Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT

Size: px
Start display at page:

Download "Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT"

Transcription

1 1 Lecture 5: Computing Platforms Asbjørn Djupdal ARM Norway, IDI NTNU 2013

2 2 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug systems JTAG Logic analyzers

3 3 The bus A bus is a collection of wires Provide mechanisms for data transfer, control and signaling Multiplexing is possible The rules that governs the communication between two devices is called a protocol The master initiates transfers, slaves respond CPU Mem I/O control bus address bus data bus

4 4 Typical bus signals Address bus: 2n wires specifying an address Data bus: 2m wires specifying a data word, often bidirectional Control bus: Various wires for managing the bus protocol enq, ack, rw, irq,... CPU Mem I/O control bus address bus data bus

5 5 Bidirectional busses How to design a bus that several devices can drive? Must avoid driving the same wire to both 0 and 1 (short circuit) at the same time Solutions: Tristate buffers Pull-up resistors and open collector (drain) Vdd shared wire shared wire in1 en2 in2 gnd en1 gnd in1 in2

6 6 Timing diagrams Timing diagrams can be used to show how the bus protocol works CLK nsig SIG BUS 1000 XXXX time

7 7 Terminology Active high System takes action on logical 1 Active low System takes action on a logical 0 Offers increased immunity to electrical noise Typical notation: nsignal, SIGNAL' (e.g nirq, IRQ') Rising edge Falling edge Not driven CLK nsig SIG BUS time

8 8 Bus protocol Four-cycle handshake: Read 3 1 enq 2 4 ack

9 9 Protocol state machine req = 1 ack ack = 0 0 req 1 1 req = 0 ack = 1 ack 1 req 0 Master Slave

10 10 Bus protocol Four-cycle handshake: Write 1 4 enq 2 3 ack

11 11 Typical asynchronous bus access R/W ENQ ADRS nack' DATA read write time

12 12 Timing constraints Minimum time between two events 20 ns

13 13 Origin of timing constraints Control signals needs to be read by the receiver D-latches often used on inputs to avoid synchronization problems Clocked busses have D-flipflops Latches and flipflops get undefined results if inputs change at the wrong time ts: setup time th: hold time tco: clock to output time CLK D valid next Q ts th tco D Q

14 14 Typical synchronous bus access clock R/W enq adrs req data read write time

15 15 Are handshakes always necessary? Only when response time cannot be guaranteed in advance Data dependent delay Component variations If you know the delay, a handshake is not needed Synchronous bus

16 16 Bus access, no handshake clock R/W Address enable adrs data read write time

17 17 Wait states Only for synchronous busses A device may not be able to deliver data on the next clock cycle CPU must wait for data to be ready Bus cycles without activity is called wait states

18 18 Burst transfer Some busses support transferring multiple words in one request Saves lots of time wasted on initiating requests multiple times clock burst Address enable adrs data

19 19 Bus masters The bus master can initiate traffic on the bus CPU is always a bus master Can have more than one: Multiple CPUs DMA units An arbitration mechanism must be part of the bus spec to handle multiple master

20 20 Direct Memory Access (DMA) DMA provides parallelism on bus by controlling transfers without using the CPU I/O memory CPU DMA

21 21 DMA operation CPU sets up DMA transfer Start address Length Transfer block length Style of transfer DMA controller performs transfer, interrupt when done CPU and DMA can not use the bus at the same time CPU have caches and might not need much access to the bus Arbitration mechanism might be cycle stealing : CPU stalls the DMA unit while using the bus

22 22 Bus hierarchy Low Speed Device 1 Bridge CPU Memory High Speed Device 1 DMA controller Low Speed Device 2 Bus performance limited by the slowest device Solution: Hierarchy of busses

23 23 ARM busses Typically used on-chip ARM cores connect to the various ARM busses AMBA (Advanced Microcontroller Bus Architecture) Open standard Many compatible devices (all ARM devices) Several variants Advanced Peripherals Bus (APB) Advanced High-performance Bus (AHB) Advanced extensible Interface (AXI)

24 24 ARM bus hierarchy memory AXI interconnect intr ctrl DMA controller bus interface CPU USB AHB bus GPU bus interface APB bus LED controller

25 25 APB Simple Synchronous Allows wait states

26 26 AHB Medium complexity Allows burst transfer

27 27 AXI High performance High complexity Independent channels Read address Read data Write address Write data Write response Multiple outstanding requests Out of order transactions

28 28 Device interfacing Often need to use components from various sources Glueless interface Device is designed to work with the bus used by your project Glue logic Needed when device interface is not compatible with your bus Either custom made (FPGA) or standard components Many bus standards for on-board peripherals exists I2C SPI

29 29 I2C Inter-Integrated Circuit bus Simple, both HW and SW Two wires (clk and data) with pull-up Low speed Typical applications: RTC Low speed DACs and ADCs Reading HW monitors and sensors Vdd SCL SDA master slave slave slave

30 30 I2C Each slave has a 7 bit address Master starts clock pulls SDA low (start bit) sends 7 bit slave address on SDA sends R/W bit Slave responds by pulling SDA low Data transfer starts Vdd SCL SDA master slave slave slave

31 31 I2C Slaves may introduce wait states Pulls SCL low while busy Master must stall transfer while SCL is low Vdd SCL SDA master slave slave slave

32 32 I2C Supports multiple masters Deterministic arbitration mechanism Two masters starts transmitting at the same time The first that sees SDA have a different value than expected gives up and retries later Vdd SCL SDA master slave slave slave

33 33 SPI Slave Serial Peripheral Interface bus Four wires Simple HW and SW Higher throughput than I2C Applications: EEPROMs Flash LCD SD cards nss Slave nss SCLK MOSI Master MISO Slave nss

34 34 Secure Digital Peripheral bus for Flash memory cards (SD) and various IO devices (SDIO) Well defined protocol, both on physical and packet level Can be operated in SPI mode All SPI controllers can be used to communicate with SD(IO) cards Higher speed is possible in SD mode

35 35 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug systems JTAG Logic analyzers

36 36 Timers and counters Very similar A Timer is incremented by a clock signal A counter is incremented by an occasional signal Many different behaviours May have interrupt on rollover May have interrupt when reaching a set value Count up or down

37 37 Watchdog timer Timer which is periodicalily reset by system software If not reset within a set time, it generates an interrupt or resets the host Purpose: Reset a system automatically if it hangs interrupt host CPU reset watchdog timer

38 38 Interfacing the digital world General Purpose IO (GPIO) Most microcontrollers have GPIO pins that can be configured as inputs or outputs Input pins can be read by SW Output pins can be set to 0 or 1 by SW Often possible to get interrupts when input pins change state Very useful LED control Switch input 7 segment display Bit bang (low speed) busses +V GPIO output pin

39 39 Bit banging Many slow busses can be driven by GPIO pins, with protocol entirely controlled by SW Useful in many embedded contexts where the appropriate bus controller is not available in the chosen microcontroller Examples: I2C SPI SD ATA Bit banging is useful, but inefficient Typically needs the CPUs full attention while communicating

40 40 Interfacing the analog world Analog to digital conversion (ADC) Samples an analog signal and converts it to a digital value I.e voltage on input pin is converted to a digital number, to be read by the CPU Used e.g to digitize sound Digital to analog conversion (DAC) Digital number is converted to a voltage on the output pin Used e.g. to play sounds

41 41 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug systems JTAG Logic analyzers

42 42 RAM Random access memory: Can retrieve from a random location at any time (as opposed to sequential access) Types: Static RAM: 6 transistors (two inverters and two access transistors) Stores value until powerdown Fast, big, used in cache and small embedded systems Dynamic RAM: Value stored in a capacitor Must be refreshed periodically Used in large off-chip memory

43 43 DRAM array 1. Precharge bitlines 2. Open row Sense amps helps drive bitlines high or low 3. Latch in row 4. Mux out wanted column

44 44 DRAM Rows Banks Interfaces: DRAM: Asynchronous bus interface SDRAM: Synchronous bus interface DDR SDRAM: Syncrhonous bus interface with data transfer on both rising and falling edge Need DRAM controller Performance DRAM Row address Column address Row Buffer Multiple banks Multiple channels

45 45 SDRAM transfer Clock nras ncas Adrs Row Col Data read write time

46 46 Memory request scheduling Rows Queue (Bank, Row, Column): Out-of-order In-order 1 A 1 R P 1 A A R R P Banks DRAM P A R P Row Buffer A R R 4 cycles saved P A R R P

47 47 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug systems JTAG Logic analyzers

48 48 Adding custom logic to a board Application Specific Integrated Circuits (ASICs) Design your own chip Expensive Takes time and money Field Programmable Gate Arrays (FPGAs) General purpose, configurable logic chip Can implement any kind of digital logic Exists in many different sizes Much cheaper than ASIC (for low volumes) Faster and simpler to design for Lower performance than ASIC using equivalent process technology

49 49 Field Programmable Gate Arrays

50 50 Field Programmable Gate Arrays

51 51 Field Programmable Gate Arrays

52 52 Field Programmable Gate Arrays

53 53 Designing for FPGAs Hardware Description Language (HDL) Textual specification of which flipflops and gates are needed, and how to connect them The FPGA tool flow can transform the HDL file and automatically synthesize, place and route and produce the final FPGA configuration file. Digital design with HDL: Looks like programming, but is not Just as for programming: Takes years to master

54 54 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug systems JTAG Logic analyzers

55 55 HW prototype Evaluation boards are very useful Includes CPU, memory, some I/O devices Manufacturer often provides the design files which can be helpful when designing a custom board Many evaluation boards provide prototyping areas with access to various signals Easy to add new HW modules

56 56 Development and debugging Use a host system to prepare software for target system target system host system

57 57 Host based tools Cross compilers Compiles code on host for target system Cross debugger Displays target state, allows target system to be controlled (single stepping, etc) GDB target system host system

58 58 Software debuggers A monitor program residing on the target provides basic debugger functions Debugger should have a minimal footprint in memory User program must be careful not to destroy the debugger SW itself GDB target system host system

59 59 Breakpoints A breakpoint allows the user to stop execution, examine system state, and change state Replace the breakpointed instruction with a subroutine call to the monitor program Must preserve state, just like an interrupt handler 0x400 0x404 0x408 0x40c MUL r4,r6,r6 ADD r2,r2,r4 ADD r0,r0,#1 B loop uninstrumented code 0x400 0x404 0x408 0x40c MUL r4,r6,r6 ADD r2,r2,r4 ADD r0,r0,#1 BL bkpoint code with breakpoint

60 60 Using HW for debugging Necessary if things goes wrong even before the SW debugger loads LEDs Very useful for simple debugging Most boards provide one or more LEDs connected to some GPIO pins Your custom HW prototype should also include LEDs The printf() of embedded systems Starting point when nothing else works Fallback when all else fails

61 61 In Circuit Emulators (ICE) Many microcontrollers have hardware support for debugging Can connect a special HW device through a debug port which can Read state Change state Single step Requires no SW support on the target Can often interface with your typical debugger (gdb) GDB ICE target system host system

62 62 JTAG (Joint Test Action Group) IEEE standard for debug access to various HW CPUs FPGAs... Useful for Boundary scan (manufacture testing) Read out state Program flash Provide HW debugging access to CPUs Many non-standard extensions JTAG port GDB ICE Often requires vendors own JTAG HW adapter and SW for full functionality target system host system

63 63 Logic analyzers Not everything can be debugged properly with debuggers (SW or HW) External bus behaviour How various components on the board talks together Solution: Logic analyzer or Oscilloscope Oscilloscope provides full analog waveform of a signal on the board If you suspect a logical fault, not a signal quality fault, a logic analyzer is a better choice

64 64 Logic analyzers An array of low-grade oscilloscopes Displays 0 or 1 instead of the actual voltage Samples all inputs at regular intervals Based on internal clock or external clock Presents the values in a nice timing diagram on-screen Logic analyzers often understands many bus protocols and displays data properly according to protocol

65 65 The hardware lab

66 66 Next lecture Next week Guest lecturer Snorre Aunet (IET) Low power design on the physical level

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus.

The Embedded computing platform. Four-cycle handshake. Bus protocol. Typical bus signals. Four-cycle example. CPU bus. The Embedded computing platform CPU bus. Memory. I/O devices. CPU bus Connects CPU to: memory; devices. Protocol controls communication between entities. Bus protocol Determines who gets to use the bus

More information

I/O Devices & Debugging. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

I/O Devices & Debugging. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University I/O Devices & Debugging Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu I/O Devices Jasmine Block Diagram ICE3028: Embedded Systems Design (Spring

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Embedded Systems and Software. Serial Interconnect Buses I 2 C (SMB) and SPI

Embedded Systems and Software. Serial Interconnect Buses I 2 C (SMB) and SPI Embedded Systems and Software Serial Interconnect Buses I 2 C (SMB) and SPI I2C, SPI, etc. Slide 1 Provide low-cost i.e., low wire/pin count connection between IC devices There are many of serial bus standards

More information

Lecture 25 March 23, 2012 Introduction to Serial Communications

Lecture 25 March 23, 2012 Introduction to Serial Communications Lecture 25 March 23, 2012 Introduction to Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Asynchronous Serial (e.g., SCI, RS-232) Synchronous

More information

Development and research of different architectures of I 2 C bus controller. E. Vasiliev, MIET

Development and research of different architectures of I 2 C bus controller. E. Vasiliev, MIET Development and research of different architectures of I 2 C bus controller E. Vasiliev, MIET I2C and its alternatives I²C (Inter-Integrated Circuit) is a multi-master serial computer bus invented by Philips

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

Computing platforms. Design methodology. Consumer electronics architectures. System-level performance and power analysis.

Computing platforms. Design methodology. Consumer electronics architectures. System-level performance and power analysis. Computing platforms Design methodology. Consumer electronics architectures. System-level performance and power analysis. Evaluation boards Designed by CPU manufacturer or others. Includes CPU, memory,

More information

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness

Mark Redekopp, All rights reserved. EE 352 Unit 10. Memory System Overview SRAM vs. DRAM DMA & Endian-ness EE 352 Unit 10 Memory System Overview SRAM vs. DRAM DMA & Endian-ness The Memory Wall Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Interconnects, Memory, GPIO

Interconnects, Memory, GPIO Interconnects, Memory, GPIO Dr. Francesco Conti f.conti@unibo.it Slide contributions adapted from STMicroelectronics and from Dr. Michele Magno, others Processor vs. MCU Pipeline Harvard architecture Separate

More information

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design

ECE 1160/2160 Embedded Systems Design. Midterm Review. Wei Gao. ECE 1160/2160 Embedded Systems Design ECE 1160/2160 Embedded Systems Design Midterm Review Wei Gao ECE 1160/2160 Embedded Systems Design 1 Midterm Exam When: next Monday (10/16) 4:30-5:45pm Where: Benedum G26 15% of your final grade What about:

More information

Overview of Microcontroller and Embedded Systems

Overview of Microcontroller and Embedded Systems UNIT-III Overview of Microcontroller and Embedded Systems Embedded Hardware and Various Building Blocks: The basic hardware components of an embedded system shown in a block diagram in below figure. These

More information

Chapter 5 Internal Memory

Chapter 5 Internal Memory Chapter 5 Internal Memory Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM) Read-write memory Electrically, byte-level Electrically Volatile Read-only memory (ROM) Read-only

More information

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this?

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this? Introduction the Serial Communications Huang Sections 9.2, 10.2, 11.2 SCI Block User Guide SPI Block User Guide IIC Block User Guide o Parallel vs Serial Communication o Synchronous and Asynchronous Serial

More information

Introduction to I2C & SPI. Chapter 22

Introduction to I2C & SPI. Chapter 22 Introduction to I2C & SPI Chapter 22 Issues with Asynch. Communication Protocols Asynchronous Communications Devices must agree ahead of time on a data rate The two devices must also have clocks that are

More information

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications o Asynchronous Serial (SCI, RS-232) o Synchronous Serial (SPI, IIC) The MC9S12

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

BUS BASED COMPUTER SYSTEM

BUS BASED COMPUTER SYSTEM UNIT-3 BUS BASED COMPUTER SYSTEM 3.1 THE CPU BUS A computer system encompasses much more than the CPU; it also includes memory and I/O devices. The bus is the mechanism by which the CPU communicates with

More information

Product Series SoC Solutions Product Series 2016

Product Series SoC Solutions Product Series 2016 Product Series Why SPI? or We will discuss why Serial Flash chips are used in many products. What are the advantages and some of the disadvantages. We will explore how SoC Solutions SPI and QSPI IP Cores

More information

PARALLEL COMMUNICATIONS

PARALLEL COMMUNICATIONS Parallel Data Transfer Suppose you need to transfer data from one HCS12 to another. How can you do this? You could connect PORTA of the sending computer (set up as an output port) to PORTA of the receiving

More information

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition

Organization. 5.1 Semiconductor Main Memory. William Stallings Computer Organization and Architecture 6th Edition William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory 5.1 Semiconductor Main Memory 5.2 Error Correction 5.3 Advanced DRAM Organization 5.1 Semiconductor Main Memory

More information

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory

William Stallings Computer Organization and Architecture 6th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 6th Edition Chapter 5 Internal Memory Semiconductor Memory Types Semiconductor Memory RAM Misnamed as all semiconductor memory is random access

More information

Growing Together Globally Serial Communication Design In Embedded System

Growing Together Globally Serial Communication Design In Embedded System Growing Together Globally Serial Communication Design In Embedded System Contents Serial communication introduction......... 01 The advantages of serial design......... 02 RS232 interface......... 04 RS422

More information

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013

A Closer Look at the Epiphany IV 28nm 64 core Coprocessor. Andreas Olofsson PEGPUM 2013 A Closer Look at the Epiphany IV 28nm 64 core Coprocessor Andreas Olofsson PEGPUM 2013 1 Adapteva Achieves 3 World Firsts 1. First processor company to reach 50 GFLOPS/W 3. First semiconductor company

More information

Lecture 10: Review lecture. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT4258.

Lecture 10: Review lecture. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT4258. 1 Lecture 10: Review lecture Asbjørn Djupdal ARM Norway, IDI NTNU 2013 2 Lecture overview Exam information Curriculum overview Other courses 3 Exam information May 29, 09:00 Length: 3 hours Allowed aids:

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Ron Dreslinski University of Michigan Lecture 4: Bit of assembly, Memory-mapped I/O, APB January 16, 2018 1 Admin HW2 Due Thursday. HW1 answers posted as

More information

Introduction the Serial Communications Huang Sections 9.2, 10.2 SCI Block User Guide SPI Block User Guide

Introduction the Serial Communications Huang Sections 9.2, 10.2 SCI Block User Guide SPI Block User Guide Introduction the Serial Communications Huang Sections 9.2,.2 SCI Block User Guide SPI Block User Guide Parallel Data Transfer Suppose you need to transfer data from one HCS2 to another. How can you do

More information

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang,

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang, Network Embedded Systems Sensor Networks Fall 2013 Hardware Marcus Chang, mchang@cs.jhu.edu 1 Embedded Systems Designed to do one or a few dedicated and/or specific functions Embedded as part of a complete

More information

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved.

Internal Memory. Computer Architecture. Outline. Memory Hierarchy. Semiconductor Memory Types. Copyright 2000 N. AYDIN. All rights reserved. Computer Architecture Prof. Dr. Nizamettin AYDIN naydin@yildiz.edu.tr nizamettinaydin@gmail.com Internal Memory http://www.yildiz.edu.tr/~naydin 1 2 Outline Semiconductor main memory Random Access Memory

More information

A First Look at Microprocessors

A First Look at Microprocessors A First Look at Microprocessors using the The General Prototype Computer (GPC) model Part 3 CPU Ecosystem CPUs by themselves cannot make a complete system they need certain other peripherals, or support

More information

Introduction to ARM LPC2148 Microcontroller

Introduction to ARM LPC2148 Microcontroller Introduction to ARM LPC2148 Microcontroller Dr.R.Sundaramurthy Department of EIE Pondicherry Engineering College Features of LPC2148 in a Nut Shell CPU = ARM 7 Core Word Length = 32 Bit ROM = 512 KB RAM

More information

ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview

ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview ARM Cortex-M4 Architecture and Instruction Set 1: Architecture Overview M J Brockway January 25, 2016 UM10562 All information provided in this document is subject to legal disclaimers. NXP B.V. 2014. All

More information

Designing Embedded Processors in FPGAs

Designing Embedded Processors in FPGAs Designing Embedded Processors in FPGAs 2002 Agenda Industrial Control Systems Concept Implementation Summary & Conclusions Industrial Control Systems Typically Low Volume Many Variations Required High

More information

Computer Organization. 8th Edition. Chapter 5 Internal Memory

Computer Organization. 8th Edition. Chapter 5 Internal Memory William Stallings Computer Organization and Architecture 8th Edition Chapter 5 Internal Memory Semiconductor Memory Types Memory Type Category Erasure Write Mechanism Volatility Random-access memory (RAM)

More information

Copyright 2016 Xilinx

Copyright 2016 Xilinx Zynq Architecture Zynq Vivado 2015.4 Version This material exempt per Department of Commerce license exception TSU Objectives After completing this module, you will be able to: Identify the basic building

More information

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006

Product Technical Brief S3C2413 Rev 2.2, Apr. 2006 Product Technical Brief Rev 2.2, Apr. 2006 Overview SAMSUNG's is a Derivative product of S3C2410A. is designed to provide hand-held devices and general applications with cost-effective, low-power, and

More information

EMBEDDED SYSTEMS COURSE CURRICULUM

EMBEDDED SYSTEMS COURSE CURRICULUM On a Mission to Transform Talent EMBEDDED SYSTEMS COURSE CURRICULUM Table of Contents Module 1: Basic Electronics and PCB Software Overview (Duration: 1 Week)...2 Module 2: Embedded C Programming (Duration:

More information

Memory System Overview. DMA & Endian-ness. Technology. Architectural. Problem: The Memory Wall

Memory System Overview. DMA & Endian-ness. Technology. Architectural. Problem: The Memory Wall The Memory Wall EE 357 Unit 13 Problem: The Memory Wall Processor speeds have been increasing much faster than memory access speeds (Memory technology targets density rather than speed) Large memories

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Branden Ghena University of Michigan Today Memory-Mapped I/O Example Bus with Memory-Mapped I/O Bus Architectures AMBA APB Lecture 4: Memory-Mapped I/O,

More information

Raspberry Pi - I/O Interfaces

Raspberry Pi - I/O Interfaces ECE 1160/2160 Embedded Systems Design Raspberry Pi - I/O Interfaces Wei Gao ECE 1160/2160 Embedded Systems Design 1 I/O Interfaces Parallel I/O and Serial I/O Parallel I/O: multiple input/output simultaneously

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet HZX-51822-16N03 Bluetooth 4.0 Low Energy Module Datasheet SHEN ZHEN HUAZHIXIN TECHNOLOGY LTD 2017.7 NAME : Bluetooth 4.0 Low Energy Module MODEL NO. : HZX-51822-16N03 VERSION : V1.0 1.Revision History

More information

Designing with ALTERA SoC Hardware

Designing with ALTERA SoC Hardware Designing with ALTERA SoC Hardware Course Description This course provides all theoretical and practical know-how to design ALTERA SoC devices under Quartus II software. The course combines 60% theory

More information

In this section, we are going to cover the Silicon Labs CP240x family features.

In this section, we are going to cover the Silicon Labs CP240x family features. In this section, we are going to cover the Silicon Labs CP240x family features. 1 We are going to look at the new CP240x devices in this module. We will first take a look at the high level block diagram

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Branden Ghena University of Michigan Lecture 4: Memory-Mapped I/O, Bus Architectures September 11, 2014 Slides developed in part by Mark Brehob & Prabal

More information

Serial Peripheral Interface. What is it? Basic SPI. Capabilities. Protocol. Pros and Cons. Uses

Serial Peripheral Interface. What is it? Basic SPI. Capabilities. Protocol. Pros and Cons. Uses Serial Peripheral Interface What is it? Basic SPI Capabilities Protocol Serial Peripheral Interface http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/ SPI_single_slave.svg/350px-SPI_single_slave.svg.png

More information

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006

Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Product Technical Brief S3C2412 Rev 2.2, Apr. 2006 Overview SAMSUNG's S3C2412 is a Derivative product of S3C2410A. S3C2412 is designed to provide hand-held devices and general applications with cost-effective,

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 7 Design of Microprocessor-Based Systems Matt Smith University of Michigan Serial buses, digital design Material taken from Brehob, Dutta, Le, Ramadas, Tikhonov & Mahal 1 Timer Program //Setup Timer

More information

MICROPROCESSOR BASED SYSTEM DESIGN

MICROPROCESSOR BASED SYSTEM DESIGN MICROPROCESSOR BASED SYSTEM DESIGN Lecture 5 Xmega 128 B1: Architecture MUHAMMAD AMIR YOUSAF VON NEUMAN ARCHITECTURE CPU Memory Execution unit ALU Registers Both data and instructions at the same system

More information

SECTION 2 SIGNAL DESCRIPTION

SECTION 2 SIGNAL DESCRIPTION SECTION 2 SIGNAL DESCRIPTION 2.1 INTRODUCTION Figure 2-1 displays the block diagram of the MCF5206 along with the signal interface. This section describes the MCF5206 input and output signals. The descriptions

More information

Buses. Maurizio Palesi. Maurizio Palesi 1

Buses. Maurizio Palesi. Maurizio Palesi 1 Buses Maurizio Palesi Maurizio Palesi 1 Introduction Buses are the simplest and most widely used interconnection networks A number of modules is connected via a single shared channel Microcontroller Microcontroller

More information

McMaster University Embedded Systems. Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016

McMaster University Embedded Systems. Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016 McMaster University Embedded Systems Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016 Serial Peripherals I2C Inter-IC Bus X/Y Coord. RGB data LCD config controller LCD data controller

More information

Am186ER/Am188ER AMD continues 16-bit innovation

Am186ER/Am188ER AMD continues 16-bit innovation Am186ER/Am188ER AMD continues 16-bit innovation 386-Class Performance, Enhanced System Integration, and Built-in SRAM Am186ER and Am188ER Am186 System Evolution 80C186 Based 3.37 MIP System Am186EM Based

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Mark Brehob University of Michigan Timers Material taken from Dreslinski, Dutta, Le, Ramadas, Smith, Tikhonov & Mahal 1 Agenda A bit on timers Project overview

More information

Part 1 Using Serial EEPROMs

Part 1 Using Serial EEPROMs Part 1 Using Serial EEPROMs copyright 1997, 1999 by Jan Axelson If you have a project that needs a modest amount of nonvolatile, read/write memory, serial EEPROM may be the answer. These tiny and inexpensive

More information

Design with Microprocessors

Design with Microprocessors Design with Microprocessors Lecture 12 DRAM, DMA Year 3 CS Academic year 2017/2018 1 st semester Lecturer: Radu Danescu The DRAM memory cell X- voltage on Cs; Cs ~ 25fF Write: Cs is charged or discharged

More information

Arduino Uno R3 INTRODUCTION

Arduino Uno R3 INTRODUCTION Arduino Uno R3 INTRODUCTION Arduino is used for building different types of electronic circuits easily using of both a physical programmable circuit board usually microcontroller and piece of code running

More information

Chapter 6 Storage and Other I/O Topics

Chapter 6 Storage and Other I/O Topics Department of Electr rical Eng ineering, Chapter 6 Storage and Other I/O Topics 王振傑 (Chen-Chieh Wang) ccwang@mail.ee.ncku.edu.tw ncku edu Feng-Chia Unive ersity Outline 6.1 Introduction 6.2 Dependability,

More information

Spiral 2-9. Tri-State Gates Memories DMA

Spiral 2-9. Tri-State Gates Memories DMA 2-9.1 Spiral 2-9 Tri-State Gates Memories DMA 2-9.2 Learning Outcomes I understand how a tri-state works and the rules for using them to share a bus I understand how SRAM and DRAM cells perform reads and

More information

From Datasheets to Digital Logic. synthesizing an FPGA SPI slave from the gates

From Datasheets to Digital Logic. synthesizing an FPGA SPI slave from the gates From Datasheets to Digital Logic synthesizing an FPGA SPI slave from the gates Joshua Vasquez March 26, 2015 The Road Map Top-Level Goal Motivation What is SPI? SPI Topology SPI Wiring SPI Protocol* Defining

More information

Memory Systems for Embedded Applications. Chapter 4 (Sections )

Memory Systems for Embedded Applications. Chapter 4 (Sections ) Memory Systems for Embedded Applications Chapter 4 (Sections 4.1-4.4) 1 Platform components CPUs. Interconnect buses. Memory. Input/output devices. Implementations: System-on-Chip (SoC) vs. Multi-Chip

More information

SEMICON Solutions. Bus Structure. Created by: Duong Dang Date: 20 th Oct,2010

SEMICON Solutions. Bus Structure. Created by: Duong Dang Date: 20 th Oct,2010 SEMICON Solutions Bus Structure Created by: Duong Dang Date: 20 th Oct,2010 Introduction Buses are the simplest and most widely used interconnection networks A number of modules is connected via a single

More information

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director

AVR XMEGA TM. A New Reference for 8/16-bit Microcontrollers. Ingar Fredriksen AVR Product Marketing Director AVR XMEGA TM A New Reference for 8/16-bit Microcontrollers Ingar Fredriksen AVR Product Marketing Director Kristian Saether AVR Product Marketing Manager Atmel AVR Success Through Innovation First Flash

More information

Embedded Applications. COMP595EA Lecture03 Hardware Architecture

Embedded Applications. COMP595EA Lecture03 Hardware Architecture Embedded Applications COMP595EA Lecture03 Hardware Architecture Microcontroller vs Microprocessor Microprocessor is a term used to describe all programmed computational devices. Microcontroller is a term

More information

Real-Time Embedded Systems. CpE-450 Spring 06

Real-Time Embedded Systems. CpE-450 Spring 06 Real-Time Embedded Systems CpE-450 Spring 06 Class 5 Bruce McNair bmcnair@stevens.edu 5-1/42 Interfacing to Embedded Systems Distance 100 m 10 m 1 m 100 cm 10 cm "Transmission line" capacitance ( C) Distance

More information

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used to connect devices such as microcontrollers, sensors,

More information

User Manual. LPC-StickView V3.0. for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick. Contents

User Manual. LPC-StickView V3.0. for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick. Contents User Manual LPC-StickView V3.0 for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick Contents 1 What is the LPC-Stick? 2 2 System Components 2 3 Installation 3 4 Updates 3 5 Starting the LPC-Stick View Software

More information

AT90SO36 Summary Datasheet

AT90SO36 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

Computer Memory. Textbook: Chapter 1

Computer Memory. Textbook: Chapter 1 Computer Memory Textbook: Chapter 1 ARM Cortex-M4 User Guide (Section 2.2 Memory Model) STM32F4xx Technical Reference Manual: Chapter 2 Memory and Bus Architecture Chapter 3 Flash Memory Chapter 36 Flexible

More information

VORAGO VA108x0 I 2 C programming application note

VORAGO VA108x0 I 2 C programming application note AN1208 VORAGO VA108x0 I 2 C programming application note MARCH 14, 2017 Version 1.1 VA10800/VA10820 Abstract There are hundreds of peripheral devices utilizing the I 2 C protocol. Most of these require

More information

AT-501 Cortex-A5 System On Module Product Brief

AT-501 Cortex-A5 System On Module Product Brief AT-501 Cortex-A5 System On Module Product Brief 1. Scope The following document provides a brief description of the AT-501 System on Module (SOM) its features and ordering options. For more details please

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 135 Serial Communication Simplex Half-Duplex Duplex 136 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

UNC20 Module. User's Manual. D Breisach, Germany D Breisach, Germany Fax +49 (7667)

UNC20 Module. User's Manual. D Breisach, Germany D Breisach, Germany Fax +49 (7667) UNC20 Module User's Manual P.O: Box 1103 Kueferstrasse 8 Tel. +49 (7667) 908-0 sales@fsforth.de D-79200 Breisach, Germany D-79206 Breisach, Germany Fax +49 (7667) 908-200 http://www.fsforth.de Copyright

More information

SPI (Serial & Peripheral Interface)

SPI (Serial & Peripheral Interface) SPI (Serial & Peripheral Interface) What is SPI SPI is a high-speed, full-duplex bus that uses a minimum of 3 wires to exchange data. The popularity of this bus rose when SD cards (and its variants ie:

More information

Bus AMBA. Advanced Microcontroller Bus Architecture (AMBA)

Bus AMBA. Advanced Microcontroller Bus Architecture (AMBA) Bus AMBA Advanced Microcontroller Bus Architecture (AMBA) Rene.beuchat@epfl.ch Rene.beuchat@hesge.ch Réf: AMBA Specification (Rev 2.0) www.arm.com ARM IHI 0011A 1 What to see AMBA system architecture Derivatives

More information

Learning Outcomes. Spiral 2-9. Typical Logic Gate TRI-STATE GATES

Learning Outcomes. Spiral 2-9. Typical Logic Gate TRI-STATE GATES 2-9.1 Learning Outcomes 2-9.2 Spiral 2-9 Tri-State Gates Memories DMA I understand how a tri-state works and the rules for using them to share a bus I understand how SRAM and DRAM cells perform reads and

More information

Microcontrollers and Interfacing

Microcontrollers and Interfacing Microcontrollers and Interfacing Week 10 Serial communication with devices: Serial Peripheral Interconnect (SPI) and Inter-Integrated Circuit (I 2 C) protocols College of Information Science and Engineering

More information

Interfacing Techniques in Embedded Systems

Interfacing Techniques in Embedded Systems Interfacing Techniques in Embedded Systems Hassan M. Bayram Training & Development Department training@uruktech.com www.uruktech.com Introduction Serial and Parallel Communication Serial Vs. Parallel Asynchronous

More information

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction.

AVR XMEGA Product Line Introduction AVR XMEGA TM. Product Introduction. AVR XMEGA TM Product Introduction 32-bit AVR UC3 AVR Flash Microcontrollers The highest performance AVR in the world 8/16-bit AVR XMEGA Peripheral Performance 8-bit megaavr The world s most successful

More information

Digital Circuits Part 2 - Communication

Digital Circuits Part 2 - Communication Introductory Medical Device Prototyping Digital Circuits Part 2 - Communication, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Microcontrollers Memory

More information

C8051F700 Serial Peripheral Interface (SPI) Overview

C8051F700 Serial Peripheral Interface (SPI) Overview C8051F700 Serial Peripheral Interface (SPI) Overview Agenda C8051F700 block diagram C8051F700 device features SPI operation overview SPI module overview Where to learn more 2 Introducing The C8051F700

More information

EMX Module Specifications

EMX Module Specifications EMX is a combination of hardware (ARM Processor, Flash, RAM, Ethernet PHY...etc) on a very small (1.55 x1.8 ) SMT OEM 8-Layer board that hosts Microsoft.NET Micro Framework with various PAL/HAL drivers.

More information

ISA Host Controller 15a Hardware Reference Release 1.2 (October 16, 2017)

ISA Host Controller 15a Hardware Reference Release 1.2 (October 16, 2017) ISA Host Controller 15a Hardware Reference 1 ISA Host Controller 15a Hardware Reference Release 1.2 (October 16, 2017) Purpose: Host Controller to support the ISA bus according to the PC/104 specification.

More information

ECE 2300 Digital Logic & Computer Organization

ECE 2300 Digital Logic & Computer Organization ECE 2300 Digital Logic & Computer Organization Spring 201 Memories Lecture 14: 1 Announcements HW6 will be posted tonight Lab 4b next week: Debug your design before the in-lab exercise Lecture 14: 2 Review:

More information

Marten van Dijk, Syed Kamran Haider

Marten van Dijk, Syed Kamran Haider ECE3411 Fall 2015 Wrap Up Review Session Marten van Dijk, Syed Kamran Haider Department of Electrical & Computer Engineering University of Connecticut Email: vandijk, syed.haider@engr.uconn.edu Pulse Width

More information

EECS150 - Digital Design Lecture 17 Memory 2

EECS150 - Digital Design Lecture 17 Memory 2 EECS150 - Digital Design Lecture 17 Memory 2 October 22, 2002 John Wawrzynek Fall 2002 EECS150 Lec17-mem2 Page 1 SDRAM Recap General Characteristics Optimized for high density and therefore low cost/bit

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Prabal Dutta University of Michigan Lecture 10: Serial buses October 2, 2014 Some material from: Brehob, Le, Ramadas, Tikhonov & Mahal 1 Announcements Special

More information

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software!

TEVATRON TECHNOLOGIES PVT. LTD Embedded! Robotics! IoT! VLSI Design! Projects! Technical Consultancy! Education! STEM! Software! Summer Training 2016 Advance Embedded Systems Fast track of AVR and detailed working on STM32 ARM Processor with RTOS- Real Time Operating Systems Covering 1. Hands on Topics and Sessions Covered in Summer

More information

An SPI interface for the 65(C)02 family of microprocessors

An SPI interface for the 65(C)02 family of microprocessors Rev 4/B Dec 30, 2011 65SPI/B An SPI interface for the 65(C)02 family of microprocessors This device was created to provide a basic SPI interface for the 65xx family of microprocessors. Currently, the only

More information

User-configurable Resolution. 9 to 12 bits (0.5 C to C)

User-configurable Resolution. 9 to 12 bits (0.5 C to C) AT30TS75A 9- to 12-bit Selectable, ±0.5 C Accurate Digital Temperature Sensor DATASHEET See Errata in Section 12. Features Single 1.7V to 5.5V Supply Measures Temperature -55 C to +125 C Highly Accurate

More information

Rad-Hard Microcontroller For Space Applications

Rad-Hard Microcontroller For Space Applications The most important thing we build is trust ADVANCED ELECTRONIC SOLUTIONS AVIATION SERVICES COMMUNICATIONS AND CONNECTIVITY MISSION SYSTEMS Rad-Hard Microcontroller For Space Applications Fredrik Johansson

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Memory / DRAM SRAM = Static RAM SRAM vs. DRAM As long as power is present, data is retained DRAM = Dynamic RAM If you don t do anything, you lose the data SRAM: 6T per bit

More information

EECS150 - Digital Design Lecture 16 Memory 1

EECS150 - Digital Design Lecture 16 Memory 1 EECS150 - Digital Design Lecture 16 Memory 1 March 13, 2003 John Wawrzynek Spring 2003 EECS150 - Lec16-mem1 Page 1 Memory Basics Uses: Whenever a large collection of state elements is required. data &

More information

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9

Various power connectors. 3.3V regulator. 64K Flash (Internal) 2K EEPROM (Internal) 4K SRAM (Internal) JA Mem Adr/ Data. Doc: page 1 of 9 Cerebot II Board Reference Manual Revision: September 14, 2007 Note: This document applies to REV B of the board. www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview

More information

3.3V regulator. JA H-bridge. Doc: page 1 of 7

3.3V regulator. JA H-bridge. Doc: page 1 of 7 Digilent Cerebot Board Reference Manual Revision: 11/17/2005 www.digilentinc.com 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The Digilent Cerebot Board is a useful tool for

More information

Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut

Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut ECE3411 Fall 2016 Wrap Up Review Session Marten van Dijk Department of Electrical & Computer Engineering University of Connecticut Email: marten.van_dijk@uconn.edu Slides are copied from Lecture 7b, ECE3411

More information

AT90SO72 Summary Datasheet

AT90SO72 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

CSE502: Computer Architecture CSE 502: Computer Architecture

CSE502: Computer Architecture CSE 502: Computer Architecture CSE 502: Computer Architecture Memory / DRAM SRAM = Static RAM SRAM vs. DRAM As long as power is present, data is retained DRAM = Dynamic RAM If you don t do anything, you lose the data SRAM: 6T per bit

More information