing Hardware

Intel Knights Landing Hardware Intel Knights Landing Hardware TACC KNL Tutorial IXPUG Annual Meeting 2016 PRESENTED BY: John Cazes Lars Koesterke 1 Intel s Xeon Phi Architecture Leverages x86 architecture Simpler x86 cores, higher compute

More information

Accelerator Programming Lecture 1

Accelerator Programming Lecture 1 Accelerator Programming Lecture 1 Manfred Liebmann Technische Universität München Chair of Optimal Control Center for Mathematical Sciences, M17 manfred.liebmann@tum.de January 11, 2016 Accelerator Programming

More information

DATARMOR: Comment s'y préparer? Tina Odaka

DATARMOR: Comment s'y préparer? Tina Odaka DATARMOR: Comment s'y préparer? Tina Odaka 30.09.2016 PLAN DATARMOR: Detailed explanation on hard ware What can you do today to be ready for DATARMOR DATARMOR : convention de nommage ClusterHPC REF SCRATCH

More information

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues

represent parallel computers, so distributed systems such as Does not consider storage or I/O issues Top500 Supercomputer list represent parallel computers, so distributed systems such as SETI@Home are not considered Does not consider storage or I/O issues Both custom designed machines and commodity machines

More information

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center

The Stampede is Coming Welcome to Stampede Introductory Training. Dan Stanzione Texas Advanced Computing Center The Stampede is Coming Welcome to Stampede Introductory Training Dan Stanzione Texas Advanced Computing Center dan@tacc.utexas.edu Thanks for Coming! Stampede is an exciting new system of incredible power.

More information

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS

Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing at UEA. Chris Collins Head of Research and Specialist Computing ITCS Introduction to High Performance Computing High Performance Computing at UEA http://rscs.uea.ac.uk/hpc/

More information

PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE SHEET) Supply and installation of High Performance Computing System

PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE SHEET) Supply and installation of High Performance Computing System INSTITUTE FOR PLASMA RESEARCH (An Autonomous Institute of Department of Atomic Energy, Government of India) Near Indira Bridge; Bhat; Gandhinagar-382428; India PART-I (B) (TECHNICAL SPECIFICATIONS & COMPLIANCE

More information

Parallel Computing. November 20, W.Homberg

Parallel Computing. November 20, W.Homberg Mitglied der Helmholtz-Gemeinschaft Parallel Computing November 20, 2017 W.Homberg Why go parallel? Problem too large for single node Job requires more memory Shorter time to solution essential Better

More information

Advanced cluster techniques with LoadLeveler

Advanced cluster techniques with LoadLeveler Advanced cluster techniques with LoadLeveler How to get your jobs to the top of the queue Ciaron Linstead 10th May 2012 Outline 1 Introduction 2 LoadLeveler recap 3 CPUs 4 Memory 5 Factors affecting job

More information

Performance Optimization of Smoothed Particle Hydrodynamics for Multi/Many-Core Architectures

Performance Optimization of Smoothed Particle Hydrodynamics for Multi/Many-Core Architectures Performance Optimization of Smoothed Particle Hydrodynamics for Multi/Many-Core Architectures Dr. Fabio Baruffa Dr. Luigi Iapichino Leibniz Supercomputing Centre fabio.baruffa@lrz.de Outline of the talk

More information