Development and research of different architectures of I 2 C bus controller. E. Vasiliev, MIET

Size: px
Start display at page:

Download "Development and research of different architectures of I 2 C bus controller. E. Vasiliev, MIET"

Transcription

1 Development and research of different architectures of I 2 C bus controller E. Vasiliev, MIET

2 I2C and its alternatives I²C (Inter-Integrated Circuit) is a multi-master serial computer bus invented by Philips that is used to attach low-speed peripherals to a motherboard, embedded system, or cellphone Name Description Advantages over I2C Disadvantages over I2C SPI Synchronous serial connection, 3 or 1 line for transmission, data is sent synchronized by the clock, transmission is based on push/pull technology Higher speed No addressing (many devices on one bus are not allowed) UART Universal Asynchronous Receiver/Transmitter. Fixed baudrate is used for transmission. Ability to serve as master and slave at the same time. Physical layer can be used, allowing to bridge larger distances No addressing (many devices on one bus are not allowed) CAN Complex protocol of CAN allows for data integrity check, device addressing, error recovery and several advanced features Physical layer can be used, allowing to bridge larger distances Complexity 1-Wire Just one wire plus ground are used (i.e. two wires). It is even possible to supply power to connected components over these two wires. Physical layer can be used, allowing to bridge larger distances Strict time keeping on both, master and slave side, lower speed

3 Designer benefits Functional blocks on the block diagram correspond with the actual ICs; designs proceed rapidly from block diagram to final schematic No need to design bus interfaces because the I2C-bus interface is already integrated on-chip Integrated addressing and data-transfer protocol allow systems to be completely software-defined The same IC types can often be used in many different applications Design-time reduces as designers quickly become familiar with the frequently used functional blocks represented by I2C-bus compatible IC ICs can be added to or removed from a system without affecting any other circuits on the bus Fault diagnosis and debugging are simple; malfunctions can be immediately traced Software development time can be reduced by assembling a library of reusable software modules

4 Manufacturer benefits The simple 2-wire serial I2C-bus minimizes interconnections so ICs have fewer pinsand there are not so many PCB tracks; result smaller and less expensive PCBs The completely integrated I2C-bus protocol eliminates the need for address decoders and other glue logic The multi-master capability of the I2C-bus allows rapid testing and alignment of end-user equipment via external connections to an assembly-line

5 Example of I 2 C bus applications I 2 C A/D or D/A Converters I 2 C General Purpose I/O Expanders I 2 C LED Controllers I 2 C DIP Switches I 2 C V CC4 V CC5 I 2 C Repeaters/ Hubs/Extenders V CC0 I 2 C Multiplexers and Switches V CC2 PCA9541 I 2 C Master Selector/ Demux V CC1 I 2 C Port via HW or Bit Banging I 2 C Bus Controllers MCUs MCUs I 2 C Serial EEPROMs LCD Drivers (with I 2 C) I 2 C Real Time Clock/ Calendars I 2 C Sensors V CC3 Bridges (with I 2 C) SPI UART USB

6 Example of an I2C-bus configuration using two microcontrollers MICRO - CONTROLLER A LCD DRIVER STATIC RAM OR EEPROM SDA SCL GATE ARRAY ADC MICRO - CONTROLLER B

7 Applicability of I2C-bus protocol features Feature Configuration Single master Multi-master Slave START condition M M M STOP condition M M M Acknowledge M M M Synchronization n/a M n/a Arbitration n/a M n/a Clock stretching О О О 7-bit slave address M M M 10-bit slave address О О О General Call address О О О Software Reset О О О START byte n/a О n/a Device ID n/a n/a О M = mandatory; O = optional; n/a = not applicable.

8 Devices with a variety of supply voltages sharing the same bus V DD1 = 5 В ± 10% V DD2 V DD3 R p R p CMOS CMOS NMOS BIPOLAR V DD2 and V DD3 are device dependent (e.g., 12 V).

9 Bit transfer on the I2C-bus SDA SCL data line stable; data valid change of data allowed

10 START and STOP conditions SDA SDA SCL S P SCL START condition STOP condition

11 Data transfer on the I2C-bus SDA MSB acknowledgement acknowledgement signal from slave signal from receiver P Sr SCL S or Sr to 8 9 Sr or P START or ACK ACK STOP or repeated START byte complete, clock line held LOW repeated START condition interrupt within slave while interrupts are serviced condition

12 Clock synchronization during the arbitration procedure wait state start counting HIGH period CLK 1 CLK 2 counter reset SCL

13 Arbitration procedure of two masters DATA 1 master 1 loses arbitration DATA 1 SDA DATA 2 SDA SCL S

14 A complete data transfer SDA SCL S P START ADDRESS R/W ACK DATA ACK DATA ACK STOP condition condition

15 A master-transmitter addressing a slave receiver with a 7-bit address (the transfer direction is not changed) S SLAVE ADDRESS R/W A DATA A DATA A/A P '0' (write) data transferred (n bytes + acknowledge) from master to slave from slave to master A = acknowledge (SDA LOW) A = not acknowledge (SDA HIGH) S = START condition P = STOP condition

16 A master reads a slave immediately after the first byte 1 S SLAVE ADDRESS R/W A DATA A DATA A P (read) data transferred (n bytes + acknowledge)

17 Combined format S SLAVE ADDRESS R/W A DATA A/A Sr SLAVE ADDRESS R/W A DATA A/A P *not shaded because transfer direction of data and acknowledge bits depends on R/W bits. read or write (n bytes (n bytes + ack.)* + ack.)* read or write Sr = repeated START condition direction of transfer may change at this point.

18 Bus speeds Standard-mode (Sm), with a bit rate up to 100 kbit/s Fast-mode (Fm), with a bit rate up to 400 kbit/s Fast-mode Plus (Fm+), with a bit rate up to 1 Mbit/s High-speed mode (Hs-mode), with a bit rate up to 3.4 Mbit/s.

19 I2C applications I²C is appropriate for peripherals where simplicity and low manufacturing cost are more important than speed. Common applications of the I²C bus are: Reading configuration data from SPD EEPROMs on SDRAM, DDR SDRAM, DDR2 SDRAM memory sticks (DIMM) and other stacked PC boards Supporting systems management for PCI cards, through an SMBus 2.0 connection. Accessing NVRAM chips that keep user settings. Accessing low speed DACs and ADCs. Changing contrast, hue, and color balance settings in monitors (Display Data Channel). Changing sound volume in intelligent speakers. Controlling OLED/LCD displays, like in a cellphone. Reading hardware monitors and diagnostic sensors, like a CPU thermostat and fan speed. Reading real time clocks. Turning on and turning off the power supply of system components.

20 Architectures of I 2 C bus controller State machine architecture Demultiplexer/Multiplexer chains architecture Two shift registers architecture

21 Mealy state machine for slave I 2 C bus contoller SCL _/ Waiting for START SCL _/, START flag = 1 Receiving address, R / W bit WaitSTART GetARW SCL _/, BC* = 0 SCL _/, STOP flag = 1 SCL _/, START flag = 1 SCL _/ Transmitting acknowledge SendA1 SCL _/ R / W = 1 R / W = 0 SCL _/ SendDB Transmitting data bit SCL _/, BC = 0 SCL _/ Receiving data bit SCL _/, BC = 0 GetDB GetAnA Receiving acknowledge (not acknowledge) bit Transmitting acknowledge SCL _/ SendA2 SCL _/, SDA = 1 (NACK) *BC - Bit Counter (reverse)

22 Demultiplexer/Multiplexer chains architecture of slave I2C bus controller from SDA bus D1 A D1- data, received from bus D2- data, transmitted on bus A slave address A.L. additional logic D C address/data signal SCL _/ 1 M M A. L. D-tr. D D2 to SDA bus M SCL \ _ R /W R / W additional signals & addr/data signal D dmux D-tr. control D-triggers М mux С comparator

23 Two shift registers architecture of slave I 2 C bus controller Comparing with address, transmitting on output SDA A. L. BE DO DO DO DO DO DO DO DO [7] [6] [5] [4] [3] [2] [1] [0] M DI [7] DI [6] DI [5] DI [4] DI [3] DI [2] DI [1] DI [0] A.L. to SDA bus from SDA bus 0 R / W & addr./data signal Data from input A.L. neg. edge of SCL

24 Symbol of slave I2C bus controller IN [7:0] R_W CLK FIFO_FULL OUT [7:0] DATA_VALID READY I2CInterface controller SCL SDA R

25 Verification of slave I2C bus controller Memory mem_m1 Master 1 (m1) Slave 1 (s1) Memory mem_s1 Data comparing SDA SCL Master 2 (m2) Memory mem_m2 M to S tests (one addressing, permanent addressing, addressing and data transmission with NACK, transmission of different numbers of bytes) S to M tests (one addressing, permanent addressing, transmission of different numbers of bytes) Arbitration tests (with permanent addressing)

26 Comparative characteristics of I2C bus architectures Architecture name Area of noncombinational elements (triggers), μm Area of combinational elements, μm Number of cells Whole-time addressing Number of nets State machine architecture 2031,6 3108,9 194 No 216 Multiplexer/ demultiplexer chains architecture Two shift registers architecture 2056,2 1990,7 144 No ,1 1445,9 102 Yes 127

27 Area of architectures (data are based on cell areas) State machine architecture Demultiplexer/ multiplexer chains architecture Two shift registers architecture 0 Device area, square μm

28 Power of architectures (data are based on cell powers) State machine architecture Multiplexer/demul tiplexer chains architecture Two shift registers architecture 68 Consumed power, μw

Handson Technology. I2C Specification and Devices. 1

Handson Technology. I2C Specification and Devices. 1 Handson Technology Data Specs I2C Specification and Devices The I2C (Inter-Integrated Circuit) Bus is a two-wire, low to medium speed, communication bus (a path for electronic signals) developed by Philips

More information

The Cubesat Internal bus: The I2C

The Cubesat Internal bus: The I2C The Cubesat Internal bus: The I2C Description: The purpose of this document is to describe the internal bus on the Cubesat. The internal bus has been chosen to be the I2C bus Interconnected Integrated

More information

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT

Lecture 5: Computing Platforms. Asbjørn Djupdal ARM Norway, IDI NTNU 2013 TDT 1 Lecture 5: Computing Platforms Asbjørn Djupdal ARM Norway, IDI NTNU 2013 2 Lecture overview Bus based systems Timing diagrams Bus protocols Various busses Basic I/O devices RAM Custom logic FPGA Debug

More information

Introduction to I2C & SPI. Chapter 22

Introduction to I2C & SPI. Chapter 22 Introduction to I2C & SPI Chapter 22 Issues with Asynch. Communication Protocols Asynchronous Communications Devices must agree ahead of time on a data rate The two devices must also have clocks that are

More information

Lecture 25 March 23, 2012 Introduction to Serial Communications

Lecture 25 March 23, 2012 Introduction to Serial Communications Lecture 25 March 23, 2012 Introduction to Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Asynchronous Serial (e.g., SCI, RS-232) Synchronous

More information

Microcontroller basics

Microcontroller basics FYS3240 PC-based instrumentation and microcontrollers Microcontroller basics Spring 2017 Lecture #4 Bekkeng, 30.01.2017 Lab: AVR Studio Microcontrollers can be programmed using Assembly or C language In

More information

Serial Buses in Industrial and Automotive Applications

Serial Buses in Industrial and Automotive Applications Serial Buses in Industrial and Automotive Applications Presented by Neelima Chaurasia Class: #368 1 Overview As consumer electronics, computer peripherals, vehicles and industrial applications add embedded

More information

Microcontrollers and Interfacing

Microcontrollers and Interfacing Microcontrollers and Interfacing Week 10 Serial communication with devices: Serial Peripheral Interconnect (SPI) and Inter-Integrated Circuit (I 2 C) protocols College of Information Science and Engineering

More information

Serial Peripheral Interface. What is it? Basic SPI. Capabilities. Protocol. Pros and Cons. Uses

Serial Peripheral Interface. What is it? Basic SPI. Capabilities. Protocol. Pros and Cons. Uses Serial Peripheral Interface What is it? Basic SPI Capabilities Protocol Serial Peripheral Interface http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/ SPI_single_slave.svg/350px-SPI_single_slave.svg.png

More information

Growing Together Globally Serial Communication Design In Embedded System

Growing Together Globally Serial Communication Design In Embedded System Growing Together Globally Serial Communication Design In Embedded System Contents Serial communication introduction......... 01 The advantages of serial design......... 02 RS232 interface......... 04 RS422

More information

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this?

Parallel Data Transfer. Suppose you need to transfer data from one HCS12 to another. How can you do this? Introduction the Serial Communications Huang Sections 9.2, 10.2, 11.2 SCI Block User Guide SPI Block User Guide IIC Block User Guide o Parallel vs Serial Communication o Synchronous and Asynchronous Serial

More information

DESIGNING OF INTER INTEGRATED CIRCUIT USING VERILOG

DESIGNING OF INTER INTEGRATED CIRCUIT USING VERILOG DESIGNING OF INTER INTEGRATED CIRCUIT USING VERILOG DISHA MALIK Masters of Technology Scholar, Department of Electronics & Communication Engineering, Jayoti Vidyapeeth Women s University, Jaipur INDIA

More information

An Efficient Designing of I2C Bus Controller Using Verilog

An Efficient Designing of I2C Bus Controller Using Verilog American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Implementation of MCU Invariant I2C Slave Driver Using Bit Banging

Implementation of MCU Invariant I2C Slave Driver Using Bit Banging Implementation of MCU Invariant I2C Slave Driver Using Bit Banging Arindam Halder, Ranjan Dasgupta Innovation Lab, TATA Consultancy Services, Ltd. Kolkata, India arindam.halder@tcs.com,ranjan.dasgupta@tcs.com

More information

McMaster University Embedded Systems. Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016

McMaster University Embedded Systems. Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016 McMaster University Embedded Systems Computer Engineering 4DS4 Lecture 6 Serial Peripherals Amin Vali Feb. 2016 Serial Peripherals I2C Inter-IC Bus X/Y Coord. RGB data LCD config controller LCD data controller

More information

Embedded Systems and Software. Serial Interconnect Buses I 2 C (SMB) and SPI

Embedded Systems and Software. Serial Interconnect Buses I 2 C (SMB) and SPI Embedded Systems and Software Serial Interconnect Buses I 2 C (SMB) and SPI I2C, SPI, etc. Slide 1 Provide low-cost i.e., low wire/pin count connection between IC devices There are many of serial bus standards

More information

THANG LUONG CAO. Serial bus adapter design for FPGA. Master of Science Thesis

THANG LUONG CAO. Serial bus adapter design for FPGA. Master of Science Thesis THANG LUONG CAO Serial bus adapter design for FPGA Master of Science Thesis Examiner: Prof. Timo D. Hämäläinen Examiner and topic approved by the Faculty Council of the Faculty of Computing and Electrical

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING. EE Microcontroller Based System Design DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6008 - Microcontroller Based System Design UNIT III PERIPHERALS AND INTERFACING PART A 1. What is an

More information

Basics of UART Communication

Basics of UART Communication Basics of UART Communication From: Circuit Basics UART stands for Universal Asynchronous Receiver/Transmitter. It s not a communication protocol like SPI and I2C, but a physical circuit in a microcontroller,

More information

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -4 1 UNIT 4

IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -4 1 UNIT 4 IV B.Tech. I Sem (R13) ECE : Embedded Systems : UNIT -4 1 UNIT 4 4.1. Serial data communication basics ----------- 1 4.2. UART ------------------------------------------------ 4 4.3. Serial Peripheral

More information

Universität Dortmund. IO and Peripheral Interfaces

Universität Dortmund. IO and Peripheral Interfaces IO and Peripheral Interfaces Microcontroller System Architecture Each MCU (micro-controller unit) is characterized by: Microprocessor 8,16,32 bit architecture Usually simple in-order microarchitecture,

More information

or between microcontrollers)

or between microcontrollers) : Communication Interfaces in Embedded Systems (e.g., to interface with sensors and actuators or between microcontrollers) Spring 2016 : Communication Interfaces in Embedded Systems Spring (e.g., 2016

More information

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc. Order this document by /D Software I 2 C Communications By Brad Bierschenk MMD Applications Engineering Austin, Texas Introduction I 2 C Overview The I 2 C (inter-integrated circuit) protocol is a 2-wire

More information

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications

Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications Introduction the Serial Communications Parallel Communications Parallel Communications with Handshaking Serial Communications o Asynchronous Serial (SCI, RS-232) o Synchronous Serial (SPI, IIC) The MC9S12

More information

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso

Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Design and development of embedded systems for the Internet of Things (IoT) Fabio Angeletti Fabrizio Gattuso Microcontroller It is essentially a small computer on a chip Like any computer, it has memory,

More information

Smart, simple solutions for the 12 most common design concerns

Smart, simple solutions for the 12 most common design concerns Smart, simple solutions for the 12 most common design concerns NXP I 2 C-bus solutions 2H 2011 I 2 C-bus: The serial revolution By replacing complex parallel interfaces with a straightforward yet powerful

More information

AN10428 UART-SPI Gateway for Philips SPI slave bridges

AN10428 UART-SPI Gateway for Philips SPI slave bridges UART-SPI Gateway for Philips SPI slave bridges Rev. 01 7 March 2006 Application note Document information Info Keywords Abstract Content UART-SPI Gateway, UART to SPI, RS-232 to SPI The UART-SPI Gateway

More information

Microcontroller Systems. ELET 3232 Topic 23: The I 2 C Bus

Microcontroller Systems. ELET 3232 Topic 23: The I 2 C Bus Microcontroller Systems ELET 3232 Topic 23: The I 2 C Bus Objectives To understand the basics of the I 2 C bus To understand the format of a serial transmission between I 2 C devices To understand how

More information

To be familiar with the USART (RS-232) protocol. To be familiar with one type of internal storage system in PIC (EEPROM).

To be familiar with the USART (RS-232) protocol. To be familiar with one type of internal storage system in PIC (EEPROM). Lab # 6 Serial communications & EEPROM Objectives To be familiar with the USART (RS-232) protocol. To be familiar with one type of internal storage system in PIC (EEPROM). Serial Communications Serial

More information

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang,

Network Embedded Systems Sensor Networks Fall Hardware. Marcus Chang, Network Embedded Systems Sensor Networks Fall 2013 Hardware Marcus Chang, mchang@cs.jhu.edu 1 Embedded Systems Designed to do one or a few dedicated and/or specific functions Embedded as part of a complete

More information

Digital Circuits Part 2 - Communication

Digital Circuits Part 2 - Communication Introductory Medical Device Prototyping Digital Circuits Part 2 - Communication, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Topics Microcontrollers Memory

More information

CARDINAL COMPONENTS. FREQUENCY A MHz. Specifications: Min Typ Max Unit

CARDINAL COMPONENTS. FREQUENCY A MHz. Specifications: Min Typ Max Unit Re-Configurable 6 Output PECL TCXO Fixed & Re-Configurable Multi-Frequency Oscillator Intuitive software and I 2 C interface Easily update system Industry-standard packaging saves on board space Mult.

More information

Raspberry Pi - I/O Interfaces

Raspberry Pi - I/O Interfaces ECE 1160/2160 Embedded Systems Design Raspberry Pi - I/O Interfaces Wei Gao ECE 1160/2160 Embedded Systems Design 1 I/O Interfaces Parallel I/O and Serial I/O Parallel I/O: multiple input/output simultaneously

More information

PCI to SH-3 AN Hitachi SH3 to PCI bus

PCI to SH-3 AN Hitachi SH3 to PCI bus PCI to SH-3 AN Hitachi SH3 to PCI bus Version 1.0 Application Note FEATURES GENERAL DESCRIPTION Complete Application Note for designing a PCI adapter or embedded system based on the Hitachi SH-3 including:

More information

Dariusz Makowski Department of Microelectronics and Computer Science tel

Dariusz Makowski Department of Microelectronics and Computer Science tel Dariusz Makowski Department of Microelectronics and Computer Science tel. 631 2720 dmakow@dmcs.pl http://fiona.dmcs.pl/es 1 Lecture Agenda Microprocessor Systems, ARM Processors Family Peripheral Devices

More information

Embedded Systems: Hardware Components (part II) Todor Stefanov

Embedded Systems: Hardware Components (part II) Todor Stefanov Embedded Systems: Hardware Components (part II) Todor Stefanov Leiden Embedded Research Center, Leiden Institute of Advanced Computer Science Leiden University, The Netherlands Outline Generic Embedded

More information

1.3inch OLED User Manual

1.3inch OLED User Manual 1.3inch OLED User Manual 1. Key Parameters Table 1: Key Parameters Driver Chip SH1106 Interface 3-wire SPI 4-wire SPI I2C Resolution 128*64 Display Size 1.3 inch Dimension 29mm*33mm Colors Yellow, Blue

More information

In this section, we are going to cover the Silicon Labs CP240x family features.

In this section, we are going to cover the Silicon Labs CP240x family features. In this section, we are going to cover the Silicon Labs CP240x family features. 1 We are going to look at the new CP240x devices in this module. We will first take a look at the high level block diagram

More information

Microcontrollers and Interfacing week 10 exercises

Microcontrollers and Interfacing week 10 exercises 1 SERIAL PERIPHERAL INTERFACE (SPI) HARDWARE Microcontrollers and Interfacing week 10 exercises 1 Serial Peripheral Interface (SPI) hardware Complex devices (persistent memory and flash memory cards, D/A

More information

Exercise 2 I 2 C Management 1/7

Exercise 2 I 2 C Management 1/7 Exercise 2 I 2 C Management I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors. Typical voltages used are 5 V or 3.3 V. The I²C

More information

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used

Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used Hello, and welcome to this presentation of the STM32 I²C interface. It covers the main features of this communication interface, which is widely used to connect devices such as microcontrollers, sensors,

More information

Overview of Microcontroller and Embedded Systems

Overview of Microcontroller and Embedded Systems UNIT-III Overview of Microcontroller and Embedded Systems Embedded Hardware and Various Building Blocks: The basic hardware components of an embedded system shown in a block diagram in below figure. These

More information

I2C a learn.sparkfun.com tutorial

I2C a learn.sparkfun.com tutorial I2C a learn.sparkfun.com tutorial Available online at: http://sfe.io/t82 Contents Introduction Why Use I2C? I2C at the Hardware Level Protocol Resources and Going Further Introduction In this tutorial,

More information

Laboratory 5 Communication Interfaces

Laboratory 5 Communication Interfaces Laboratory 5 Communication Interfaces Embedded electronics refers to the interconnection of circuits (micro-processors or other integrated circuits) with the goal of creating a unified system. In order

More information

Mercury System SB310

Mercury System SB310 Mercury System SB310 Ultrasonic Board - Product Datasheet Author Francesco Ficili Date 20/05/2018 Status Released Pag. 1 Revision History Version Date Author Changes 1.0 20/05/2018 Francesco Ficili Initial

More information

Serial Communication. Simplex Half-Duplex Duplex

Serial Communication. Simplex Half-Duplex Duplex 1.5. I/O 135 Serial Communication Simplex Half-Duplex Duplex 136 Serial Communication Master-Slave Master Master-Multi-Slave Master Slave Slave Slave (Multi-)Master Multi-Slave Master Slave Slave Slave

More information

RL78 Serial interfaces

RL78 Serial interfaces RL78 Serial interfaces Renesas Electronics 00000-A Introduction Purpose This course provides an introduction to the RL78 serial interface architecture. In detail the different serial interfaces and their

More information

Communication interfaces

Communication interfaces Communication interfaces Emphasis on serial interfaces Parallel link Unit 2 Unit Serial link Unit 2 Unit Skew in parallel link Risk of missreading 2 Unbalanced link One signal line Ground Balanced link

More information

I2C a learn.sparkfun.com tutorial

I2C a learn.sparkfun.com tutorial I2C a learn.sparkfun.com tutorial Available online at: http://sfe.io/t82 Contents Introduction Why Use I2C? I2C at the Hardware Level Protocol Resources and Going Further Introduction In this tutorial,

More information

The I2C BUS Interface

The I2C BUS Interface The I 2 C BUS Interface ARSLAB - Autonomous and Robotic Systems Laboratory Dipartimento di Matematica e Informatica - Università di Catania, Italy santoro@dmi.unict.it L.S.M. 1 Course What is I 2 C? I

More information

VORAGO VA108x0 I 2 C programming application note

VORAGO VA108x0 I 2 C programming application note AN1208 VORAGO VA108x0 I 2 C programming application note MARCH 14, 2017 Version 1.1 VA10800/VA10820 Abstract There are hundreds of peripheral devices utilizing the I 2 C protocol. Most of these require

More information

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085.

1 MALP ( ) Unit-1. (1) Draw and explain the internal architecture of 8085. (1) Draw and explain the internal architecture of 8085. The architecture of 8085 Microprocessor is shown in figure given below. The internal architecture of 8085 includes following section ALU-Arithmetic

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Assertion Based Verification of I2C Master Bus Controller with RTC Sagar T. D. M.Tech Student, VLSI Design and Embedded Systems BGS Institute of Technology,

More information

Real-Time Embedded Systems. CpE-450 Spring 06

Real-Time Embedded Systems. CpE-450 Spring 06 Real-Time Embedded Systems CpE-450 Spring 06 Class 5 Bruce McNair bmcnair@stevens.edu 5-1/42 Interfacing to Embedded Systems Distance 100 m 10 m 1 m 100 cm 10 cm "Transmission line" capacitance ( C) Distance

More information

History and Basic Processor Architecture

History and Basic Processor Architecture History and Basic Processor Architecture History of Computers Module 1 Section 1 What Is a Computer? An electronic machine, operating under the control of instructions stored in its own memory, that can

More information

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet

HZX N03 Bluetooth 4.0 Low Energy Module Datasheet HZX-51822-16N03 Bluetooth 4.0 Low Energy Module Datasheet SHEN ZHEN HUAZHIXIN TECHNOLOGY LTD 2017.7 NAME : Bluetooth 4.0 Low Energy Module MODEL NO. : HZX-51822-16N03 VERSION : V1.0 1.Revision History

More information

VBattery 7 VCC V DD IRLED IS31SE5001 SDA SCL INTB SDB. Figure 1 Typical Application Circuit

VBattery 7 VCC V DD IRLED IS31SE5001 SDA SCL INTB SDB. Figure 1 Typical Application Circuit IR SENSOR FOR TOUCHLESS PROXIMITY July 2013 GENERAL DESCRIPTION The IS31SE5001 is a low-power, reflectance-based infrared light sensor with advanced signal processing and digital output. The sensor can

More information

Digital Storage Oscilloscope

Digital Storage Oscilloscope Digital Storage Oscilloscope GDS-3000 Series SERIAL DECODE MANUAL GW INSTEK PART NO. 82DS-SBD00U01 ISO-9001 CERTIFIED MANUFACTURER October 2010 This manual contains proprietary information, which is protected

More information

PCI Host Controller 14a Hardware Reference Release 1.2 (October 16, 2017)

PCI Host Controller 14a Hardware Reference Release 1.2 (October 16, 2017) PCI Host Controller 14a Hardware Reference 1 PCI Host Controller 14a Hardware Reference Release 1.2 (October 16, 2017) Purpose: Host Controller to support the PCI bus according to the PCI/104 specification.

More information

Using FlexIO to emulate communications and timing peripherals

Using FlexIO to emulate communications and timing peripherals NXP Semiconductors Document Number: AN12174 Application Note Rev. 0, 06/2018 Using FlexIO to emulate communications and timing peripherals 1. Introduction The FlexIO is a new on-chip peripheral available

More information

CARDINAL COMPONENTS. Specifications: Min Typ Max Unit

CARDINAL COMPONENTS. Specifications: Min Typ Max Unit Re-Configurable 4 Output CMOS Oscillator Fixed & Re-Configurable Multi-Frequency Oscillator Intuitive software and I 2 C interface Easily update system Software flexible, quick upgrades and changes Industry-standard

More information

JTAG and I 2 C on ELMB

JTAG and I 2 C on ELMB JTAG and I 2 C on ELMB Henk Boterenbrood NIKHEF, Amsterdam Nov 2000 Version 0.3 ABSTRACT The ELMB is designed as a general-purpose plug-on module for distributed monitoring and control applications in

More information

Theory of Operation STOP CONDITION

Theory of Operation STOP CONDITION AVR 300: Software I 2 C Master Interface Features Uses Interrupts Supports rmal And Fast Mode Supports Both 7-Bit and 10-Bit Addressing Supports the Entire AVR Microcontroller Family Introduction The need

More information

ELE492 Embedded System Design

ELE492 Embedded System Design Overview ELE9 Embedded System Design Examples of Human I/O Interfaces Types of System Interfaces Use of standards RS Serial Communication Overview of SPI, I C, L, and CAN Class //0 Eugene Chabot Examples

More information

EMBEDDED SYSTEMS COURSE CURRICULUM

EMBEDDED SYSTEMS COURSE CURRICULUM On a Mission to Transform Talent EMBEDDED SYSTEMS COURSE CURRICULUM Table of Contents Module 1: Basic Electronics and PCB Software Overview (Duration: 1 Week)...2 Module 2: Embedded C Programming (Duration:

More information

User Manual. LPC-StickView V3.0. for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick. Contents

User Manual. LPC-StickView V3.0. for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick. Contents User Manual LPC-StickView V3.0 for LPC-Stick (LPC2468) LPC2478-Stick LPC3250-Stick Contents 1 What is the LPC-Stick? 2 2 System Components 2 3 Installation 3 4 Updates 3 5 Starting the LPC-Stick View Software

More information

Ken Foust Intel. A Developer s Guide to MIPI I3C SM for Sensors and Beyond

Ken Foust Intel. A Developer s Guide to MIPI I3C SM for Sensors and Beyond Ken Foust Intel A Developer s Guide to MIPI I3C SM for Sensors and Beyond Outline Introduction to MIPI I3C SM Usages beyond sensing MIPI Camera Control Interface (CCI SM ) MIPI Touch over I3C SM MIPI Debug

More information

Section 16. Basic Sychronous Serial Port (BSSP)

Section 16. Basic Sychronous Serial Port (BSSP) M 16 Section 16. Basic Sychronous Serial Port (BSSP) BSSP HIGHLIGHTS This section of the manual contains the following major topics: 16.1 Introduction...16-2 16.2 Control Registers...16-3 16.3 SPI Mode...16-6

More information

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system.

Principles of Digital Techniques PDT (17320) Assignment No State advantages of digital system over analog system. Assignment No. 1 1. State advantages of digital system over analog system. 2. Convert following numbers a. (138.56) 10 = (?) 2 = (?) 8 = (?) 16 b. (1110011.011) 2 = (?) 10 = (?) 8 = (?) 16 c. (3004.06)

More information

User s Guide. IP-201 I2C Bus Multiplexer Board Revision 1. Micro Computer Control Corporation

User s Guide. IP-201 I2C Bus Multiplexer Board Revision 1. Micro Computer Control Corporation User s Guide IP-201 I2C Bus Multiplexer Board Revision 1 Micro Computer Control Corporation www.mcc-us.com 4 Channel I 2 C Multiplexer Board Model IP-201 User, s Guide Overview I 2 C Bus is the Inter-Integrated

More information

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals.

1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. 1. Define Peripherals. Explain I/O Bus and Interface Modules. Peripherals: Input-output device attached to the computer are also called peripherals. A typical communication link between the processor and

More information

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an

Infineon C167CR microcontroller, 256 kb external. RAM and 256 kb external (Flash) EEPROM. - Small single-board computer (SBC) with an Microcontroller Basics MP2-1 week lecture topics 2 Microcontroller basics - Clock generation, PLL - Address space, addressing modes - Central Processing Unit (CPU) - General Purpose Input/Output (GPIO)

More information

I2C Demonstration Board I 2 C-bus Master Selector

I2C Demonstration Board I 2 C-bus Master Selector I2C 2005-1 Demonstration Board I 2 C-bus Master Selector Oct, 2006 2 to 1 I 2 C Master Selector w/interrupt Logic and Reset Master 0 I 2 C Bus Master 1 I 2 C Bus Interrupt 0 Out Interrupt 1 Out I Interrupt

More information

1. Features and Benefits

1. Features and Benefits 1. Features and Benefits Single die, low cost 16x4 pixels IR array Factory calibrated absolute PTAT temperature sensor for measuring die temperature Separate channel for connecting additional IR sensor

More information

How to Implement I 2 C Serial Communication Using Intel MCS-51 Microcontrollers

How to Implement I 2 C Serial Communication Using Intel MCS-51 Microcontrollers APPLICATION NOTE How to Implement I 2 C Serial Communication Using Intel MCS-51 Microcontrollers SABRINA D QUARLES APPLICATIONS ENGINEER April 1993 Order Number 272319-001 Information in this document

More information

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their S08 Highlighted Features Why Do I Need a Slave LIN Interface Controller (SLIC)? Design Challenges Slave synchronization Slave synchronizing to LIN messaging requires a cost versus resource trade-off. Your

More information

BV4205. I2C-10 Channel A to D. Product specification. January 2008 V0.a. ByVac Page 1 of 10

BV4205. I2C-10 Channel A to D. Product specification. January 2008 V0.a. ByVac Page 1 of 10 Product specification January 2008 V0.a ByVac Page 1 of 10 Contents 1. Introduction...4 2. Features...4 3. Physical Specification...4 3.1. Factory (hardware) reset...4 3.2. Analogue Inputs...4 3.3. Voltage

More information

MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Serial Data Transmission (Stručný přehled) České vysoké učení technické Fakulta elektrotechnická

MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY. Serial Data Transmission (Stručný přehled) České vysoké učení technické Fakulta elektrotechnická MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Serial Data Transmission (Stručný přehled) České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek, 2017 Serial data transfer - principle Serial data

More information

CARDINAL COMPONENTS. Specifications: Min Typ Max Unit

CARDINAL COMPONENTS. Specifications: Min Typ Max Unit Re-Configurable 6 Output CMOS TCXO Fixed & Re-Configurable Multi-Frequency Oscillator Intuitive software and I 2 C interface Easily update system Software flexible, quick upgrades and changes Industry-standard

More information

Preliminary Data MOS IC. Type Ordering Code Package SDA Q67100-H5092 P-DIP-8-1

Preliminary Data MOS IC. Type Ordering Code Package SDA Q67100-H5092 P-DIP-8-1 Nonvolatile Memory 1-Kbit E 2 PROM SDA 2516-5 Preliminary Data MOS IC Features Word-organized reprogrammable nonvolatile memory in n-channel floating-gate technology (E 2 PROM) 128 8-bit organization Supply

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 7 Design of Microprocessor-Based Systems Matt Smith University of Michigan Serial buses, digital design Material taken from Brehob, Dutta, Le, Ramadas, Tikhonov & Mahal 1 Timer Program //Setup Timer

More information

AT-501 Cortex-A5 System On Module Product Brief

AT-501 Cortex-A5 System On Module Product Brief AT-501 Cortex-A5 System On Module Product Brief 1. Scope The following document provides a brief description of the AT-501 System on Module (SOM) its features and ordering options. For more details please

More information

The D igital Digital Logic Level Chapter 3 1

The D igital Digital Logic Level Chapter 3 1 The Digital Logic Level Chapter 3 1 Gates and Boolean Algebra (1) (a) A transistor inverter. (b) A NAND gate. (c) A NOR gate. 2 Gates and Boolean Algebra (2) The symbols and functional behavior for the

More information

CprE 488 Embedded Systems Design. Lecture 4 Interfacing Technologies

CprE 488 Embedded Systems Design. Lecture 4 Interfacing Technologies CprE 488 Embedded Systems Design Lecture 4 Interfacing Technologies Joseph Zambreno Electrical and Computer Engineering Iowa State University www.ece.iastate.edu/~zambreno rcl.ece.iastate.edu Never trust

More information

ZKit-51, 8051 Development Kit

ZKit-51, 8051 Development Kit ZKit-51, 8051 Development Kit User Manual 1.1, June 2011 This work is licensed under the Creative Commons Attribution-Share Alike 2.5 India License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/in/

More information

GT34C02. 2Kb SPD EEPROM

GT34C02. 2Kb SPD EEPROM Advanced GT34C02 2Kb SPD EEPROM Copyright 2010 Giantec Semiconductor Inc. (Giantec). All rights reserved. Giantec reserves the right to make changes to this specification and its products at any time without

More information

ICN12. I2C to UART Bridge, ADC,DAC and I/O

ICN12. I2C to UART Bridge, ADC,DAC and I/O Firmware version 1.4 Introduction ICN12 I2C to UART Bridge, ADC,DAC and I/O This is an I2C to UART bridge, designed to give an extra UART to a microcontroller when only I2C is available. It is an I2C device

More information

ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ. Embedded System Design

ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ. Embedded System Design ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ Embedded System Design Chapter 7: Peripherals for embedded systems 7.1 Digital parallel input / output

More information

EECS 373 Design of Microprocessor-Based Systems

EECS 373 Design of Microprocessor-Based Systems EECS 373 Design of Microprocessor-Based Systems Mark Brehob University of Michigan Timers Material taken from Dreslinski, Dutta, Le, Ramadas, Smith, Tikhonov & Mahal 1 Agenda A bit on timers Project overview

More information

Processor Register Set of M16C

Processor Register Set of M16C Processor Register Set of M6C 2 banks of general-purpose registers 4 6-bit data registers R - R3 Upper and lower bytes of registers R and R can be used as 8-bit registers (RL, RH, RL, RH) 2 6-bit address

More information

How to Troubleshoot System Problems Using an Oscilloscope with I 2 C and SPI Decoding APPLICATION NOTE

How to Troubleshoot System Problems Using an Oscilloscope with I 2 C and SPI Decoding APPLICATION NOTE How to Troubleshoot System Problems Using an Oscilloscope with I 2 C and SPI Decoding Introduction Most microcontroller-based designs use I 2 C or SPI or both, to communicate among controllers and between

More information

MicroProcessor. MicroProcessor. MicroProcessor. MicroProcessor

MicroProcessor. MicroProcessor. MicroProcessor. MicroProcessor 1 2 A microprocessor is a single, very-large-scale-integration (VLSI) chip that contains many digital circuits that perform arithmetic, logic, communication, and control functions. When a microprocessor

More information

SILICON MICROSTRUCTURES

SILICON MICROSTRUCTURES Digital Communication with SM5800 Series Parts OVERVIEW The SM5800 series pressure product offers the corrected pressure output in both analog and digital formats. Accessing the analog output is an easy

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17333 13141 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform.

Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform. Introduction to Microcontroller Apps for Amateur Radio Projects Using the HamStack Platform www.sierraradio.net www.hamstack.com Topics Introduction Hardware options Software development HamStack project

More information

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт.

Fredrick M. Cady. Assembly and С Programming forthefreescalehcs12 Microcontroller. шт. SECOND шт. Assembly and С Programming forthefreescalehcs12 Microcontroller Fredrick M. Cady Department of Electrical and Computer Engineering Montana State University New York Oxford Oxford University

More information

MACHINE BREAKDOWN DETECTION SYSTEM

MACHINE BREAKDOWN DETECTION SYSTEM MACHINE BREAKDOWN DETECTION SYSTEM Yogita P. Desale 1 1 student, Electronics and telecommunication Department, MCOERC, Maharashtra, ABSTRACT Industrial situation is very critical and is subject to several

More information

AT90SO72 Summary Datasheet

AT90SO72 Summary Datasheet AT90SO Summary Datasheet Features General High-performance, Low-power -/-bit Enhanced RISC Architecture Microcontroller - Powerful Instructions (Most Executed in a Single Clock Cycle) Low Power Idle and

More information

INTRODUCTION TO FLEXIO

INTRODUCTION TO FLEXIO INTRODUCTION TO FLEXIO Osvaldo Romero Applications Engineer EXTERNAL USE Agenda Introduction to FlexIO FlexIO Main Features FlexIO Applications Freescale Products with FlexIO Collaterals\Tools for FlexIO

More information

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG

EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG EMBEDDED SYSTEMS WITH ROBOTICS AND SENSORS USING ERLANG Adam Lindberg github.com/eproxus HARDWARE COMPONENTS SOFTWARE FUTURE Boot, Serial console, Erlang shell DEMO THE GRISP BOARD SPECS Hardware & specifications

More information