Subtracting Fractions

Size: px
Start display at page:

Download "Subtracting Fractions"

Transcription

1 Lerning Enhncement Tem Model Answers: Adding nd Subtrcting Frctions Adding nd Subtrcting Frctions study guide. When the frctions both hve the sme denomintor (bottom) you cn do them using just simple dding nd subtrcting. Or some of them these cn be done by dding nd subtrcting frctions tht you lredy know. Try sying them out loud (or in your hed if tht s not prcticl) () A third plus third is two thirds or, if you wnt to do it more formlly, the denomintors (bottoms) re both nd so you cn just dd the numertors (tops) to give nd so the new numertor is. Pictorilly this looks like: + = (b) A third plus two thirds is three thirds which is whole or, in other words, one Agin the denomintors re the sme nd so you just dd the numertors to give. Then you hve: It is best not to leve it s / becuse this cn be cncelled down to which is much simpler. Pictorilly this looks like: + =

2 (c) Sy it out loud or in your hed: A hlf plus qurter is three qurters + = (d) A hlf minus qurter is qurter You know tht two qurters mke hlf nd so, if you tke qurter from hlf, you re left with just one qurter. - = (e) Five sixths plus one sixth is six sixths which is whole or Formlly you my write + = (f) or One sixths plus seven sixths is eight sixths So: Then you cn cncel this down by dividing the top nd bottom by to get /. It is preferble to write it s n improper frction s / lthough the mixed frction is lso common. The importnt thing to remember with mixed frctions is tht, even though the numbers re written next to ech other, it is not but.

3 (g) Minus sixth minus sixth is minus two sixths which cncels down to minus third You need to be cler tht negtive number minus nother negtive number is lso negtive number. Then: (h) 0 An eighth minus n eighth is zero Anything minus itself is 0. (i) 0 Minus n eight plus n eight is zero. This question is just the sme s the previous one but with the negtive number before the positive one.. Now you hve to find common denomintor by multiplying the denomintors of the two frctions. Remember you cn only dd or subtrct the numertors of frctions if they hve the sme denomintor. ) or You get the common denomintor by multiplying the two denomintors so Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. Now the denomintors re the sme in both frctions, you cn dd the numertors to give: which is the preferred form for the nswer lthough you my lso see it written s mixed frction s.

4 b) You get the common denomintor by multiplying the two denomintors so. Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: c) You get the common denomintor by multiplying the two denomintors so. Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: Now the denomintors re the sme in both frctions, you cn dd the numertors to give: d) You get the common denomintor by multiplying the two denomintors so. Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht:

5 So / nd / re equivlent frctions. To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: So / nd / re equivlent frctions. Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: e) or 0 0 You get the common denomintor by multiplying the two denomintors so 0. Then, to get 0 to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: 0 To get 0 to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: 0 Now the denomintors re the sme in both frctions, you cn dd the numertors to give: which is the preferred form for the nswer lthough you my lso see it written s mixed frction s. 0 f) 0 00 You get the common denomintor by multiplying the two denomintors so Then, to get 00 to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by 00 so tht: To get 00 to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht:

6 00 00 Now the denomintors re the sme in both frctions, you cn dd the numertors to give: g) 00 You get the common denomintor by multiplying the two denomintors so Then, to get 00 to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: To get 00 to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by 00 so tht: Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: h) You get the common denomintor by multiplying the two denomintors so. Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give:

7 i) 000 You get the common denomintor by multiplying the two denomintors so Then, to get 000 to be the denomintor of the first frction, you multiply both the numertor nd the denomintor by so tht: To get 000 to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by 000 so tht: Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: In these ones you could just multiply the denomintors but it is more efficient to find lower number tht hs both the denomintors s fctors. This is known s the lowest common multiple (see study guide: Lowest Common Multiple) ) Remember hlf plus qurter is three qurters. To do it more formlly you find common denomintor. Now you could multiply the denomintors to get nd then convert the frctions to hve this denomintor which would give And then you cn cncel this down to get /. It is bit quicker nd neter to choose lower common denomintor which is since hs both the originl denomintors ( nd ) s fctors. Then you cn convert the first frction by multiplying both the numertor nd the denomintor by so tht: nd there is no need for ny cncelling down.

8 b) Agin, you could choose common denomintor of but it is quicker to use since is fctor of. Convert the second frction by multiplying both the numertor nd the denomintor by so tht: which cncels down to /. c) Since is fctor of, the lowest common multiple is. Convert the second frction by multiplying both the numertor nd the denomintor by so tht: d) Since is fctor of, the lowest common multiple is. Convert the second frction by multiplying both the numertor nd the denomintor by so tht: e) This is slightly different since is not fctor of. However is not the lowest common multiple. It is becuse hs both nd s fctors. See the study guide Lowest Common Multiple for help with this. Convert the first frction by multiplying both the numertor nd the denomintor by so tht:

9 nd convert the second frction by multiplying both the numertor nd the denomintor by so tht: f) Since is fctor of, the lowest common multiple is. Convert the second frction by multiplying both the numertor nd the denomintor by so tht: g) Since is fctor of, the lowest common multiple is. Convert the first frction by multiplying both the numertor nd the denomintor by so tht: 0 which cncels down to. h) In this one is not fctor of. However is not the lowest common multiple. It is becuse hs both nd s fctors. Convert the first frction by multiplying both the numertor nd the denomintor by so tht:

10 nd convert the second frction by multiplying both the numertor nd the denomintor by so tht: i) In this one is not fctor of. However 0 is not the lowest common multiple. It is becuse hs both nd s fctors. Convert the first frction by multiplying both the numertor nd the denomintor by so tht: nd convert the second frction by multiplying both the numertor nd the denomintor by so tht:. First convert both mixed frctions to improper frctions by multiplying whole number by the denomintor of the frctionl prt nd then dding this to the numertor. Then pply the sme methods s before. Remember tht in mixed frction the whole number is not multiplying the frction prt even though they re written next to ech other. They re ctully being dded. ) Remember the mixed frction does not men but is ctully the sme s sying, two hlves plus one hlf or which is three hlves or /. This is the most common mixed frction nd so it is worth remembering the improper form which is, in generl, more useful. Now you hve converted it to n improper frction, you cn use the sme methods s before. The denomintors re nd which re co-prime nd so you get the common denomintor by multiplying them so. Then, to get to be the denomintor of the

11 first frction, you multiply both the numertor nd the denomintor of the improper frction by so tht: To get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor by so tht: Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: which is the preferred form for the nswer lthough you my lso see it written s mixed frction s. b) The mixed frction is the sme s sying, fifteen thirds plus one third or which is sixteen thirds or /. Now you hve converted it to n improper frction, you cn use the sme methods s before. The denomintors re nd. Since is fctor of, is the lowest common multiple. Then, to get to be the denomintor of the first frction, you multiply both the numertor nd the denomintor of the improper frction by so tht: Now the denomintors re the sme in both frctions, you cn subtrct the numertors to give: which is the preferred form for the nswer lthough you my lso see it written s mixed frction s. c) The mixed frction is the sme s nd the mixed frction is the sme s 0. The denomintors re nd. Since is fctor of, is the lowest common multiple. Then, to get to be the denomintor of the second frction, you multiply both the numertor nd the denomintor of the improper frction by so tht:

12 0 0 Now the denomintors re the sme in both frctions, you cn dd the numertors to give: 0 which is the preferred form for the nswer lthough you my lso see it written s mixed frction s.. The sme techniques pply to dding three or more frctions. Just mke sure tht the denomintor hs ll three (or more) frctions s fctor. ) Since nd re both fctors of. The lowest common multiple is. / cn be written s / nd / cn be written s / so tht: the ddition becomes which simplifies to. b) This cn be rerrnged to: nd so the first two frctions cncel to leve / ; even though there re frctions, the rules of ddition nd subtrction still pply. c) 0 The lowest common multiple of the denomintors is 0. cn be written s 0 cn be written s nd 0 So the nswer is cn be written s nd 0 0

13 d) You hve to relise tht Then, since multiple is 0 nd So the nswer is 0 cn be written s is fctor of 0 the lowest common So to get the deciml nswer, you just move the deciml point seven plces to the left. e) 0. Since both 0 nd 00 re fctors of is the lowest common multiple. So the nswer is 00 cn be written s nd cn be written s which is 0. s deciml. f) recurring This is n exmple of n infinite series. Even though the series goes on forever, it still hs number tht it sums up to. This is generlistion of the previous exmple. You cn choose ny power of 0 to be the denomintor such s 00,000 or 00,000,000. However lrge you mke it the numertor will lwys be s nd so the deciml will be 0. recurring which is the sme s g) + + = See question ) bove. Then, to get generl unit frction /, you cn divide both sides of this eqution by (or, in other words, multiply by / ) so tht:

14 nd so nd then the nswer is = + + This is n exmple of n Egyptin frction. These model nswers re one of series on mthemtics produced by the Lerning Enhncement Tem. Scn the QR-code with smrtphone pp for more resources.

Rational Numbers---Adding Fractions With Like Denominators.

Rational Numbers---Adding Fractions With Like Denominators. Rtionl Numbers---Adding Frctions With Like Denomintors. A. In Words: To dd frctions with like denomintors, dd the numertors nd write the sum over the sme denomintor. B. In Symbols: For frctions c nd b

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association 9. CISC - Curriculum & Instruction Steering Committee The Winning EQUATION A HIGH QUALITY MATHEMATICS PROFESSIONAL DEVELOPMENT PROGRAM FOR TEACHERS IN GRADES THROUGH ALGEBRA II STRAND: NUMBER SENSE: Rtionl

More information

Angle properties of lines and polygons

Angle properties of lines and polygons chievement Stndrd 91031 pply geometric resoning in solving problems Copy correctly Up to 3% of workbook Copying or scnning from ES workbooks is subject to the NZ Copyright ct which limits copying to 3%

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

Study Guide for Exam 3

Study Guide for Exam 3 Mth 05 Elementry Algebr Fll 00 Study Guide for Em Em is scheduled for Thursdy, November 8 th nd ill cover chpters 5 nd. You my use "5" note crd (both sides) nd scientific clcultor. You re epected to no

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

x )Scales are the reciprocal of each other. e

x )Scales are the reciprocal of each other. e 9. Reciprocls A Complete Slide Rule Mnul - eville W Young Chpter 9 Further Applictions of the LL scles The LL (e x ) scles nd the corresponding LL 0 (e -x or Exmple : 0.244 4.. Set the hir line over 4.

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

RATIONAL EQUATION: APPLICATIONS & PROBLEM SOLVING

RATIONAL EQUATION: APPLICATIONS & PROBLEM SOLVING RATIONAL EQUATION: APPLICATIONS & PROBLEM SOLVING When finding the LCD of problem involving the ddition or subtrction of frctions, it my be necessry to fctor some denomintors to discover some restricted

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

3 FRACTIONS. Before you start. Objectives

3 FRACTIONS. Before you start. Objectives FRATIONS Only one eighth of n iceberg shows bove the surfce of the wter, which leves most of it hidden. The lrgest northern hemisphere iceberg ws encountered ner Bffin Islnd in nd in 1. It ws 1 km long,

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center

The Math Learning Center PO Box 12929, Salem, Oregon Math Learning Center Resource Overview Quntile Mesure: Skill or Concept: 80Q Multiply two frctions or frction nd whole numer. (QT N ) Excerpted from: The Mth Lerning Center PO Box 99, Slem, Oregon 9709 099 www.mthlerningcenter.org

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study:

fraction arithmetic. For example, consider this problem the 1995 TIMSS Trends in International Mathematics and Science Study: Brringer Fll Mth Cmp November, 06 Introduction In recent yers, mthemtics eductors hve begun to relize tht understnding frctions nd frctionl rithmetic is the gtewy to dvnced high school mthemtics Yet, US

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Engineer To Engineer Note

Engineer To Engineer Note Engineer To Engineer Note EE-186 Technicl Notes on using Anlog Devices' DSP components nd development tools Contct our technicl support by phone: (800) ANALOG-D or e-mil: dsp.support@nlog.com Or visit

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Matrices and Systems of Equations

Matrices and Systems of Equations Mtrices Mtrices nd Sstems of Equtions A mtri is rectngulr rr of rel numbers. CHAT Pre-Clculus Section 8. m m m............ n n n mn We will use the double subscript nottion for ech element of the mtri.

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

Math 4 Review for Quarter 2 Cumulative Test

Math 4 Review for Quarter 2 Cumulative Test Mth 4 Review for Qurter 2 Cumultive Test Nme: I. Right Tringle Trigonometry (3.1-3.3) Key Fcts Pythgoren Theorem - In right tringle, 2 + b 2 = c 2 where c is the hypotenuse s shown below. c b Trigonometric

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

1 Quad-Edge Construction Operators

1 Quad-Edge Construction Operators CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Essential Question What are some of the characteristics of the graph of a rational function?

Essential Question What are some of the characteristics of the graph of a rational function? 8. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A..A A..G A..H A..K Grphing Rtionl Functions Essentil Question Wht re some of the chrcteristics of the grph of rtionl function? The prent function for rtionl functions

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation

Representation of Numbers. Number Representation. Representation of Numbers. 32-bit Unsigned Integers 3/24/2014. Fixed point Integer Representation Representtion of Numbers Number Representtion Computer represent ll numbers, other thn integers nd some frctions with imprecision. Numbers re stored in some pproximtion which cn be represented by fixed

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

Introducing fractions

Introducing fractions Introduing frtions Nme Colour hlf of eh shpe: Show the following fr ons: out of out of out of Lel these fr ons: Shde these fr ons: 7 0 Represents ommon fr ons on different models Interprets the numertor

More information

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator.

COMMON FRACTIONS. or a / b = a b. , a is called the numerator, and b is called the denominator. COMMON FRACTIONS BASIC DEFINITIONS * A frtion is n inite ivision. or / * In the frtion is lle the numertor n is lle the enomintor. * The whole is seprte into "" equl prts n we re onsiering "" of those

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

File Manager Quick Reference Guide. June Prepared for the Mayo Clinic Enterprise Kahua Deployment

File Manager Quick Reference Guide. June Prepared for the Mayo Clinic Enterprise Kahua Deployment File Mnger Quick Reference Guide June 2018 Prepred for the Myo Clinic Enterprise Khu Deployment NVIGTION IN FILE MNGER To nvigte in File Mnger, users will mke use of the left pne to nvigte nd further pnes

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014

CS2204 DIGITAL LOGIC & STATE MACHINE DESIGN SPRING 2014 CS DIGITAL LOGIC & STATE MACHINE DESIGN SPRING DUE : April 7, HOMEWOR V READ : Relted portions of Chpters III, IV, VI, VII nd VIII ASSIGNMENT : There re seven questions Solve ll homework nd exm problems

More information

WebAssign Lesson 1-3a Substitution Part 1 (Homework)

WebAssign Lesson 1-3a Substitution Part 1 (Homework) WeAssign Lesson -3 Sustitution Prt (Homework) Current Score : / 3 Due : Fridy, June 7 04 :00 AM MDT Jimos Skriletz Mth 75, section 3, Summer 04 Instructor: Jimos Skriletz. /.5 points Suppose you hve the

More information

EECS 281: Homework #4 Due: Thursday, October 7, 2004

EECS 281: Homework #4 Due: Thursday, October 7, 2004 EECS 28: Homework #4 Due: Thursdy, October 7, 24 Nme: Emil:. Convert the 24-bit number x44243 to mime bse64: QUJD First, set is to brek 8-bit blocks into 6-bit blocks, nd then convert: x44243 b b 6 2 9

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

This notebook investigates the properties of non-integer differential operators using Fourier analysis.

This notebook investigates the properties of non-integer differential operators using Fourier analysis. Frctionl erivtives.nb Frctionl erivtives by Fourier ecomposition by Eric Thrne 4/9/6 This notebook investigtes the properties of non-integer differentil opertors using Fourier nlysis. In[]:=

More information

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid

Digital Design. Chapter 1: Introduction. Digital Design. Copyright 2006 Frank Vahid Chpter : Introduction Copyright 6 Why Study?. Look under the hood of computers Solid understnding --> confidence, insight, even better progrmmer when wre of hrdwre resource issues Electronic devices becoming

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

ECE 468/573 Midterm 1 September 28, 2012

ECE 468/573 Midterm 1 September 28, 2012 ECE 468/573 Midterm 1 September 28, 2012 Nme:! Purdue emil:! Plese sign the following: I ffirm tht the nswers given on this test re mine nd mine lone. I did not receive help from ny person or mteril (other

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries

Tries. Yufei Tao KAIST. April 9, Y. Tao, April 9, 2013 Tries Tries Yufei To KAIST April 9, 2013 Y. To, April 9, 2013 Tries In this lecture, we will discuss the following exct mtching prolem on strings. Prolem Let S e set of strings, ech of which hs unique integer

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers?

1.1. Interval Notation and Set Notation Essential Question When is it convenient to use set-builder notation to represent a set of numbers? 1.1 TEXAS ESSENTIAL KNOWLEDGE AND SKILLS Prepring for 2A.6.K, 2A.7.I Intervl Nottion nd Set Nottion Essentil Question When is it convenient to use set-uilder nottion to represent set of numers? A collection

More information

Section 5.3 : Finding Area Between Curves

Section 5.3 : Finding Area Between Curves MATH 9 Section 5. : Finding Are Between Curves Importnt: In this section we will lern just how to set up the integrls to find re etween curves. The finl nswer for ech emple in this hndout is given for

More information

Section 9.2 Hyperbolas

Section 9.2 Hyperbolas Section 9. Hperols 597 Section 9. Hperols In the lst section, we lerned tht plnets hve pproimtel ellipticl orits round the sun. When n oject like comet is moving quickl, it is le to escpe the grvittionl

More information

CSE 401 Midterm Exam 11/5/10 Sample Solution

CSE 401 Midterm Exam 11/5/10 Sample Solution Question 1. egulr expressions (20 points) In the Ad Progrmming lnguge n integer constnt contins one or more digits, but it my lso contin embedded underscores. Any underscores must be preceded nd followed

More information

What are suffix trees?

What are suffix trees? Suffix Trees 1 Wht re suffix trees? Allow lgorithm designers to store very lrge mount of informtion out strings while still keeping within liner spce Allow users to serch for new strings in the originl

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

George Boole. IT 3123 Hardware and Software Concepts. Switching Algebra. Boolean Functions. Boolean Functions. Truth Tables

George Boole. IT 3123 Hardware and Software Concepts. Switching Algebra. Boolean Functions. Boolean Functions. Truth Tables George Boole IT 3123 Hrdwre nd Softwre Concepts My 28 Digitl Logic The Little Mn Computer 1815 1864 British mthemticin nd philosopher Mny contriutions to mthemtics. Boolen lger: n lger over finite sets

More information

OPERATIONS AND ALGEBRAIC THINKING NUMBER AND OPERATIONS IN BASE TEN NUMBER AND OPERATIONS: FRACTIONS

OPERATIONS AND ALGEBRAIC THINKING NUMBER AND OPERATIONS IN BASE TEN NUMBER AND OPERATIONS: FRACTIONS OPERTIONS ND LGERIC THINKING 003-019 WRITE ND INTERPRET NUMERICL EXPRESSIONS NLYZE PTTERNS ND RELTIONSHIPS NUMER ND OPERTIONS IN SE TEN 020-174 UNDERSTND THE PLCE VLUE SYSTEM PERFORM OPERTIONS WITH MULTI-DIGIT

More information

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES

UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS 1 COMPUTATION & LOGIC INSTRUCTIONS TO CANDIDATES UNIVERSITY OF EDINBURGH COLLEGE OF SCIENCE AND ENGINEERING SCHOOL OF INFORMATICS INFORMATICS COMPUTATION & LOGIC Sturdy st April 7 : to : INSTRUCTIONS TO CANDIDATES This is tke-home exercise. It will not

More information

Name Date Class. cot. tan. cos. 1 cot 2 csc 2

Name Date Class. cot. tan. cos. 1 cot 2 csc 2 Fundmentl Trigonometric Identities To prove trigonometric identit, use the fundmentl identities to mke one side of the eqution resemle the other side. Reciprocl nd Rtio Identities csc sec sin cos Negtive-Angle

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Informtion Retrievl nd Orgnistion Suffix Trees dpted from http://www.mth.tu.c.il/~himk/seminr02/suffixtrees.ppt Dell Zhng Birkeck, University of London Trie A tree representing set of strings { } eef d

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

MSTH 236 ELAC SUMMER 2017 CP 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MSTH 236 ELAC SUMMER 2017 CP 1 SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. MSTH 236 ELAC SUMMER 2017 CP 1 SHORT ANSWER. Write the word or phrse tht best completes ech sttement or nswers the question. Find the product. 1) (8y + 11)(4y 2-2y - 9) 1) Simplify the expression by combining

More information

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully:

Physics 208: Electricity and Magnetism Exam 1, Secs Feb IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Exm 1, Secs. 506 510 11 Feb. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Mathematics Interventi. and Focused Mathematics Booster Packs Alignment to Eureka Math and Common Core State Standards

Mathematics Interventi. and Focused Mathematics Booster Packs Alignment to Eureka Math and Common Core State Standards Focused Mthemtics Intervention nd Focused Mthemtics Booster Pcks lignment to Eurek Mth nd Common Core Stte Stndrds Grdes K Finding Fctor Pirs Independent Prctice Lerning Obje ctives Write number tht is

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ CMOS transmission gate (TG) TG example

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ CMOS transmission gate (TG) TG example Introduction to Computer Engineering EECS 23 http://ziyng.eecs.northwestern.edu/ dickrp/eecs23/ CMOS trnsmission gte TG Instructor: Robert Dick Office: L477 Tech Emil: dickrp@northwestern.edu Phone: 847

More information

Suffix trees, suffix arrays, BWT

Suffix trees, suffix arrays, BWT ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Rluc Uricru Suffix trees, suffix rrys, BWT Bsed on: Suffix trees nd suffix rrys presenttion y Him Kpln Suffix trees course y Pco Gomez Liner-Time

More information