CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that:

Size: px
Start display at page:

Download "CS280 HW1 Solution Set Spring2002. now, we need to get rid of the n term. We know that:"

Transcription

1 CS80 HW Solutio Set Sprig00 Solutios by: Shddi Doghmi -) -) 4 * ) 4 b-) ) ) ) * ) ) ) 0 ) c-) ) ) ) ) ) ow we eed to get rid of the term. We ow tht: ) ) ) ) substitute ito the recursive epressio: ) so the solutio is: 6 *3 * d-) Two possible solutios I c thi of: solutio : ) solutio :

2 by similr resoigctully its ectly the sme!!) to c-) we get: 4 -) We wt to prove iductively tht: The ple is divided by lies) the regios c be colored usig blue d red such tht o two djcet regios hve the sme color) Note tht two regios re djcet if d oly if they shre edge I will use the word edge isted of side here to void mbiguity) Bsis: The ple is divided by 0 lies >we c color the oly regio blue> we c color it usig blue d red such tht o two djcet regios hve the sme color Iductive Hypothesis: The ple is divided by lies) the regios c be colored usig blue d red such tht o two djcet regios hve the sme color) Iductio: Give y lies dividig the ple we c remove lie i the ple to me totl of lies i the ple. Therefore the rrgemet of lies c be formed s such from rrgemet of lies by ddig the desired lie to me rrgemet of lies i the ple. Let us strt with our iitil lies. By the Iductio Hypothesis we c color the regios such tht o two djcet regios hve the sme color. Color them to chieve this. No two djcet regios hve the sme color if d oly if ll edges obey predicte P: Ps): At y poit o edge s the color to tht poit s right is differet from the color to tht poit s left Now dd the desired lie let s cll it lie λ. Ivert ll the colors o the right of tht lie blue becomes red d red becomes blue). For ll edges ot o λ we ow tht prior to the iversio ll such edges obeyed predicte P. After the iversio ech edge to the right of λ hd the colors o both its right d its left iverted which implies tht the colors remied differet!

3 Blue-Red becme Red-Blue). Edges to the left of λ were ot ffected d still obey predicte P. Therefore: Eve fter ddig lie λ d ivertig colors to λ s right ll edges NOT o λ still obey predicte P. Now wht bout edges ON lie λ? Whe we dded lie λ d before ivertig colors ech edge o λ pssed through wht ws sigle regio before λ cme ito beig by the defiitio of edge). Therefore ech edge o λ hd the sme colors to both it s left d it s right. The cme our iversio which iverted ll colors to the right of λ cusig ech edge o λ to hve differet colors to the left d right. Therefore fter ddig λ d ivertig the right side of λ: All edges o λ hve differet colors to the left d right Thus we coclude tht fter ddig λ d ivertig colors to λ s right: All edges be they o λ or ot hve differet colors to their right d left Hece give the iductio hypothesis we hve proved tht rbitrry rrgemet of lies c be colored such tht o two djcet regios hve the sme color: The ple is divided by lies) the regios c be colored usig blue d red such tht o two djcet regios hve the sme color) Coclusio: Give the bsis cse d the iductio we coclude tht: The ple is divided by lies) the regios c be colored usig blue d red such tht o two djcet regios hve the sme color) 3-) Bsis: 0 lies i the ple ple is divided ito regio. ple is divided ito 00)/ regios Iductive Hypothesis: lies i the ple ple is divided ito )/ regios Iductio: I rrgemet of lies we c remove lie to get rrgemet of lies. Therefore the rrgemet of lies c be formed from rrgemet of lies by ddig the desired lie.

4 Accordig to the iductive hypothesis before ddig the etr lie the ple hs )/ regios. Now we dd the desired lie λ. Sice the lie is ifiite ot segmet) d is ot prllel to y other lie ccordig to the questio specifictio) it must itersect ech of the lies lredy i the ple. Sice the questio lso specifies tht o 3 lies c itersect t poit we ow tht our ew lie λ will itersect ech of the lies i the ple seprtely. Sice λ will itersect lies seprtely these lies will chop λ up ito segmets this is esy to see ituitively but c be proved iductively). Ech of the segmets psses through wht ws oe regio before λ ws dded. Hece regios re divided ito ech geertig more regios. So fter ddig λ we ed up with this my regios: )/ ))/ Therefore if our iductive hypothesis is true the: lies i the ple ple is divided ito ))/ regios Or more precisely: IH ) IH ) Where IH is the iductive hypothesis predicte pplied to vrible. Coclusio: lies i the ple ple is divided ito )/ regios) 4-) The sttemet is flse. Proof by couter-emple: Te ) 4* 43 4*43 is obviously divisible by 4 which is ot itself or. This mes tht it is ot prime. Therefore it is ot true tht 4 is prime for ll turl umbers. 5-) We wt to prove iductively tht:

5 ... Bsis: For 0 the bsolute vlue of the sum of 0 umbers 0. The sum of the bsolute vlues of 0 umbers lso0. They re equl. Therefore the iductive hypothesis below is true for 0. Iductive Hypothesis:... Iductio: For y... : ow if d hve the sme sigve or -ve) the the bove epressio is equl to: otherwise if they hve differet sigs the the epressio is equl to the differece betwee their bsolute vlues: Therefore the gretest vlue c hve is: d it follows tht: IEQ: Usig our iductio hypothesis: IH: Combie IH d IEQ to get:

6 So give our IH ) predicte we proved tht:... Which is IH ) Coclusio:... 6-) The iductive by itself step is flwless. The bsis step by itself is lso flwless. However it is ot correct to combie them to form iductive proof. The reso is tht the iductive step uses d to prove the iductive hypothesis for. Therefore y vlid Bsis step MUST defie the first two elemets of the sequece. Oly by defiig the first two elemets 0 d ) d provig the iductive hypothesis for these elemets c we begi to costruct vlid iductive proof. If we modify the Bsis step d defie 0 d we would relize tht the Iductive Hypothesis ctully DOES NOT hold for the Bsis cse hece destroyig the iductive rgumet before it eve begis.

A Variant of Pascal s Triangle Dennis Van Hise Stetson University

A Variant of Pascal s Triangle Dennis Van Hise Stetson University A Vrit of Pscl s Trigle eis V Hise tetso Uiversity I. Itroductio d Nottio It is the purpose of this pper to explore vrit of Pscl s trigle. This vrit hs the rule tht every etry, deoted s,, where,, is clculted

More information

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n

. (b) Evaluate the sum given by. Exercise #1: A sequence is defined by the equation a n 2n Nme: 453 Dte: SEQUENCES ALGEBRA WITH TRIGONOMETRY Sequeces, or ordered list of umbers, re extremely importt i mthemtics, both theoreticl d pplied A sequece is formlly defied s fuctio tht hs s its domi

More information

Def : A radical is an expression consisting of a radical sign (radical symbol), a radicand, and an index.

Def : A radical is an expression consisting of a radical sign (radical symbol), a radicand, and an index. Mth 0 Uit : Roots & Powers Red Buildig O, Big Ides, d New Vocbulry, p. 0 tet.. Estitig Roots ( clss) Red Lesso Focus p. tet. Outcoes Ch. Notes. Defie d give eple of rdicl. pp. 0, 9. Idetify the ide d the

More information

Logic Spring Final Review

Logic Spring Final Review Idirect Argumet: Cotrdictios d Cotrpositio. Prove the followig by cotrdictio d by cotrpositio. Give two seprte proofs. The egtive of y irrtiol umber is irrtiol. b. For ll iteger, if ² is odd the is odd.

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Sectio 3.: Sequeces d Series Sequeces Let s strt out with the defiitio of sequece: sequece: ordered list of umbers, ofte with defiite ptter Recll tht i set, order does t mtter so this is oe wy tht sequece

More information

EE 477 Digital Signal Processing. 8a IIR Systems

EE 477 Digital Signal Processing. 8a IIR Systems EE 477 Digitl Sigl Processig 8 IIR Systems Geerl Differece Equtio FIR: output depeds o curret d pst iputs oly IIR: output depeds o curret d pst iputs d pst outputs y M [] b x[ ] + y[ l] l N l EE 477 DSP

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

Section 3.2: Arithmetic Sequences and Series

Section 3.2: Arithmetic Sequences and Series Sectio 3.: Arithmetic Sequeces Series Arithmetic Sequeces Let s strt out with efiitio: rithmetic sequece: sequece i which the ext term is fou by ig costt (the commo ifferece ) to the previous term Here

More information

Counting unlabeled full binary rooted plane trees

Counting unlabeled full binary rooted plane trees Coutig uleled full iry rooted ple trees How my wys re there to plce - pirs of pretheses i the product i such wy tht the order of multiplictio is completely specified? = = Coutig uleled full iry rooted

More information

Primitive Pythagorean triples and generalized Fibonacci sequences

Primitive Pythagorean triples and generalized Fibonacci sequences Notes o Number Theory d Discrete Mthemtics Prit ISSN 30 53, Olie ISSN 37 875 Vol 3, 07, No, 5 Primitive Pythgore triples d geerlized ibocci sequeces J V Leyedekkers d A G Sho, 3 culty of Sciece, The Uiversity

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction /8/05 5.3 Recursive defiitios ad structural iductio CSE03 Discrete Computatioal Structures Lecture 6 A recursively defied picture Recursive defiitios e sequece of powers of is give by a = for =0,,, Ca

More information

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle:

Recursion. Recursion. Mathematical induction: example. Recursion. The sum of the first n odd numbers is n 2 : Informal proof: Principle: Recursio Recursio Jordi Cortadella Departmet of Computer Sciece Priciple: Reduce a complex problem ito a simpler istace of the same problem Recursio Itroductio to Programmig Dept. CS, UPC 2 Mathematical

More information

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a

n n B. How many subsets of C are there of cardinality n. We are selecting elements for such a 4. [10] Usig a combiatorial argumet, prove that for 1: = 0 = Let A ad B be disjoit sets of cardiality each ad C = A B. How may subsets of C are there of cardiality. We are selectig elemets for such a subset

More information

3n

3n Prctice Set 6 Sequeces d Series Clcultor Required Objectives Alyze ptters i sequeces to determie subsequet terms. Fid the first four terms of sequece give equtio for. Fid expressio for give sequece. Expd

More information

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs

CHAPTER IV: GRAPH THEORY. Section 1: Introduction to Graphs CHAPTER IV: GRAPH THEORY Sectio : Itroductio to Graphs Sice this class is called Number-Theoretic ad Discrete Structures, it would be a crime to oly focus o umber theory regardless how woderful those topics

More information

Gauss-Seidel Method. An iterative method. Basic Procedure:

Gauss-Seidel Method. An iterative method. Basic Procedure: Guss-Siedel Method Guss-Seidel Method A itertive method. Bsic Procedure: -Algebriclly solve ech lier equtio for i -Assume iitil guess solutio rry -Solve for ech i d repet -Use bsolute reltive pproimte

More information

EX 1 Find the length of each side EX 2 Find the value of a, b, c, d. if the perimeter is 20.

EX 1 Find the length of each side EX 2 Find the value of a, b, c, d. if the perimeter is 20. HOW DOES THIS APPLY? EX Fid the legth of eh side EX 2 Fid the vlue of, b,, d. if the perieter is 20. To solve or ot to solve? C you solve usig properties of isoseles trigles disovered? If so, write the

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Algorithm Design Techniques. Divide and conquer Problem

Algorithm Design Techniques. Divide and conquer Problem Algorithm Desig Techiques Divide ad coquer Problem Divide ad Coquer Algorithms Divide ad Coquer algorithm desig works o the priciple of dividig the give problem ito smaller sub problems which are similar

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria.

Computer Science Foundation Exam. August 12, Computer Science. Section 1A. No Calculators! KEY. Solutions and Grading Criteria. Computer Sciece Foudatio Exam August, 005 Computer Sciece Sectio A No Calculators! Name: SSN: KEY Solutios ad Gradig Criteria Score: 50 I this sectio of the exam, there are four (4) problems. You must

More information

Using Gaussian Elimination for Determination of Structure Index in Euler Deconvolution

Using Gaussian Elimination for Determination of Structure Index in Euler Deconvolution Austrli Jourl of Bsic d Applied Scieces, 4(1): 6390-6396, 010 ISSN 1991-8178 Usig Gussi Elimitio for Determitio of Structure Idex i Euler Decovolutio 1 Rez.toushmli d M.ghbri 1 Islmic zd uiversity,hmed

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other.

Planar graphs. Definition. A graph is planar if it can be drawn on the plane in such a way that no two edges cross each other. Plaar graphs Defiitio. A graph is plaar if it ca be draw o the plae i such a way that o two edges cross each other. Example: Face 1 Face 2 Exercise: Which of the followig graphs are plaar? K, P, C, K,m,

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana

The Closest Line to a Data Set in the Plane. David Gurney Southeastern Louisiana University Hammond, Louisiana The Closest Lie to a Data Set i the Plae David Gurey Southeaster Louisiaa Uiversity Hammod, Louisiaa ABSTRACT This paper looks at three differet measures of distace betwee a lie ad a data set i the plae:

More information

Octahedral Graph Scaling

Octahedral Graph Scaling Octahedral Graph Scalig Peter Russell Jauary 1, 2015 Abstract There is presetly o strog iterpretatio for the otio of -vertex graph scalig. This paper presets a ew defiitio for the term i the cotext of

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Examples and Applications of Binary Search

Examples and Applications of Binary Search Toy Gog ITEE Uiersity of Queeslad I the secod lecture last week we studied the biary search algorithm that soles the problem of determiig if a particular alue appears i a sorted list of iteger or ot. We

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Gauss-Siedel Method. Major: All Engineering Majors. Authors: Autar Kaw

Gauss-Siedel Method. Major: All Engineering Majors. Authors: Autar Kaw Guss-Siedel Method Mjor: All Egieerig Mjors Authors: Autr Kw http://umericlmethods.eg.usf.edu Trsformig Numericl Methods Eductio for STEM Udergrdutes 4//06 http://umericlmethods.eg.usf.edu Guss-Seidel

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

Σ P(i) ( depth T (K i ) + 1),

Σ P(i) ( depth T (K i ) + 1), EECS 3101 York Uiversity Istructor: Ady Mirzaia DYNAMIC PROGRAMMING: OPIMAL SAIC BINARY SEARCH REES his lecture ote describes a applicatio of the dyamic programmig paradigm o computig the optimal static

More information

Counting Regions in the Plane and More 1

Counting Regions in the Plane and More 1 Coutig Regios i the Plae ad More 1 by Zvezdelia Stakova Berkeley Math Circle Itermediate I Group September 016 1. Overarchig Problem Problem 1 Regios i a Circle. The vertices of a polygos are arraged o

More information

Inductive Definition to Recursive Function

Inductive Definition to Recursive Function PDS: CS 11002 Computer Sc & Egg: IIT Kharagpur 1 Iductive Defiitio to Recursive Fuctio PDS: CS 11002 Computer Sc & Egg: IIT Kharagpur 2 Factorial Fuctio Cosider the followig recursive defiitio of the factorial

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com)

PLEASURE TEST SERIES (XI) - 04 By O.P. Gupta (For stuffs on Math, click at theopgupta.com) wwwtheopguptacom wwwimathematiciacom For all the Math-Gya Buy books by OP Gupta A Compilatio By : OP Gupta (WhatsApp @ +9-9650 350 0) For more stuffs o Maths, please visit : wwwtheopguptacom Time Allowed

More information

CMSC 430, Practice Problems 1 (Solutions)

CMSC 430, Practice Problems 1 (Solutions) CMC 430, Prtie Problems 1 olutios) 1. Cosider the followig grmmr: d or ) true flse. Compute First sets for eh produtio d otermil FIRTtrue) = { true } FIRTflse) = { flse } FIRT ) ) = { } FIRT d ) = FIRT

More information

Matrices and Systems of Equations

Matrices and Systems of Equations Mtrices Mtrices nd Sstems of Equtions A mtri is rectngulr rr of rel numbers. CHAT Pre-Clculus Section 8. m m m............ n n n mn We will use the double subscript nottion for ech element of the mtri.

More information

CIS 121. Introduction to Trees

CIS 121. Introduction to Trees CIS 121 Itroductio to Trees 1 Tree ADT Tree defiitio q A tree is a set of odes which may be empty q If ot empty, the there is a distiguished ode r, called root ad zero or more o-empty subtrees T 1, T 2,

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

Greedy Algorithms. Interval Scheduling. Greedy Algorithms. Interval scheduling. Greedy Algorithms. Interval Scheduling

Greedy Algorithms. Interval Scheduling. Greedy Algorithms. Interval scheduling. Greedy Algorithms. Interval Scheduling Greedy Algorithms Greedy Algorithms Witer Paul Beame Hard to defie exactly but ca give geeral properties Solutio is built i small steps Decisios o how to build the solutio are made to maximize some criterio

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting)

MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fitting) MATHEMATICAL METHODS OF ANALYSIS AND EXPERIMENTAL DATA PROCESSING (Or Methods of Curve Fittig) I this chapter, we will eamie some methods of aalysis ad data processig; data obtaied as a result of a give

More information

The Chromatic Covering of a Graph: Ratios, Domination, Areas and Farey Sequences.

The Chromatic Covering of a Graph: Ratios, Domination, Areas and Farey Sequences. The Chromtic Coverig of Grph: Rtios Domitio res d Frey eueces. Pul ugust Witer mthemtics UKZN Durb outh fric emil: witerp@ukz.c.z bstrct The study of the chromtic umber d vertex coverigs of grphs hs opeed

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

The golden search method: Question 1

The golden search method: Question 1 1. Golde Sectio Search for the Mode of a Fuctio The golde search method: Questio 1 Suppose the last pair of poits at which we have a fuctio evaluatio is x(), y(). The accordig to the method, If f(x())

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

ABOUT A CONSTRUCTION PROBLEM

ABOUT A CONSTRUCTION PROBLEM INTERNATIONAL JOURNAL OF GEOMETRY Vol 3 (014), No, 14 19 ABOUT A CONSTRUCTION PROBLEM OVIDIU T POP ad SÁNDOR N KISS Abstract I this paper, we study the costructio of a polygo if we kow the midpoits of

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions:

Solution printed. Do not start the test until instructed to do so! CS 2604 Data Structures Midterm Spring, Instructions: CS 604 Data Structures Midterm Sprig, 00 VIRG INIA POLYTECHNIC INSTITUTE AND STATE U T PROSI M UNI VERSI TY Istructios: Prit your ame i the space provided below. This examiatio is closed book ad closed

More information

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer

Solutions to Final COMS W4115 Programming Languages and Translators Monday, May 4, :10-5:25pm, 309 Havemeyer Departmet of Computer ciece Columbia Uiversity olutios to Fial COM W45 Programmig Laguages ad Traslators Moday, May 4, 2009 4:0-5:25pm, 309 Havemeyer Closed book, o aids. Do questios 5. Each questio is

More information

On (K t e)-saturated Graphs

On (K t e)-saturated Graphs Noame mauscript No. (will be iserted by the editor O (K t e-saturated Graphs Jessica Fuller Roald J. Gould the date of receipt ad acceptace should be iserted later Abstract Give a graph H, we say a graph

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence?

Recursive Procedures. How can you model the relationship between consecutive terms of a sequence? 6. Recursive Procedures I Sectio 6.1, you used fuctio otatio to write a explicit formula to determie the value of ay term i a Sometimes it is easier to calculate oe term i a sequece usig the previous terms.

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 6 Defiig Fuctios Pytho Programmig, 2/e 1 Objectives To uderstad why programmers divide programs up ito sets of cooperatig fuctios. To be able to

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

Mathematical Stat I: solutions of homework 1

Mathematical Stat I: solutions of homework 1 Mathematical Stat I: solutios of homework Name: Studet Id N:. Suppose we tur over cards simultaeously from two well shuffled decks of ordiary playig cards. We say we obtai a exact match o a particular

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

OCR Statistics 1. Working with data. Section 3: Measures of spread

OCR Statistics 1. Working with data. Section 3: Measures of spread Notes ad Eamples OCR Statistics 1 Workig with data Sectio 3: Measures of spread Just as there are several differet measures of cetral tedec (averages), there are a variet of statistical measures of spread.

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Lecture 2: Spectra of Graphs

Lecture 2: Spectra of Graphs Spectral Graph Theory ad Applicatios WS 20/202 Lecture 2: Spectra of Graphs Lecturer: Thomas Sauerwald & He Su Our goal is to use the properties of the adjacecy/laplacia matrix of graphs to first uderstad

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

Graceful Labelings of Pendant Graphs

Graceful Labelings of Pendant Graphs Rose-Hulma Udergraduate Mathematics Joural Volume Issue Article 0 Graceful Labeligs of Pedat Graphs Alessadra Graf Norther Arizoa Uiversity, ag@au.edu Follow this ad additioal works at: http://scholar.rose-hulma.edu/rhumj

More information

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES

INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES INTERNATIONAL JOURNAL OF GEOMETRY Vol. 2 (2013), No. 1, 5-22 INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES NENAD U. STOJANOVIĆ Abstract. If above each side of a regular polygo

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

EE213A - EE298-2 Lecture 11

EE213A - EE298-2 Lecture 11 EE23A EE292 Lecture Time multiplexig eferece: F. Ctthoor (prt III) Igrid Verbuwhede Deprtmet of Electricl Egieerig Uiversity of Clifori Los Ageles igrid@ee.ucl.edu Motivtio DSP represettio & modelig to

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

Hamiltonian-T*- Laceability in Jump Graphs Of Diameter Two

Hamiltonian-T*- Laceability in Jump Graphs Of Diameter Two IOSR Jourl of Mthemtics IOSR-JM e-issn 78-78 p-issn9-76x. Volume Issue Ver. III My-Ju. PP -6 www.iosrjourls.org Hmiltoi-T*- Lcebility i Jump Grphs Of Dimeter Two Mjuth.G Murli.R Deprtmet of MthemticsGopl

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. Chapter 4. The Processor. Part A Datapath Design COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Iterface 5 th Editio Chapter The Processor Part A path Desig Itroductio CPU performace factors Istructio cout Determied by ISA ad compiler. CPI ad

More information

Our Learning Problem, Again

Our Learning Problem, Again Noparametric Desity Estimatio Matthew Stoe CS 520, Sprig 2000 Lecture 6 Our Learig Problem, Agai Use traiig data to estimate ukow probabilities ad probability desity fuctios So far, we have depeded o describig

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

1. SWITCHING FUNDAMENTALS

1. SWITCHING FUNDAMENTALS . SWITCING FUNDMENTLS Switchig is the provisio of a o-demad coectio betwee two ed poits. Two distict switchig techiques are employed i commuicatio etwors-- circuit switchig ad pacet switchig. Circuit switchig

More information