Egyptian Space Science and Technology Educational Project Based on Can-Sat Program (CLTP)

Size: px
Start display at page:

Download "Egyptian Space Science and Technology Educational Project Based on Can-Sat Program (CLTP)"

Transcription

1 Egyptian Space Science and Technology Educational Project Based on Can-Sat Program (CLTP) Samy Amin, Hassan Ali, Omar Magdy, Mohammad Khalil Aerospace Engineering Department, Cairo University. EGYPT [CanSat Training Program - 1] Space System Technology Laboratory 1

2 Table Of Contents: 1- Egyptian CanSat Training Program (CTP-1) 2- Engineering the CanSat 3- Testing and Results 4- Conclusion 5- Achievements 6- Future plans 2

3 Egyptian CanSat Training Program (CTP-1) Number of trainees: 20 (Undergraduate /Aero. Students) Venue: Aerospace and Aeronautical department Number of teams: 3 Duration: 10 days 3

4 CTP-1 working phases Announcement [Posters & Facebook & mailing list] Orientation sessions Applications (CV s) Filtrations [Interviews] Selections Teams determination Hardware purchase Laboratory preparation [Tools & Internet & Catering] CTP-1 sessions Testing 4

5 5

6 Engineering of CanSat modules CanSat model 1- CanSat 3-Launcher (satellite) 2- Parachute 6

7 CanSat Mission Profile 7

8 1- CanSat CanSat architecture Gyroscope Accelerometer Temperature Pressure Wireless Communication Module GPS Mbed Microcontroller Serial Interface Camera Receiver On-Board Camera Module 8

9 MEMS (Hardware) 9

10 Coding, Testing and System Implementation 10

11 CanSat system integration and Fabrication Hard foam Shock absorbing 11

12 2- Parachute Parachute models : 1- Hemisphere 2- Para-sheet Gap + Spill hole Para-sheet Spill hole 12

13 Formulas and Tables Used in Parachute Design Equation of Area Vs. Velocity descend and Mass M :Mass of the CanSat G :Gravitational acceleration C d :Coefficient of drag estimated or verified by tests V :The velocity of decent, A :Designing area of the parachute Coefficient of drag estimated Spill hole design Non-linear relation 13

14 3- Launcher Launcher options: 1-Amature rockets 2-Balloon 3- RC planes 4- High Building 5-Water rocket ( ) 14

15 Water rocket compartment 15

16 Water rocket test (dummy payload) 16

17 Height [m] Water rocket specifications Volume: 2L pet bottle Pressure: 8 bars Altitude (Single bottle): m {experimentally} Fins: 3 on 120 o Faring: available Water Air %: (30% - 70%) Releasing mechanism: manual Deployment mechanism: Wireless Development: a)multi tanks b)multi boosters Problems: 1)Adhesives 2)Drag Time [sec.] Without payload With 300 g payload Simulator results for 50% water ratio a b 17

18 Phase 1 Phase 2 Phase 3 Testing and Results Testing Cycle Of CanSat Ground Test Data logging Drop Test Mission Profile (Free fall) Flight Test Water Rocket 18

19 Drop test (High building-ground camera) 19

20 Drop test (High building-on body camera) 20

21 CanSat Outcomes CANTASTIC 1 st MASRY 2 nd ENKSHARIAN 3 rd 21

22 CanSat axis demonstration Z X Y 22

23 Phase 1-Sample results of Ground test (altitude) in Aerospace Dept. 23

24 Phase 2-sample results of Drop test-1(altitude) of a 30m high building 24

25 Phase 2-sample results of Drop test-1 (acceleration) of a 30m High Building 25

26 Phase-3 sample results of Flight test (altitude) of a 12m launch of Water Rocket 26

27 Results conclusion Readings are very noisy due to many reasons Filtration of sensors readings is very important for control reasons We have two filtration approaches Hardware [Gyroscope] Software [Accelerometer] 27

28 Filtration: 1-Software Filter Difference between the ACCELEREATION before and after the filtration by same DROP Test profile 28

29 Filtration: 2-Hardware Filter Sample results of Drop test #2 Azimuth angle after hardware filtration 29

30 Achievements The Egyptian CanSat has won the prize of the Best Mechanical Engineering Project of the Egyptian Engineering Day [EED 10 th round], held byieee GOLD on the 9 th September Cairo University has established the very early version of the Space activity laboratory, the SPACE SYSTEM TECHNOLOGY LABORATORY [SSTL]. 30

31 Future Plans Prepare training program CTP-2 Egypt [7 weeks from now] Mission analysis and design [7 weeks from now] Participate in International competitions: ARLISS-2012 America. Mission Idea Contest 2012 Japan. Be a UNISEC-Egypt branch. National Competitions: Made In Egypt [MIE 2012] Prepare the first Egyptian CanSat competition. Scientific activities: Rover-back [On going] Mission oriented advanced CanSat [On going] BallonSat [1 year] CubeSat [3 years] 31

32 32

33 Thank you!! Questions?! 33

S-1Rocket Program. ~the final stage in 2011~ Team Kansai Rocket Club. Team Kansai Rocket Club since 2009 ~Striving for Space & People~

S-1Rocket Program. ~the final stage in 2011~ Team Kansai Rocket Club. Team Kansai Rocket Club since 2009 ~Striving for Space & People~ S-1Rocket Program ~the final stage in 2011~ Team Kansai Rocket Club Contents Summary of the S-1 Rocket Program Result and analysis of experiments Conclusion Summary of the S-1 Rocket Program Propose of

More information

AA Simulation: Firing Range

AA Simulation: Firing Range America's Army walkthrough AA Simulation: Firing Range Firing Range This simulation serves as an introduction to uniform motion and the relationship between distance, rate, and time. Gravity is removed

More information

Stomp Rocket Lab Physics

Stomp Rocket Lab Physics Stomp Rocket Lab Physics Stomp Rockets are plastic projectiles that are launched when a bladder of air is hit or stomped with a foot. Typically the launch angle can be changed, but should be left at 90

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

PROJECTILE MOTION PURPOSE

PROJECTILE MOTION PURPOSE PURPOSE The purpose of this experiment is to study the motion of an object in two dimensions. The motion of the projectile is analyzed using Newton's laws of motion. During the motion of the projectile,

More information

Inertial measurement and realistic post-flight visualization

Inertial measurement and realistic post-flight visualization Inertial measurement and realistic post-flight visualization David Fifield Metropolitan State College of Denver Keith Norwood, faculty advisor June 28, 2007 Abstract Determining the position and orientation

More information

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter Przemys law G asior, Stanis law Gardecki, Jaros law Gośliński and Wojciech Giernacki Poznan University of

More information

NCAR/NSF GV New Automated Dropsonde System Overview

NCAR/NSF GV New Automated Dropsonde System Overview NCAR/NSF GV New Automated Dropsonde System Overview MPEX Meeting 13 December 2012 National Center for Atmospheric Research Earth Observing Lab Boulder, CO Terry Hock GV Dropsonde Team ISF - Terry Hock,

More information

Driftsonde System Overview

Driftsonde System Overview Driftsonde System Overview Zero-pressure Balloon Gondola (24 sonde capacity) 6 hours between drops Terry Hock, Hal Cole, Charlie Martin National Center for Atmospheric Research Earth Observing Lab December

More information

Amateur Rocketry Flight Data Logging Device Version II

Amateur Rocketry Flight Data Logging Device Version II Amateur Rocketry Flight Data Logging Device Version II John Litzenberger & Ben Merryman Design Requirements Document University of Colorado at Colorado Springs Table of Contents: Overview...3 Statement

More information

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate)

Name Class Date. Activity P37: Time of Flight versus Initial Speed (Photogate) Name Class Date Activity P37: Time of Flight versus Initial Speed (Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Projectile motion P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS

More information

Preliminary Design Report January 28 th, 2012

Preliminary Design Report January 28 th, 2012 EEL 4924 Electrical Engineering Design (Senior Design) Preliminary Design Report January 28 th, 2012 Project: BlueSky (Digital Skydiving altimeter and freefall computer) By: William McKaba BlueSky Page

More information

SKYAERO v User s Manual

SKYAERO v User s Manual SKYAERO v.7.6.1 User s Manual By: Armando Fuentes, Charles Hoult, Hien Tran and Michael Tong Mar 02, 2014 Table of Contents 1. Getting Started... 1 2. Input Tables... 2 2.1. Geophysics and Geodesy... 2

More information

Electronics Design Contest 2016 Wearable Controller VLSI Category Participant guidance

Electronics Design Contest 2016 Wearable Controller VLSI Category Participant guidance Electronics Design Contest 2016 Wearable Controller VLSI Category Participant guidance June 27, 2016 Wearable Controller is a wearable device that can gather data from person that wears it. Those data

More information

ceo array was used with the wire bonds between the ceo chip and the

ceo array was used with the wire bonds between the ceo chip and the 1\PPLIC/\TJON OF CCIJ lm/\gj:h.s ln IIICll.SIIOCK I:NVIHONMENT.S Kenneth Ferrisf Richard Ely,* Larry Zimmerman* ABSTRACT Charge-Coupled device (CCD) camera development has been conducted to demonstrate

More information

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots ROBOT TEAMS CH 12 Experiments with Cooperative Aerial-Ground Robots Gaurav S. Sukhatme, James F. Montgomery, and Richard T. Vaughan Speaker: Jeff Barnett Paper Focus Heterogeneous Teams for Surveillance

More information

RAPTR SAT-X. University of Northern Colorado. Conceptual Design Review. Shiely, Woods, Aken, Adamson 10/4/2011

RAPTR SAT-X. University of Northern Colorado. Conceptual Design Review. Shiely, Woods, Aken, Adamson 10/4/2011 RAPTR SAT-X Conceptual Design Review University of Northern Colorado Shiely, Woods, Aken, Adamson 10/4/2011 Mission Overview - Mission Statement The RAPTR SAT-X team intends to develop a highly reliable,

More information

mypocketqub.com an open source nano-satellite project Michael Johnson 2010 CubeSat Developers Summer Workshop

mypocketqub.com an open source nano-satellite project Michael Johnson 2010 CubeSat Developers Summer Workshop mypocketqub.com an open source nano-satellite project Michael Johnson michael@mypocketqub.com 2010 CubeSat Developers Summer Workshop a JA initiative in association with Logan, Utah, USA August 7-8, 2010

More information

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Recall The standard form, or general form, of a quadratic function is written as f(x) = ax 2 + bx + c, where a is the coefficient

More information

SAE AERO TELEMETRY SYSTEM. Catherine Kanama

SAE AERO TELEMETRY SYSTEM. Catherine Kanama SAE AERO TELEMETRY SYSTEM Catherine Kanama SAE Aero Advanced Class Competition The advanced class involves designing and building a cargo plane to simulate remotely dropping humanitarian aid packages onto

More information

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g

Free Fall. Objective. Materials. Part 1: Determining Gravitational Acceleration, g Free Fall Objective Students will work in groups to investigate free fall acceleration on the Earth. Students will measure the fundamental physical constant, g, and evaluate the dependence of free fall

More information

Rounded to the nearest tenth, for how many minutes has the airplane maintained an altitude equal to or greater than 7 metres?

Rounded to the nearest tenth, for how many minutes has the airplane maintained an altitude equal to or greater than 7 metres? Math V TS December Review Part A 1. Which of graphs below represents the equation f( x ) = 2[-2 x ] + 2? A) C) B) D) 2. The altitude f( t ) of a radio-controlled model airplane is given by the equation

More information

Large Scale Test Simulations using the Virtual Environment for Test Optimization

Large Scale Test Simulations using the Virtual Environment for Test Optimization Large Scale Test Simulations using the Virtual Environment for Test Optimization (VETO) S. E. Klenke, S. R. Heffelfinger, H. J. Bell and C. L. Shierling Sandia National Laboratories Albuquerque, New Mexico

More information

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS

EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS EXPERIMENTAL VALIDATION OF STAR-CCM+ FOR LIQUID CONTAINER SLOSH DYNAMICS Brandon Marsell a.i. solutions, Launch Services Program, Kennedy Space Center, FL 1 Agenda Introduction Problem Background Experiment

More information

52 nd FUZE CONFERENCE. Presented by: Mr. Perry Salyers

52 nd FUZE CONFERENCE. Presented by: Mr. Perry Salyers 52 nd FUZE CONFERENCE Presented by: Mr. Perry Salyers May 13-15, 2008 OUTLINE ERGM System Overview ERGM System Operation M982 System Overview M982 System Operation System Target & Excalibur Characteristics

More information

Results from the Phoenix Atmospheric Structure Experiment

Results from the Phoenix Atmospheric Structure Experiment Results from the Phoenix Atmospheric Structure Experiment Paul Withers 1 and David Catling 2 (1) Center for Space Physics, Boston University, USA (withers@bu.edu) (2) University of Washington, USA International

More information

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion:

PROJECTILE. 5) Define the terms Velocity as related to projectile motion: 6) Define the terms angle of projection as related to projectile motion: 1) Define Trajectory a) The path traced by particle in air b) The particle c) Vertical Distance d) Horizontal Distance PROJECTILE 2) Define Projectile a) The path traced by particle in air b) The particle

More information

Visual Physics - Introductory Lab Lab 0

Visual Physics - Introductory Lab Lab 0 Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

SOUNDING ROCKET TRAJECTORY SIMULATION AND OPTIMIZATION WITH ASTOS

SOUNDING ROCKET TRAJECTORY SIMULATION AND OPTIMIZATION WITH ASTOS SOUNDING ROCKET TRAJECTORY SIMULATION AND OPTIMIZATION WITH ASTOS Francesco Cremaschi (1), Sven Weikert (2), Andreas Wiegand (3), Wolfgang Jung (4), Frank Scheuerpflug (5) (1) Astos Solutions GmbH, Germany,

More information

2015/08 Hideo Nakano PAPER TUBE ROCKET (revised)

2015/08 Hideo Nakano PAPER TUBE ROCKET (revised) 2015/08 Hideo Nakano nh1886@yahoo.co.jp PAPER TUBE ROCKET (revised) Introduction The paper tube rocket consists of a tubular rocket body and a set of stabilizer fins. Teachers and students can print out

More information

Visual Physics Introductory Lab [Lab 0]

Visual Physics Introductory Lab [Lab 0] Your Introductory Lab will guide you through the steps necessary to utilize state-of-the-art technology to acquire and graph data of mechanics experiments. Throughout Visual Physics, you will be using

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

(40-455) Student Launcher

(40-455) Student Launcher 611-1415 (40-455) Student Launcher Congratulations on your purchase of the Science First student launcher. You will find Science First products in almost every school in the world. We have been making

More information

Lab 4 Projectile Motion

Lab 4 Projectile Motion b Lab 4 Projectile Motion What You Need To Know: x = x v = v v o ox = v + v ox ox + at 1 t + at + a x FIGURE 1 Linear Motion Equations The Physics So far in lab you ve dealt with an object moving horizontally

More information

Build and Test Plan: IGV Team

Build and Test Plan: IGV Team Build and Test Plan: IGV Team 2/6/2008 William Burke Donaldson Diego Gonzales David Mustain Ray Laser Range Finder Week 3 Jan 29 The laser range finder will be set-up in the lab and connected to the computer

More information

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured =

Name Period. (b) Now measure the distances from each student to the starting point. Write those 3 distances here. (diagonal part) R measured = Lesson 5: Vectors and Projectile Motion Name Period 5.1 Introduction: Vectors vs. Scalars (a) Read page 69 of the supplemental Conceptual Physics text. Name at least 3 vector quantities and at least 3

More information

HASP Payload Specification and Integration Plan

HASP Payload Specification and Integration Plan Payload Title: Measurement of Ozone Profile in the Stratosphere Using Nanocrystalline Sensor Arrays Payload Class: Small Large (circle one) Payload ID: 7 Institution: Contact Name: Contact Phone: Contact

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth Snell s Law with Microwave Optics Experiment Goals: Experimentally verify Snell s Law holds for microwaves. Lab Safety Note! Although the microwaves in this experiment

More information

Team A.E.M.B.L. Critical Design Review

Team A.E.M.B.L. Critical Design Review Critical Design Review Members: Nick Bradley, Matt Lenda, Emil Reinovsky, Spencer Sator (Student Leader), Kevin Weber GPS System Designer and Team Leader: Stephan Esterhuizen 23 March 2006 Image from http://www.pparc.ac.uk/nw/comet_hi.jpg

More information

Research and Design working characteristics of orthogonal turbine Nguyen Quoc Tuan (1), Chu Dinh Do (2), Quach Thi Son (2)

Research and Design working characteristics of orthogonal turbine Nguyen Quoc Tuan (1), Chu Dinh Do (2), Quach Thi Son (2) GSJ: VOLUME 6, ISSUE 6, JUNE 018 116 Research and Design working characteristics of orthogonal turbine Nguyen Quoc Tuan (1), Chu Dinh Do (), Quach Thi Son () (1) Institute for hydro power and renewable

More information

CRITICAL DESIGN REVIEW

CRITICAL DESIGN REVIEW STUDENTS SPACE ASSOCIATION THE FACULTY OF POWER AND AERONAUTICAL ENGINEERING WARSAW UNIVERSITY OF TECHNOLOGY CRITICAL DESIGN REVIEW November 2016 Issue no. 1 Changes Date Changes Pages/Section Responsible

More information

Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston

Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston Strapdown Inertial Navigation Technology, Second Edition D. H. Titterton J. L. Weston NavtechGPS Part #1147 Progress in Astronautics and Aeronautics Series, 207 Published by AIAA, 2004, Revised, 2nd Edition,

More information

Camera Drones Lecture 2 Control and Sensors

Camera Drones Lecture 2 Control and Sensors Camera Drones Lecture 2 Control and Sensors Ass.Prof. Friedrich Fraundorfer WS 2017 1 Outline Quadrotor control principles Sensors 2 Quadrotor control - Hovering Hovering means quadrotor needs to hold

More information

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height.

(ii) Calculate the maximum height reached by the ball. (iii) Calculate the times at which the ball is at half its maximum height. 1 Inthis question take g =10. A golf ball is hit from ground level over horizontal ground. The initial velocity of the ball is 40 m s 1 at an angle α to the horizontal, where sin α = 0.6 and cos α = 0.8.

More information

MEASURING AND MODELLING THE LONGITUDINAL MOTION OF PARAGLIDERS

MEASURING AND MODELLING THE LONGITUDINAL MOTION OF PARAGLIDERS 28 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES MEASURING AND MODELLING THE LONGITUDINAL MOTION OF PARAGLIDERS Andras Nagy*, Jozsef Rohacs* *Budapest University of Technology and Economics Department

More information

Game Application Using Orientation Sensor

Game Application Using Orientation Sensor IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 01 (January. 2014), V4 PP 46-50 www.iosrjen.org Game Application Using Orientation Sensor Soon-kak Kwon, Won-serk

More information

Gcse 9 1 Physics Pearson Qualifications Edexcel

Gcse 9 1 Physics Pearson Qualifications Edexcel GCSE 9 1 PHYSICS PEARSON QUALIFICATIONS EDEXCEL PDF - Are you looking for gcse 9 1 physics pearson qualifications edexcel Books? Now, you will be happy that at this time gcse 9 1 physics pearson qualifications

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 3.2: Sensors Jürgen Sturm Technische Universität München Sensors IMUs (inertial measurement units) Accelerometers

More information

James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA

James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA James Van Rens CEO Riegl USA, Inc. Mining Industry and UAV s combined with LIDAR Commercial UAV Las Vegas October 2015 James Van Rens CEO Riegl USA COST EFFECIENCY CONTINUUM LIDAR and IMU Partnership Technology

More information

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions

Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration. JAMIE YOUNG Senior Manager LiDAR Solutions Terrestrial GPS setup Fundamentals of Airborne LiDAR Systems, Collection and Calibration JAMIE YOUNG Senior Manager LiDAR Solutions Topics Terrestrial GPS reference Planning and Collection Considerations

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

(Capstone-High Altitude Balloon) EE 476

(Capstone-High Altitude Balloon) EE 476 CAP-HAB (Capstone-High Altitude Balloon) EE 476 Jad Lutfi Andrew Prosory Rob Hough Rob Conant Rob Hough High Altitude Research Balloon Overview Project Overview Problem Statement System Diagram Design

More information

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical

Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical Since a projectile moves in 2-dimensions, it therefore has 2 components just like a resultant vector: Horizontal Vertical With no gravity the projectile would follow the straight-line path (dashed line).

More information

Development of Formation Flight and Docking Algorithms Using the SPHERES Testbed

Development of Formation Flight and Docking Algorithms Using the SPHERES Testbed Development of Formation Flight and Docking Algorithms Using the Testbed Prof. David W. Miller MIT Allen Chen, Alvar Saenz-Otero, Mark Hilstad, David W. Miller Introduction : Synchronized Position Hold

More information

Sphero Lightning Lab Cheat Sheet

Sphero Lightning Lab Cheat Sheet Actions Tool Description Variables Ranges Roll Combines heading, speed and time variables to make the robot roll. Duration Speed Heading (0 to 999999 seconds) (degrees 0-359) Set Speed Sets the speed of

More information

Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions

Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions Name Class Date RC9 A.09B Algebra 1 STAAR EOC Review #9 Reporting Category 5: Quadratic and Other Nonlinear Functions 1. Which shows the functions correctly listed in order from widest to narrowest graph?

More information

WHAT IS IRIDIUM PRIME?

WHAT IS IRIDIUM PRIME? WHAT IS IRIDIUM PRIME? Iridium PRIME / EuroPRIME is a payload accommodation service that leverages the Iridium NEXT spacebased global mesh network, ground infrastructure, and flexible bus design. 1 Iridium

More information

Architecture of an efficient MEMS final test system Dr. Martin Brucke, SPEKTRA Dresden

Architecture of an efficient MEMS final test system Dr. Martin Brucke, SPEKTRA Dresden Architecture of an efficient MEMS final test system Dr. Martin Brucke, SPEKTRA Dresden Architecture of an efficient MEMS final test system Outline Introduction of SPEKTRA What are typical Measurement tasks

More information

Equipment Site Description

Equipment Site Description Equipment Site Description The 150 g-ton geotechnical centrifuge NEES facility is located in the basement of the Jonsson Engineering Center (JEC) of the RPI campus in Troy, NY. This building also contains

More information

Georgia Online Formative Assessment Resource (GOFAR) AG Algebra Functions Domain

Georgia Online Formative Assessment Resource (GOFAR) AG Algebra Functions Domain AG Algebra Functions Domain Name: Date: Copyright 2014 by Georgia Department of Education. Items shall not be used in a third party system or displayed publicly. Page: (1 of 21 ) 1. Which is equivalent

More information

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY

DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY DEVELOPMENT OF CAMERA MODEL AND GEOMETRIC CALIBRATION/VALIDATION OF XSAT IRIS IMAGERY Leong Keong Kwoh, Xiaojing Huang, Wee Juan Tan Centre for Remote, Imaging Sensing and Processing (CRISP), National

More information

Mission Overview Cal Poly s Design Current and future work

Mission Overview Cal Poly s Design Current and future work Click to edit Master title style Table Click of to Contents edit Master title style Mission Overview Cal Poly s Design Current and future work 2 Mission Click to Overview edit Master title style Main Mission:

More information

Calibration of Inertial Measurement Units Using Pendulum Motion

Calibration of Inertial Measurement Units Using Pendulum Motion Technical Paper Int l J. of Aeronautical & Space Sci. 11(3), 234 239 (2010) DOI:10.5139/IJASS.2010.11.3.234 Calibration of Inertial Measurement Units Using Pendulum Motion Keeyoung Choi* and Se-ah Jang**

More information

1. Labdisc Hardware Overview What s in the Pack Ports and Controls Built-in Sensors Using the Labdisc...

1. Labdisc Hardware Overview What s in the Pack Ports and Controls Built-in Sensors Using the Labdisc... Contents 1. Labdisc Hardware Overview... 1 1.1 What s in the Pack... 1 1.2 Ports and Controls... 2 1.3 Built-in Sensors... 3 1.4 Using the Labdisc... 4 1.4.1 Labdisc display... 4 1.4.2 Labdisc keys...

More information

Strapdown Inertial Navigation Technology

Strapdown Inertial Navigation Technology Strapdown Inertial Navigation Technology 2nd Edition David Titterton and John Weston The Institution of Engineering and Technology Preface xv 1 Introduction 1 1.1 Navigation 1 1.2 Inertial navigation 2

More information

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion

20/06/ Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion. 3-7 Projectile Motion 3-7 A projectile is an object moving in two dimensions under the influence of Earth's gravity; its path is a parabola. 3-7 It can be understood by analyzing the horizontal and vertical motions separately.

More information

Projectile Launched Horizontally

Projectile Launched Horizontally Projectile Launched Horizontally by Nada Saab-Ismail, PhD, MAT, MEd, IB nhsaab.weebly.com nhsaab2014@gmail.com P3.3c Explain the recoil of a projectile launcher in terms of forces and masses. P3.4e Solve

More information

AMass Tutorial: Introduction to the Java AMass applet

AMass Tutorial: Introduction to the Java AMass applet AMass Tutorial: Introduction to the 13.021 Java AMass applet The purpose of this document is to familiarize you with the 13.021 Java AMass applet. This applet can be found at http://web.mit.edu/13.021/www/software.html.

More information

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4 A 8-6 Factor. Step 1 3x 2 + 7x + 2 Step 2 Step 3 Step 4 3x 2 + 7x + 2 3x 2 + 7x + 2 Step 1 Step 2 Step 3 Step 4 Factor. 1. 3x 2 + 4x +1 = 2. 3x 2 +10x + 3 = 3. 3x 2 +13x + 4 = A 8-6 Name BDFM? Why? Factor.

More information

Surveying of Underwater Robot for Marine Exploration

Surveying of Underwater Robot for Marine Exploration IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 09 March 2016 ISSN (online): 2349-784X Surveying of Underwater Robot for Marine Exploration D. S. Vidhya Puja S Patil Assistant

More information

Screamin Streamers/Parachutes

Screamin Streamers/Parachutes Science Screamin Streamers/Parachutes 1. LEARN (First Class Session) STEP Objectives Students will be familiar with a variety of recovery systems for model rockets. Students will conduct a scientific inquiry

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

Digitalizing the Manufacturing Workplace Know-How Using Advanced Image Analysis and Other Technologies

Digitalizing the Manufacturing Workplace Know-How Using Advanced Image Analysis and Other Technologies FOR IMMEDIATE RELEASE Daikin and Hitachi Embark on Collaborative Creation Aiming to Establish a Next-Generation Production Model Utilizing IoT to Support Skill Transfer from Expert Workers Digitalizing

More information

70B. Box and Whisker Plots. Vocabulary: Mean. Median. Mode. Range. Upper Extreme. Upper Quartile. Lower Extreme. Lower Quartile. Inter-Quartile Range

70B. Box and Whisker Plots. Vocabulary: Mean. Median. Mode. Range. Upper Extreme. Upper Quartile. Lower Extreme. Lower Quartile. Inter-Quartile Range Algebra 1: Statistics Vocabulary: Mean Name: Block: 70B Median Mode Range Upper Extreme Upper Quartile Lower Extreme Lower Quartile Inter-Quartile Range Box and Whisker Plots Calculator Steps for Mean,

More information

Canadian Fuze Program. F. Côté and E. Gagnon TTCP TP-7 Workshop on Fuzes Kansas City, MO, 14 May 2010

Canadian Fuze Program. F. Côté and E. Gagnon TTCP TP-7 Workshop on Fuzes Kansas City, MO, 14 May 2010 Canadian Fuze Program F. Côté and E. Gagnon TTCP TP-7 Workshop on Fuzes Kansas City, MO, 14 May 2010 Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Presentation

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007 Math 135: Intermediate Algebra Homework 10 Solutions December 18, 007 Homework from: Akst & Bragg, Intermediate Algebra through Applications, 006 Edition, Pearson/Addison-Wesley Subject: Linear Systems,

More information

INTEGRATED TECH FOR INDUSTRIAL POSITIONING

INTEGRATED TECH FOR INDUSTRIAL POSITIONING INTEGRATED TECH FOR INDUSTRIAL POSITIONING Integrated Tech for Industrial Positioning aerospace.honeywell.com 1 Introduction We are the world leader in precision IMU technology and have built the majority

More information

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle K. Senthil Kumar, Mohammad Rasheed, and T.Anand Abstract Helicopter offers the capability of hover, slow forward movement, vertical take-off

More information

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education DIPARTIMENTO DI INGEGNERIA INDUSTRIALE Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education Mattia Mazzucato, Sergio Tronco, Andrea Valmorbida, Fabio Scibona and Enrico

More information

Module 4: Fluid Dynamics Lecture 9: Lagrangian and Eulerian approaches; Euler's acceleration formula. Fluid Dynamics: description of fluid-motion

Module 4: Fluid Dynamics Lecture 9: Lagrangian and Eulerian approaches; Euler's acceleration formula. Fluid Dynamics: description of fluid-motion Fluid Dynamics: description of fluid-motion Lagrangian approach Eulerian approach (a field approach) file:///d /Web%20Course/Dr.%20Nishith%20Verma/local%20server/fluid_mechanics/lecture9/9_1.htm[5/9/2012

More information

A short history of the PRG The first parachute inflation studies by Potvin began in 1994

A short history of the PRG The first parachute inflation studies by Potvin began in 1994 Development of a New Parachute Inflation Modeling Computer Program PIMS - Parachute Inflation Modeling Suite Gary Peek & Jean Potvin Parks College Parachute Research Group Parks College of Engineering,

More information

Appendix: To be performed during the lab session

Appendix: To be performed during the lab session Appendix: To be performed during the lab session Flow over a Cylinder Two Dimensional Case Using ANSYS Workbench Simple Mesh Latest revision: September 18, 2014 The primary objective of this Tutorial is

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

UCSD AUVSI Unmanned Aerial System Team. Joshua Egbert Shane Grant

UCSD AUVSI Unmanned Aerial System Team. Joshua Egbert Shane Grant UCSD AUVSI Unmanned Aerial System Team Joshua Egbert Shane Grant Agenda Project background and history System design overview Gimbal Stabilization Target Recognition Lessons Learned Future Work Q&A UCSD

More information

Chapter 4: Solving Linear Equations Study Guide

Chapter 4: Solving Linear Equations Study Guide 4.1: Plot Points in the Coordinate Plane Chapter 4: Solving Linear Equations Study Guide - Identify/graph ordered pairs Ex: Write the coordinates of - Identify the 4 quadrants point graphed and identify

More information

Next Generation Wireless Sensing Applications, Moving Forward

Next Generation Wireless Sensing Applications, Moving Forward October, 2009 Next Generation Wireless Sensing Applications, Moving Forward Vincent Ko Freescale Technical Sales Manager of Freescale Semiconductor, Inc. All other product or service names are the property

More information

Purpose of the experiment

Purpose of the experiment Projectile Motion PES 116 Advanced Physics Lab I Purpose of the experiment Measure the velocity of a ball using two photogates and Logger Pro. Apply the concepts of two-dimensional kinematics to predict

More information

Lab 8: Sensor Characterization Lab (Analog)

Lab 8: Sensor Characterization Lab (Analog) Objectives Lab 8: Sensor Characterization Lab (Analog) This lab introduces the methods and importance for characterizing sensors. Students will learn about how the Arduino interprets an analog signal.

More information

Inertial Navigation Systems

Inertial Navigation Systems Inertial Navigation Systems Kiril Alexiev University of Pavia March 2017 1 /89 Navigation Estimate the position and orientation. Inertial navigation one of possible instruments. Newton law is used: F =

More information

Precision Hopping/Rolling Robotic Surface Probe Based on Tensegrity Structures. BEST Lab Seminar October 7 th, 2016 Brian Cera Edward Zhu

Precision Hopping/Rolling Robotic Surface Probe Based on Tensegrity Structures. BEST Lab Seminar October 7 th, 2016 Brian Cera Edward Zhu Precision Hopping/Rolling Robotic Surface Probe Based on Tensegrity Structures BEST Lab Seminar October 7 th, 2016 Brian Cera Edward Zhu 1 Research Objectives & Mission Requirements Secondary payload to

More information

Introduction to Inertial Navigation (INS tutorial short)

Introduction to Inertial Navigation (INS tutorial short) Introduction to Inertial Navigation (INS tutorial short) Note 1: This is a short (20 pages) tutorial. An extended (57 pages) tutorial that also includes Kalman filtering is available at http://www.navlab.net/publications/introduction_to

More information

The Virtual Classroom: a Worldwide Wireless Internet Collaborative Experimental Environment

The Virtual Classroom: a Worldwide Wireless Internet Collaborative Experimental Environment The Virtual Classroom: a Worldwide Wireless Internet Collaborative Experimental Environment Max Butin 1 and Benoit Belley 2 San Jose State University, San Jose, California, 95192 Industry Advisors: Ken

More information

Datasheet 2102 SERIES TWO-AXIS POSITIONING AND RATE TABLE SYSTEM

Datasheet 2102 SERIES TWO-AXIS POSITIONING AND RATE TABLE SYSTEM Datasheet 2102 SERIES TWO-AXIS POSITIONING AND RATE TABLE SYSTEM FEATURES Position Accuracy: ± 30 arc seconds (both axes) Rate Accuracy: ± 0.01% Max Rate (varies depending on axis configuration): Inner

More information

CBSE Class 10 th Maths Solved Practice Paper 2015 Set 1

CBSE Class 10 th Maths Solved Practice Paper 2015 Set 1 1 PREFACE PREFACE The Practice Paper is a product of CBSE Class 10th Exam experts of jagranjosh. com, an online educational portal of Dainik Jagran. After a round analysis for the previous three years

More information

AN IMPROVED FLOW CHANNEL DESIGN FOR FILM AND SHEET EXTRUSION DIES

AN IMPROVED FLOW CHANNEL DESIGN FOR FILM AND SHEET EXTRUSION DIES N IMPROVED FLOW CHNNEL DESIGN FOR FILM ND SHEET EXTRUSION DIES Masaki Ueda 1, Makoto Iwamura 2 and Hideki Tomiyama 2 1 The Japan Steel Works, LTD., Hiroshima Research Laboratory, Hiroshima, Japan 2 The

More information

Introduction to 3D Machine Vision

Introduction to 3D Machine Vision Introduction to 3D Machine Vision 1 Many methods for 3D machine vision Use Triangulation (Geometry) to Determine the Depth of an Object By Different Methods: Single Line Laser Scan Stereo Triangulation

More information

HASP Student Payload Interface Manual

HASP Student Payload Interface Manual HASP Student Payload Interface Manual Version 02.08.08 1 I. Introduction This document describes the basic features of your HASP payload mounting plate and provides information on the mechanical, electrical,

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Physics 251 Laboratory Introduction to Spreadsheets

Physics 251 Laboratory Introduction to Spreadsheets Physics 251 Laboratory Introduction to Spreadsheets Pre-Lab: Please do the lab-prep exercises on the web. Introduction Spreadsheets have a wide variety of uses in both the business and academic worlds.

More information