How would, or how does, the patient position (chin extended) affect your beam arrangement?

Size: px
Start display at page:

Download "How would, or how does, the patient position (chin extended) affect your beam arrangement?"

Transcription

1 1 Megan Sullivan Clinical Practicum II Parotid Lab July 29, 2016 PLAN 1: IPSILATERAL WEDGE PAIR TECHNIQUE The ipsilateral wedge pair technique consisted of an anterior oblique field at 45 degrees and a posterior oblique field at 315 degrees. This arrangement created a hinge angle of 90 degrees. As hinge angles decrease, the superficial dose between these angles increases as this is the area of beam overlap. 1,2 In order to spread out this high dose and deposit dose deeper, wedges can be used with the heels facing one another. The wedge size is dependent on the number of degrees and in this case, 45 degree wedges were appropriate given the 90 degree hinge angle. The isocenter was placed in the center of the PTV and a block margin of 0.7cm around the PTV was placed on both fields. Weighting of the two fields was adjusted based on the location of the hotspots as well as taking into consideration the low dose into critical structures such as the spinal cord, brainstem, and oral cavity. To incorporate a lower neck field, the isocenter was shifted inferiorly in order to generate a half beam block technique. The block for the lower neck field was drawn to match the parotid field superiorly, follow along the ipsilateral clavicle inferiorly, block the spinal cord, esophagus, and larynx medially and provide a few centimeters of margin out laterally. This field was calculated at a depth of 3.0 cm to a dose of 1.8 /day to a total of How would, or how does, the patient position (chin extended) affect your beam arrangement? Having an extended chin offers the benefit of avoiding the patient s eyes with exit dose from an ipsilateral wedged pair beam arrangement. 1,3 When the chin is extended, the position of the eyes drops inferiorly thus falling outside of the beam path. Fortunately, this patient s chin was slightly extended so the beam arrangement with angles 15 degrees off in either direction of a straight lateral was sufficient. Additionally, the extended chin is well out of the way of the AP lower neck field. If you were not able to get adequate coverage on the parotid using the wedged pair technique, what were your constraints? The part of the PTV lacking coverage was the superficial area. Relatively speaking, parotids are a superficial structure so the 1 cm margin that was added to generate the PTV resulted in a target volume outside of the body. Dose needs buildup before it can be deposited in tissue so it is unreasonable to expect this part of the PTV to receive coverage. If the physician is concerned about the lack of superficial coverage, bolus could be an option. However, bolus placement on this area of the body is difficult and often times inaccurate because of the proximity of the ear canal and overall surface irregularity. Unless skin involvement is of concern, it is generally not

2 2 necessary to bolus this type of treatment. To assess PTV coverage in a realistic sense, a PTV_opti structure was created and cropped 0.5 cm away from the surface. The dose to this PTV structure is recorded for all three plans. The same goes for the GTV. A GTV_opti structure was created by cropping 0.5 cm away from the surface. The images on the axial slices, however, show the true PTV. Organ/Volume of Interest Desired objective(s) Achieved objective(s) PTV V60 = 95% V60 = 71.5% PTV_OPTI V60 = 80% GTV V60 = 100% V60 = 92% GTV_OPTI V60 = 96% LOWER NECK NODES V50.4 = 100% 95% volume receiving 43 SPINAL CORD Max 50 Max = BRAIN STEM LARYNX EYE COCHLEA PAROTID MANDIBLE Max < 54 V59 < 1-10 cc Mean 44 V50 27% Max Mean <35 Max <54 Mean < 35 Mean < 20 (1 gland) Max 70 (if not possible, then V75 < 1cc) Max = V59 = 0 cc Mean = 1.58 V50 = 0% Max = LEFT Mean = 0.98 Max = 1.5 LEFT Mean = 0.92 Max = 1.4 Mean = 25.8 Mean = 1.29 Mean = 5.9 Max = 64.5

3 3 Axial slice of ipsilateral wedge pair technique. GTV is contoured in light green PTV is contoured in magenta Isodose lines shown: o 6000 c o 5700 c o 4500 c o 2400 c Max hotspot = 6473 c

4 4 Axial slice of lower neck field. Lower neck nodes are contoured in yellow Isodose lines shown: o 5400 c o 4788 c o 3780 c o 2016 c Calc point placed at 3.0 cm depth Max hotspot = 5352 c

5 5 DVH shown in absolute dose of ipsilateral wedge pair and lower neck node field technique. Field data of ipsilateral wedge pair and lower neck node fields.

6 6 PLAN 2: IPSILATERAL MIXED ENERGY PHOTON/ELECTRON TECHNIQUE The ipsilateral mixed energy photon/electron technique consisted of a straight lateral at 90 degrees for the photon and an en face electron field with a gantry angle of 67 degrees and SSD of 100 cm. The isocenter was placed at the center of the PTV. Both fields were created with a 0.7 cm block margin around the PTV. The photon field used an energy of 6 MV and contributed to treating the deeper portion of the parotid gland. The electron field used an energy of 16 MeV and offered coverage superficially. The weighting of the two beams started out with a 1:4 photon to electron ratio as per recommendation of Khan. 4 Ultimately this plan reflects about a 2:3 photon to electron beam weighting. How does this plan compare to your wedged pair plan? Overall, this plan offers better coverage to both the PTV and GTV when compared to the wedged pair plan. This is due to the superficial coverage that was obtained from the electrons. This plan provided a homogeneous dose distribution, but at the price of a hotter plan. When evaluating organs at risk, the structures that receive less dose than the wedged pair plan are the brain stem and the mandible (specifically low dose on the mandible). The structures that receive more dose are both cochleae and the spared parotid. According to Washington and Leaver 1, the opposite salivary glands typically receive 3000 c or less with the mixed energy photon/electron technique. This all makes sense considering the beam angles of each plan. The oblique angles are each exiting into the brain stem and mandible and the straight lateral angle is exiting into both cochleae and right parotid. Were there any dose constraints not met? As previously mentioned with the wedge pair plan, the target coverage objective was not met due to the superficial position of the contours. However, the opti structures are meeting the dose objectives. As far as normal structures are concerned, all dose constraints were met.

7 7 Organ/Volume of Interest Desired objective(s) Achieved objective(s) PTV V60 = 95% V60 = 82% PTV_OPTI V60 = 96% GTV V60 = 100% V60 = 98% GTV_OPTI V60 = 100% SPINAL CORD BRAIN STEM LARYNX EYE COCHLEA PAROTID MANDIBLE Max 50 Max < 54 V59 < 1-10 cc Mean 44 V50 27% Max Mean <35 Max <54 Mean < 35 Mean < 20 (1 gland) Max 70 (if not possible, then V75 < 1cc) Max = 37.2 Max = 26.8 V59 = 0 cc Mean = 6.6 V50 = 0.6% Max = 5.5 LEFT Mean = 1.4 Max = 2.0 LEFT Mean = 1.3 Max = 2.0 Mean = 33.8 Mean = 8.3 Mean = 14.9 Max = 66

8 8 Axial slice of ipsilateral mixed energy photon/electron technique. GTV is contoured in light green PTV is contoured in magenta Isodose lines shown: o 6000 c o 5700 c o 4500 c o 2400 c Max hotspot = 7293 c

9 9 DVH shown in absolute dose of ipsilateral mixed energy photon/electron technique. Field data of ipsilateral mixed energy photon/electron fields.

10 Beam s eye view of electron block with a 0.7 cm margin around the PTV. 10

11 11 PLAN 3: IMRT (VMAT) The use of an IMRT plan offers the ability to create a conformal plan while simultaneously reducing the dose to surrounding normal structures. As previously mentioned, the original PTV and GTV volumes are too superficial to realistically deposit dose. Therefore PTV_opti and GTV_opti structures were created for the optimizer. The only normal structure that overlaps with this target volume was the mandible so and spare structure for the mandible was created in efforts to abstain from giving the optimizer conflicting instructions. The isocenter was placed in the center of the PTV. The energy used was 6 MV. Two different IMRT plans were created, one VMAT and one true IMRT. In the end, the VMAT plan was chosen for evaluation for this project. What beam arrangements did you try? For the VMAT plan, two partial arcs were used: 335 degrees to 179 degrees and the counter arc. These beams were used because the 335 angle followed parallel with the angle of the PTV and the 179 angle was just beyond the exit of the 335 angle and therefore offered degrees beyond the overlap. For true IMRT, a 5 beam arrangement was used with two different sets of angles. The first set was: 30, 60, 90, 120, 150. The second set was: 10, 50, 90, 130, 170. The second set offered a superior plan to the first set, but ultimately the VMAT plan was the best option. Why did you decide on your final one? The VMAT plan was chosen for a few reasons. First, the IMRT plan was hotter and had the 100% isodose line breaking up whereas the VMAT was more uniform and less hot. Another reason involved the assessment of the normal structure dose. Majority of the normal structures were spared more on the VMAT plan, namely, right parotid, brain stem, left cochlea, larynx, and spinal cord. And finally, the 20% isodose line was spraying out more on the IMRT plan whereas this was rounded off in the VMAT plan.

12 12 Organ/Volume of Interest Desired objective(s) Achieved objective(s) PTV V60 = 95% V60 = 75% PTV_OPTI V60 = 96% GTV V60 = 100% V60 = 96.5% GTV_OPTI V60 = 100% SPINAL CORD BRAIN STEM LARYNX EYE COCHLEA PAROTID MANDIBLE Max 50 Max < 54 V59 < 1-10 cc Mean 44 V50 27% Max Mean <35 Max <54 Mean < 35 Mean < 20 (1 gland) Max 70 (if not possible, then V75 < 1cc) Max = 14.8 Max = 14.2 V59 = 0 cc Mean = 1.4 V50 = 0 % Max = 11.7 LEFT Mean = 7.7 Max = 1.2 LEFT Mean = 6.2 Max = 0.95 Mean = 14 Mean = 2.5 Mean = 5.75 Max = 63

13 13 Axial slice of ipsilateral mixed energy photon/electron technique. GTV is contoured in light green PTV is contoured in magenta Isodose lines shown: o 6000 c o 5700 c o 4500 c o 2400 c Max hotspot = 6386 c

14 14 DVH shown in absolute dose of VMAT technique. Field data of VMAT fields.

15 15 References: 1. Washington CM. Principles And Practice of Radiation Therapy. 3rd ed. St. Louis, Mo.: Mosby Elsevier; Khan FM. Classical Radiation Therapy. In: The Physics of Radiation Therapy. 4th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2010: Bentel GC. Treatment planning Head and Neck Region. In: Radiation Therapy Planning. 2nd ed. New York, NY: McGraw-Hill; 1996: Khan FM. Gerbi BJ. Radiation Therapy Using High-Energy Electron Beams. 3 rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2012: 388.

Photon beam dose distributions in 2D

Photon beam dose distributions in 2D Photon beam dose distributions in 2D Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2014 Acknowledgments! Narayan Sahoo PhD! Richard G Lane (Late) PhD 1 Overview! Evaluation

More information

7/29/2017. Making Better IMRT Plans Using a New Direct Aperture Optimization Approach. Aim of Radiotherapy Research. Aim of Radiotherapy Research

7/29/2017. Making Better IMRT Plans Using a New Direct Aperture Optimization Approach. Aim of Radiotherapy Research. Aim of Radiotherapy Research Making Better IMRT Plans Using a New Direct Aperture Optimization Approach Dan Nguyen, Ph.D. Division of Medical Physics and Engineering Department of Radiation Oncology UT Southwestern AAPM Annual Meeting

More information

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them

Dose Distributions. Purpose. Isodose distributions. To familiarize the resident with dose distributions and the factors that affect them Dose Distributions George Starkschall, Ph.D. Department of Radiation Physics U.T. M.D. Anderson Cancer Center Purpose To familiarize the resident with dose distributions and the factors that affect them

More information

Basic Radiation Oncology Physics

Basic Radiation Oncology Physics Basic Radiation Oncology Physics T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute Gurgaon Acknowledgment: I gratefully acknowledge the IAEA resources of teaching slides

More information

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties Steven Dolly 1, Eric Ehler 1, Yang Lou 2, Mark Anastasio 2, Hua Li 2 (1) University

More information

Monaco Concepts and IMRT / VMAT Planning LTAMON0003 / 3.0

Monaco Concepts and IMRT / VMAT Planning LTAMON0003 / 3.0 and IMRT / VMAT Planning LTAMON0003 / 3.0 and Planning Objectives By the end of this presentation you can: Describe the cost functions in Monaco and recognize their application in building a successful

More information

Hugues Mailleux Medical Physics Department Institut Paoli-Calmettes Marseille France. Sunday 17 July 2016

Hugues Mailleux Medical Physics Department Institut Paoli-Calmettes Marseille France. Sunday 17 July 2016 Hugues Mailleux Medical Physics Department Institut Paoli-Calmettes Marseille France Sunday 17 July 2016 AGENDA 1. Introduction 2. Material 3. Optimization process 4. Results 5. Comments 6. Conclusion

More information

IMRT site-specific procedure: Prostate (CHHiP)

IMRT site-specific procedure: Prostate (CHHiP) IMRT site-specific procedure: Prostate (CHHiP) Scope: To provide site specific instructions for the planning of CHHIP IMRT patients Responsibilities: Radiotherapy Physicists, HPC Registered Therapy Radiographers

More information

Radiation therapy treatment plan optimization

Radiation therapy treatment plan optimization H. Department of Industrial and Operations Engineering The University of Michigan, Ann Arbor, Michigan MOPTA Lehigh University August 18 20, 2010 Outline 1 Introduction Radiation therapy delivery 2 Treatment

More information

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application Monaco VMAT The Next Generation in IMRT/VMAT Planning Paulo Mathias Customer Support TPS Application 11.05.2011 Background What is Monaco? Advanced IMRT/VMAT treatment planning system from Elekta Software

More information

Current state of multi-criteria treatment planning

Current state of multi-criteria treatment planning Current state of multi-criteria treatment planning June 11, 2010 Fall River NE AAPM meeting David Craft Massachusetts General Hospital Talk outline - Overview of optimization - Multi-criteria optimization

More information

8/4/2016. Emerging Linac based SRS/SBRT Technologies with Modulated Arc Delivery. Disclosure. Introduction: Treatment delivery techniques

8/4/2016. Emerging Linac based SRS/SBRT Technologies with Modulated Arc Delivery. Disclosure. Introduction: Treatment delivery techniques Emerging Linac based SRS/SBRT Technologies with Modulated Arc Delivery Lei Ren, Ph.D. Duke University Medical Center 2016 AAPM 58 th annual meeting, Educational Course, Therapy Track Disclosure I have

More information

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience DVH Estimates Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience Karen Chin Snyder, MS, DABR AAMD Region V Meeting October 4, 2014 Disclosures The Department of Radiation Oncology

More information

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF

Acknowledgments. Ping Xia, Ph.D., UCSF. Pam Akazawa, CMD, UCSF. Cynthia Chuang, Ph.D., UCSF Page 1 Quality Assurance of IMRT Delivery Systems - Siemens Lynn J. Verhey, Ph.D. Professor and Vice-Chair UCSF Dept. of Radiation Oncology AAPM 22 Annual Meeting, Montreal Acknowledgments Ping Xia, Ph.D.,

More information

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE

IMSURE QA SOFTWARE FAST, PRECISE QA SOFTWARE QA SOFTWARE FAST, PRECISE Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, VMAT, SRS and brachytherapy plans no film, no phantoms, no linac

More information

Transitioning from pencil beam to Monte Carlo for electron dose calculations

Transitioning from pencil beam to Monte Carlo for electron dose calculations Transitioning from pencil beam to Monte Carlo for electron dose calculations Jessie Huang-Vredevoogd (jyhuang4@wisc.edu) University of Wisconsin NCC AAPM October 12, 2019 1 Topics to cover Background RayStation

More information

Dosimetric impact of the 160 MLC on head and neck IMRT treatments

Dosimetric impact of the 160 MLC on head and neck IMRT treatments JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Dosimetric impact of the 160 MLC on head and neck IMRT treatments Prema Rassiah-Szegedi, a Martin Szegedi, Vikren Sarkar, Seth Streitmatter,

More information

Raising the Bar in IMRT QA

Raising the Bar in IMRT QA MapCHECK 2TM Raising the Bar in IMRT QA The leader in quick and precise measurement of modulated radiotherapy beams Benefits Proven solution for film-less rotational delivery and IMRT QA - More than 1500

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017

ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD. Moe Siddiqui, April 08, 2017 ROBUST OPTIMIZATION THE END OF PTV AND THE BEGINNING OF SMART DOSE CLOUD Moe Siddiqui, April 08, 2017 Agenda Background IRCU 50 - Disclaimer - Uncertainties Robust optimization Use Cases Lung Robust 4D

More information

A derivative-free multistart framework for an automated noncoplanar beam angle optimization in IMRT

A derivative-free multistart framework for an automated noncoplanar beam angle optimization in IMRT A derivative-free multistart framework for an automated noncoplanar beam angle optimization in IMRT Humberto Rocha and Joana Dias FEUC and Inesc-Coimbra, University of Coimbra, Portugal 5 1 Tiago Ventura

More information

CONTOURING ACCURACY. What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016

CONTOURING ACCURACY. What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016 CONTOURING ACCURACY What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016 FIRST THINGS FIRST Happy Medical Dosimetrist s Week! OUTLINE 1. Objectives 2. The importance of

More information

Integrated proton-photon treatment planning

Integrated proton-photon treatment planning Pinnacle 3 Proton Planning Integrated proton-photon treatment planning Philips Pinnacle 3 Proton Planning specifications Pinnacle 3 Proton Planning is designed to simplify treatment planning for proton

More information

Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms

Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 11, NUMBER 1, WINTER 2010 Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms Mike Oliver, a Isabelle

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

THE WIRELESS PHANTOM PERFORM ACCURATE PATIENT QA IN LESS TIME THAN EVER!

THE WIRELESS PHANTOM PERFORM ACCURATE PATIENT QA IN LESS TIME THAN EVER! THE WIRELESS PHANTOM PERFORM ACCURATE PATIENT QA IN LESS TIME THAN EVER! Confidence in complex treatments Modern radiation therapy uses complex plans with techniques such as IMRT, VMAT and Tomotherapy.

More information

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System A Fully-Automated Intensity-Modulated Radiation Therapy Planning System Shabbir Ahmed, Ozan Gozbasi, Martin Savelsbergh Georgia Institute of Technology Ian Crocker, Tim Fox, Eduard Schreibmann Emory University

More information

FAST, precise. qa software

FAST, precise. qa software qa software FAST, precise Software for accurate and independent verification of monitor units, dose, and overall validity of standard, IMRT, rotational or brachytherapy plans no film, no phantoms, no linac

More information

The MSKCC Approach to IMRT. Outline

The MSKCC Approach to IMRT. Outline The MSKCC Approach to IMRT Spiridon V. Spirou, PhD Department of Medical Physics Memorial Sloan-Kettering Cancer Center New York, NY Outline Optimization Field splitting Delivery Independent verification

More information

MapCHECK 2 & 3DVH. The Gold Standard for 2D Arrays

MapCHECK 2 & 3DVH. The Gold Standard for 2D Arrays MapCHECK 2 & 3DVH The Gold Standard for 2D Arrays Your Most Valuable QA and Dosimetry Tools THE GOLD STANDARD FOR 2D ARRAYS The MapCHECK 2 is the world s most selected independent 2D measurement array.

More information

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC GPU applications in Cancer Radiation Therapy at UCSD Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC Conventional Radiotherapy SIMULATION: Construciton, Dij Days PLANNING:

More information

An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors

An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 13, NUMBER 4, 2012 An experimental investigation on the effect of beam angle optimization on the reduction of beam numbers in IMRT of head and neck tumors

More information

MapCHECK 2 & 3DVH The Gold Standard for 2D Arrays

MapCHECK 2 & 3DVH The Gold Standard for 2D Arrays MapCHECK 2 & 3DVH The Gold Standard for 2D Arrays Your Most Valuable QA and Dosimetry Tools THE GOLD STANDARD FOR 2D ARRAYS The MapCHECK 2 is the world s most selected independent 2D measurement array.

More information

DOSIMETRY/ RADIATION THERAPY TERMS

DOSIMETRY/ RADIATION THERAPY TERMS DOSIMETRY/ RADIATION THERAPY TERMS BENJAMIN RODRIGUEZ CLINICAL TRAINING RTH 290 1. Digital Reconstructed Radiograph (DRR) Is based on acquired CT information, these are images that render a beam s eye

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System

A Fully-Automated Intensity-Modulated Radiation Therapy Planning System A Fully-Automated Intensity-Modulated Radiation Therapy Planning System Shabbir Ahmed, Ozan Gozbasi, Martin Savelsbergh Georgia Institute of Technology Tim Fox, Ian Crocker, Eduard Schreibmann Emory University

More information

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study

A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study A fluence convolution method to account for respiratory motion in three-dimensional dose calculations of the liver: A Monte Carlo study Indrin J. Chetty, a) Mihaela Rosu, Neelam Tyagi, Lon H. Marsh, Daniel

More information

Robustness Recipes for Proton Therapy

Robustness Recipes for Proton Therapy Robustness Recipes for Proton Therapy Polynomial Chaos Expansion as a tool to construct robustness recipes for proton therapy C.E. ter Haar Delft University of Technology Robustness Recipes for Proton

More information

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL

A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL A DOSIMETRIC MODEL FOR SMALL-FIELD ELECTRON RADIATION THERAPY A CREATIVE PROJECT (3 SEMESTER HOURS) SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF

More information

TRAJECTORY- BASED TREATMENT PLANNING AND DELIVERY FOR CRANIAL RADIOSURGERY

TRAJECTORY- BASED TREATMENT PLANNING AND DELIVERY FOR CRANIAL RADIOSURGERY TRAJECTORY- BASED TREATMENT PLANNING AND DELIVERY FOR CRANIAL RADIOSURGERY JAMES ROBAR, PHD, FCCPM LEE MACDONALD, MSC CHRISTOPHER THOMAS, PHD, MCCPM DALHOUSIE UNIVERSITY, CANADA CLASS SOLUTIONS IN SRS/SRT

More information

MINIMAX OPTIMIZATION FOR HANDLING RANGE AND SETUP UNCERTAINTIES IN PROTON THERAPY

MINIMAX OPTIMIZATION FOR HANDLING RANGE AND SETUP UNCERTAINTIES IN PROTON THERAPY MINIMAX OPTIMIZATION FOR HANDLING RANGE AND SETUP UNCERTAINTIES IN PROTON THERAPY Albin FREDRIKSSON, Anders FORSGREN, and Björn HÅRDEMARK Technical Report TRITA-MAT-1-OS2 Department of Mathematics Royal

More information

The Dose Junction Issue Associated with Photon Beams for Large Volume Radiation Therapy and the Sensitivity to Set-up Error

The Dose Junction Issue Associated with Photon Beams for Large Volume Radiation Therapy and the Sensitivity to Set-up Error Research Article imedpub Journals http://www.imedpub.com/ Journal of Medical Physics and Applied Sciences The Dose Junction Issue Associated with Photon Beams for Large Volume Radiation Therapy and the

More information

Anthropomorphic Verification of the Eclipse AAA Algorithm for Spine SBRT Treatments Involving Titanium Implants

Anthropomorphic Verification of the Eclipse AAA Algorithm for Spine SBRT Treatments Involving Titanium Implants Anthropomorphic Verification of the Eclipse AAA Algorithm for Spine SBRT Treatments Involving Titanium Implants Mike Grams Clinical Medical Physicist Mayo Clinic, Rochester, MN NCCAAPM Meeting, April 17,

More information

Application of polynomial chaos in proton therapy

Application of polynomial chaos in proton therapy Application of polynomial chaos in proton therapy Dose distributions, treatment parameters, robustness recipes & treatment planning Master Thesis S.R. van der Voort June, 215 Supervisors: Dr. Ir. D. Lathouwers

More information

OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING

OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING OPTIMIZATION MODELS FOR RADIATION THERAPY: TREATMENT PLANNING AND PATIENT SCHEDULING By CHUNHUA MEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF

More information

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) 2009-05-08 Caroline Olsson, M.Sc. Topics History of radiotherapy Developments that has led to IMRT The IMRT process How

More information

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011 Auto-Segmentation Using Deformable Image Registration Lei Dong, Ph.D. Dept. of Radiation Physics University of Texas MD Anderson Cancer Center, Houston, Texas AAPM Therapy Educational Course Aug. 4th 2011

More information

A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy

A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy Shin-Wook Kim, Hun-Joo Shin, Chul Seung Kay, Seok Hyun Son* Radiation Oncology, Incheon St. Mary s Hospital, College of Medicine,

More information

Radiotherapy Plan Competition TomoTherapy Planning System. Dmytro Synchuk. Ukrainian Center of TomoTherapy, Kirovograd, Ukraine

Radiotherapy Plan Competition TomoTherapy Planning System. Dmytro Synchuk. Ukrainian Center of TomoTherapy, Kirovograd, Ukraine Radiotherapy Plan Competition 2016 TomoTherapy Planning System Dmytro Synchuk Ukrainian Center of TomoTherapy, Kirovograd, Ukraine Beam Geometry 6MV fan beam 3 jaw options 1.0, 2.5 and 5 cm 64 leaves binary

More information

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC New Technology in Radiation Oncology James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC Technology s s everywhere From the imaging chain To the planning system To the linac To QA..it..it

More information

Multi-Purpose Body Phantom

Multi-Purpose Body Phantom Multi-Purpose Body Phantom Legal & Copyright Notice Information in this manual is subject to change without notice. Permission is granted to Owners of the to reproduce the Worksheets included in this manual

More information

NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS

NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS NEW METHOD OF COLLECTING OUTPUT FACTORS FOR COMMISSIONING LINEAR ACCELERATORS WITH SPECIAL EMPHASIS ON SMALL FIELDS AND INTENSITY MODULATED RADIATION THERAPY by Cindy D. Smith A Thesis Submitted to the

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Dosimetric Analysis Report

Dosimetric Analysis Report RT-safe 48, Artotinis str 116 33, Athens Greece +30 2107563691 info@rt-safe.com Dosimetric Analysis Report SAMPLE, for demonstration purposes only Date of report: ----------- Date of irradiation: -----------

More information

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT

Volumetric Modulated Arc Therapy - Clinical Implementation. Outline. Acknowledgement. History of VMAT. IMAT Basics of IMAT Volumetric Modulated Arc Therapy - Clinical Implementation Daliang Cao, PhD, DABR Swedish Cancer Institute, Seattle, WA Acknowledgement David M. Shepard, Ph.D. Muhammad K. N. Afghan, Ph.D. Fan Chen, Ph.D.

More information

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS

Tomotherapy Physics. Machine Twinning and Quality Assurance. Emilie Soisson, MS Tomotherapy Physics Machine Twinning and Quality Assurance Emilie Soisson, MS Tomotherapy at UW- Madison Treating for nearly 5 years Up to ~45 patients a day on 2 tomo units Units twinned to facilitate

More information

Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures

Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures Feasibility of 3D Printed Patient specific Phantoms for IMRT QA and Other Dosimetric Special Procedures ehler 046@umn.edu Eric Ehler, PhD Assistant Professor Department of Radiation Oncology What is 3D

More information

Initial Clinical Experience with 3D Surface Image Guidance

Initial Clinical Experience with 3D Surface Image Guidance Initial Clinical Experience with 3D Surface Image Guidance Amanda Havnen-Smith, Ph.D. Minneapolis Radiation Oncology Ridges Radiation Therapy Center Burnsville, MN April 20 th, 2012 Non-funded research

More information

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1 Use of Deformable Image Registration in Radiation Therapy Colin Sims, M.Sc. Accuray Incorporated 1 Overview of Deformable Image Registration (DIR) Algorithms that can deform one dataset to another have

More information

Dose Calculation and Optimization Algorithms: A Clinical Perspective

Dose Calculation and Optimization Algorithms: A Clinical Perspective Dose Calculation and Optimization Algorithms: A Clinical Perspective Daryl P. Nazareth, PhD Roswell Park Cancer Institute, Buffalo, NY T. Rock Mackie, PhD University of Wisconsin-Madison David Shepard,

More information

3DVH FAQs. What is PDP questions

3DVH FAQs. What is PDP questions 3DVH FAQs What is PDP questions 1. Explain the PDP in layman terms. How does PDP work? a. Very simply, PDP uses measured diode data, and compares it to the expected treatment plan data. The differences

More information

ATTENTION! The whole content of the lecture with all the animations can be dowloaded from:

ATTENTION! The whole content of the lecture with all the animations can be dowloaded from: ATTENTION! The whole content of the lecture with all the animations can be dowloaded from: http://www.onko.szote.uszeged.hu/letoltes/radioter_phys_basis/radiother_phys_basis.zip Size > 300 M!!! The dowloaded.zip

More information

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization Application to Intensity-Modulated Radiation Therapy (IMRT) 2008-05-08 Caroline Olsson, M.Sc. Topics Short history of radiotherapy Developments that has led to IMRT The IMRT process

More information

Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT)

Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT) Applied Optimization: Application to Intensity-Modulated Radiation Therapy (IMRT) 2010-05-04 Caroline Olsson, M.Sc. caroline.olsson@vgregion.se Topics History of radiotherapy Developments that has led

More information

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI GPU-Accelerated autosegmentation for adaptive radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li agodley@mcw.edu NCAAPM Spring Meeting 2010 Madison, WI Overview Motivation Adaptive

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

Machine and Physics Data Guide

Machine and Physics Data Guide WWW..COM Machine and Physics Data Guide STANDARD IMAGING, INC. 3120 Deming Way Middleton, WI 53562-1461 May / 2008 2008 Standard Imaging, Inc. TEL 800.261.4446 TEL 608.831.0025 FAX 608.831.2202 www.standardimaging.com

More information

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development

PCRT 3D. Scalable Architecture System. User-Friendly. Traceable. Continuos Development PCRT 3D The PCRT3D is a versatile 3D radiation treatment planning system featuring the most accurate algorithm calculations, the latest techniques in virtual simulation and the most advanced radiotherapy

More information

A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans

A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2013 A secondary monitor unit calculation algorithm using superposition of symmetric, open fields for IMRT plans Adam

More information

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Krista Chytyk MSc student Supervisor: Dr. Boyd McCurdy Introduction The objective of cancer radiotherapy

More information

CLINICAL ASPECTS OF COMPACT GANTRY DESIGNS

CLINICAL ASPECTS OF COMPACT GANTRY DESIGNS CLINICAL ASPECTS OF COMPACT GANTRY DESIGNS J. Heese, J. Wulff, A. Winnebeck, A. Huggins, M. Schillo VARIAN PARTICLE THERAPY JUERGEN HEESE New gantry developments Viewpoint from user and vendor perspective

More information

Clinical implementation of photon beam flatness measurements to verify beam quality

Clinical implementation of photon beam flatness measurements to verify beam quality JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 6, 2015 Clinical implementation of photon beam flatness measurements to verify beam quality Simon Goodall, a Nicholas Harding, Jake Simpson,

More information

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Chia-Chi Teng Department of Electrical Engineering University of Washington 1 Outline Introduction Related Work

More information

Using a research real-time control interface to go beyond dynamic MLC tracking

Using a research real-time control interface to go beyond dynamic MLC tracking in partnership with Using a research real-time control interface to go beyond dynamic MLC tracking Dr. Simeon Nill Joint Department of Physics at The Institute of Cancer Research and the Royal Marsden

More information

An accelerated multistart derivative-free framework for the beam angle optimization problem in IMRT

An accelerated multistart derivative-free framework for the beam angle optimization problem in IMRT An accelerated multistart derivative-free framework for the beam angle optimization problem in IMRT Humberto Rocha 1,2, Joana M. Dias 1,2, Tiago Ventura 3, Brígida C. Ferreira 4, and Maria do Carmo Lopes

More information

Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG)

Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG) JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 1, 2016 Evaluation of fluence-based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG) Lalith K. Kumaraswamy,

More information

arxiv: v1 [physics.med-ph] 22 Dec 2011

arxiv: v1 [physics.med-ph] 22 Dec 2011 Including Robustness in Multi-criteria Optimization for Intensity Modulated Proton Therapy arxiv:2.5362v [physics.med-ph] 22 Dec 20 Wei Chen, Jan Unkelbach, Alexei Trofimov, Thomas Madden, Hanne Kooy,

More information

Code of practice: Create a verification plan for OCTAVIUS Detector 729 in Philips Pinnacle³

Code of practice: Create a verification plan for OCTAVIUS Detector 729 in Philips Pinnacle³ Technical Note D655.208.03/00 Code of practice: Create a verification plan for OCTAVIUS Detector 729 in There are basically three ways to carry out verification of IMRT fluences. For all options, it is

More information

A SYSTEM OF DOSIMETRIC CALCULATIONS

A SYSTEM OF DOSIMETRIC CALCULATIONS A SYSTEM OF DOSIMETRIC CALCULATIONS INTRODUCTION Dose calculation based on PDD and TAR have Limitations The dependence of PDD on SSD Not suitable for isocentric techniques TAR and SAR does not depend on

More information

The IORT Treatment Planning System. radiance. GMV, 2012 Property of GMV All rights reserved

The IORT Treatment Planning System. radiance. GMV, 2012 Property of GMV All rights reserved The IORT Treatment Planning System radiance Property of GMV All rights reserved WHY RADIANCE? JUSTIFICATION Property of GMV All rights reserved ADVANTAGES OF IORT PRECISION: RT guided by direct vision.

More information

An Investigation of a Model of Percentage Depth Dose for Irregularly Shaped Fields

An Investigation of a Model of Percentage Depth Dose for Irregularly Shaped Fields Int. J. Cancer (Radiat. Oncol. Invest): 96, 140 145 (2001) 2001 Wiley-Liss, Inc. Publication of the International Union Against Cancer An Investigation of a Model of Percentage Depth Dose for Irregularly

More information

Optimized planning for intraoperative planar permanent-seed implant

Optimized planning for intraoperative planar permanent-seed implant JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 3, SUMMER 2002 Optimized planning for intraoperative planar permanent-seed implant Albert Y. C. Fung,* Howard I. Amols, and Marco Zaider Department

More information

Facility Questionnaire PART I (General Information for 3DCRT and IMRT)

Facility Questionnaire PART I (General Information for 3DCRT and IMRT) Facility Questionnaire PART I (General Information for 3DCRT and IMRT) The following items are required before you can enter cases on any RTOG protocol that requires data submission to the Image-Guided

More information

On compensator design for photon beam intensity-modulated conformal therapy

On compensator design for photon beam intensity-modulated conformal therapy On compensator design for photon beam intensity-modulated conformal therapy Steve B. Jiang a) and Komanduri M. Ayyangar Department of Radiation Therapy, Medical College of Ohio, 3000 Arlington Avenue,

More information

Chapter 9 Field Shaping: Scanning Beam

Chapter 9 Field Shaping: Scanning Beam Chapter 9 Field Shaping: Scanning Beam X. Ronald Zhu, Ph.D. Department of Radiation Physics M. D. Anderson Cancer Center Houston, TX June 14-18, 2015 AAPM - Summer School 2015, Colorado Spring Acknowledgement

More information

Assesing multileaf collimator effect on the build-up region using Monte Carlo method

Assesing multileaf collimator effect on the build-up region using Monte Carlo method Pol J Med Phys Eng. 2008;14(3):163-182. PL ISSN 1425-4689 doi: 10.2478/v10013-008-0014-0 website: http://www.pjmpe.waw.pl M. Zarza Moreno 1, 2, N. Teixeira 3, 4, A. P. Jesus 1, 2, G. Mora 1 Assesing multileaf

More information

Automatic measurement of air gap for proton therapy using orthogonal x ray imaging with radiopaque wires

Automatic measurement of air gap for proton therapy using orthogonal x ray imaging with radiopaque wires Received: 18 February 2018 Revised: 13 June 2018 Accepted: 5 November 2018 DOI: 10.1002/acm2.12509 TECHNICAL NOTE Automatic measurement of air gap for proton therapy using orthogonal x ray imaging with

More information

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588

ICARO Vienna April Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 ICARO Vienna April 27-29 2009 Implementing 3D conformal radiotherapy and IMRT in clinical practice: Recommendations of IAEA- TECDOC-1588 M. Saiful Huq, Ph.D., Professor and Director, Dept. of Radiation

More information

Interactive Treatment Planning in Cancer Radiotherapy

Interactive Treatment Planning in Cancer Radiotherapy Interactive Treatment Planning in Cancer Radiotherapy Mohammad Shakourifar Giulio Trigila Pooyan Shirvani Ghomi Abraham Abebe Sarah Couzens Laura Noreña Wenling Shang June 29, 212 1 Introduction Intensity

More information

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D.

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D. Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment Huijun Xu, Ph.D. Acknowledgement and Disclosure Dr. Jeffrey Siebers Dr. DJ

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. D.Leone, A.Häußler Intitute for Nuclear Waste Disposal, Karlsruhe Institute for Technology,

More information

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code American Journal of Biomedical Engineering 216, 6(4): 124-131 DOI: 1.5923/j.ajbe.21664.3 Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ankit Kajaria 1,*, Neeraj Sharma

More information

IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques

IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques IAEA-TECDOC-1583 Commissioning of Radiotherapy Treatment Planning Systems: Testing for Typical External Beam Treatment Techniques Report of the Coordinated Research Project (CRP) on Development of Procedures

More information

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy

Data. ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy Data ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy ModuLeaf Mini Multileaf Collimator Precision Beam Shaping for Advanced Radiotherapy The ModuLeaf Mini Multileaf

More information

Goals. Scope/exclusions. Outline: follow outline of MPPG (plus rationale & some implementation experiences)

Goals. Scope/exclusions. Outline: follow outline of MPPG (plus rationale & some implementation experiences) AAPM MEDICAL PHYSICS PRACTICE GUIDELINE # : Commissioning and QA of Treatment Planning Dose Calculations: Megavoltage Photon and Electron Beams Jennifer Smilowitz (Chair), University of Wisconsin-Madison

More information

Helical Tomotherapy Qualitative dose Delivery Verification

Helical Tomotherapy Qualitative dose Delivery Verification University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange University of Tennessee Honors Thesis Projects University of Tennessee Honors Program 5-2003 Helical Tomotherapy Qualitative

More information

1. Learn to incorporate QA for surface imaging

1. Learn to incorporate QA for surface imaging Hania Al-Hallaq, Ph.D. Assistant Professor Radiation Oncology The University of Chicago ***No disclosures*** 1. Learn to incorporate QA for surface imaging into current QA procedures for IGRT. 2. Understand

More information

Performance and characteristics of an IR localizing system for radiation therapy

Performance and characteristics of an IR localizing system for radiation therapy JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 2, SPRING 2006 Performance and characteristics of an IR localizing system for radiation therapy Yulia Lyatskaya, 1 Hsiao-Ming Lu, 2 and Lee

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information