such that the S i cover S, or equivalently S

Size: px
Start display at page:

Download "such that the S i cover S, or equivalently S"

Transcription

1 MATH 55 Triple Integrls Fll Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i or i. i=1 Finlly i j for i j is either empty or surfce. A mesh of is number m such tht ech i is contined in bll of rdius m (the center of this bll cn chnge for ech i ). Next pick point p i = (x i, y i, z i ) in ech i. Then the iemnn sum ssocited to the prtition, the points p i nd the function f(x, y, z) is n (, {p i }, f) = f(x i, y i, z i ) volume( i ) provided this limit exists. i=1 lim (, {p i}, f) mesh A bsic result due to iemnn is the following If f is continuous on nd if is closed nd bounded, then Other bsic results which follow from the definition. If f nd g stisfy f g on nd if f(x, y, z) dv nd f(x, y, z) dv g(x, y, z) dv The integrls re equl if nd only if the functions re equl. A corollry of this result is tht if m f(x, y, z) M on then m volume() f(x, y, z) dv M volume() provided f(x, y, z) dv exists. If f nd g re defined on nd if f(x, y, z) + g(x, y, z) dv = If f is defined on, if c is constnt, nd if f(x, y, z) dv nd c c f(x, y, z) dv + f(x, y, z) dv exists. g(x, y, z) dv exist, then g(x, y, z) dv exist, then f(x, y, z) dv exists, then f(x, y, z) dv g(x, y, z) dv If = 1 nd if 1 is contined in surfce, then f(x, y, z) dv + f(x, y, z) dv 1 1

2 provided f(x, y, z) dv nd 1 f(x, y, z) dv exist. Midpoint ule: If is prtitioned into boxes x < x 1 < < x n, y < y 1 < < y m nd z < z 1 < < z r nd then n m r f(x, y, z) dv f( x i, ȳ j, z k ) x i x i 1 y j y j 1 z j z j 1 i=1 where x i = x i + x i 1, ȳ j = y j + y j 1 j=1 k=1 nd z k = z k + z k 1. Averge Vlue By definition, the verge vlue of function f on solid is 1 f(x, y, z) dv volume()

3 . Iterted integrls An iterted (triple) integrl is n expression of the form b t(x) b(x,y) b(x) (x,y) f(x, y, z) dz dy dx There will be other vritions. ix of them cn be obtined by permuting the order of the vribles. Others come from using different coordinte systems. It is lso useful in setting up triple integrls s iterted integrls to let be the region defined by b t(x) b(x) dy dx nd observe tht b t(x) b(x,y) b(x) (x,y) f(x, y, z) dz dy dx = ( ) b(x,y) (x,y) The outer double integrl is n ordinry double integrl so if you hve 3 ( ) b(x,y) you know how to get the corresponding iterted integrl. The new mteril is to work out wht b(x,y) (x,y) f(x, y, z) dz is nd you cn certinly guess the correct nswer. Here (x, y) nd b(x, y) re functions of x nd y where usully (x, y) b(x, y) for (x, y) but the inequlity is not necessry to work out the nswer so don t bother checking it t this point. All you do is do first yer clculus definite integrl treting x n y s constnts. In more detil, by the Fundmentl Theorem of Clculus, you need to find F (x, y, z) such tht F (x, y, z) = f(x, y, z) z nd then b(x,y) f(x, y, z) dz = F ( x, y, b(x, y) ) F ( x, y, (x, y) ) Notice s promised tht (x,y) b(x,y) (x,y) is just n ordinry double integrl. (x,y) f(x, y, z) dz is function of x nd y so the outer double integrl

4 4 3. etting up iterted integrls The gol is to reduce triple integrl to n iterted integrl. As is usul in this sort of problem, the function is irrelevnt. trt with solid nd pick coordinte plne, sy the xy plne. You re looking for the region in the xy plne with the following property. A point (x, y) if nd only if there is n intervl [α, ω] such tht the verticl line through the point (x, y), sy x, y, + t,, 1 intersects in the segment x, y, + t,, 1, α t ω. In prticulr, if (x, y) /, the line x, y, + t,, 1 does not intersect the solid t ll. For ech vlue of (x, y) in, the point x, y, α is the lowest point in which intersects the line. Hence α is function of (x, y) nd we write α(x, y). imilrly, x, y, ω is the highest point in which intersects the line so ω = ω(x, y). To proceed YOU need to find formuls for α(x, y) nd ω(x, y) nd then ( ) ω(x,y) α(x,y) The region is clled the projection of the solid into the xy plne. Hence given solid you need to determine: (1) The projection of into coordinte plne (your choice). () The functions α nd ω Projections. As we discussed erlier in the semester, projections of cylinders re esy. A cylinder is curve in coordinte plne nd consists of the set of ll lines perpendiculr to the coordinte plne pssing through the curve. xmples of cylinders: Inside x + y = 9 Inside x y = 1, y = 1 nd y =

5 3.. qutions. The solid we re going to discuss hs projection where is one of the two regions in the lst subsection nd it is the prt of 3-spce bove z = x y nd below z = x + y 8. 5 Here is picture of the cse of where is the disk. The blue surfce is the grph of z = x +y 8 while the white one is z = x y. If x + y 9, 3 x 3 nd 3 y 3. Hence x + y 18 nd x + y 18 so inside the yellow disk, z = x + y 8 is negtive nd z = x y is positive so t ny point (x, y) in, the intervl [x + y 8, x y ] lies in. Hence ll of the yellow disk lies between these two grphs nd ( ) x y x +y 8 To work out n exmple to the end, suppose we wnt to find the volume. Then f(x, y, z) = 1. ( ) x y 1 dv = 1 dz da = z da = 3(16 x y ) da = 3 x +y 8 π 4 (16 r )r dr dθ = 6π 6π (18 64) = 6 64π = 384π z= x y z=x +y 8 (8r r4 4 ) 4 =

6 6 For nother exmple, consider the surfce T bove z = x +y 8 nd below z = x y. At first there seems to be no obvious region. ch grph projects into the entire xy plne so these projections re not the issue. However, the solid is the set of ll points x + y 8 x y. To understnd this inequlity, consider the equlity x + y 8 = x y, or x + y = 16. The circle divides the plne into two regions nd inside ech region either x + y 8 x y or x + y 8 x y by continuity. At the origin (, ), x +y 8 < x y so the disk stisfies x +y 8 x y. A point in the outside region is (5, ) nd therefore x +y 8 x y in the entire outside region. Hence the disk x + y 16 is the set of ll (x, y) such tht x + y 8 x y. Then T x +y 16 ( ) x y x +y 8 We will evlute the triple integrl 4. Type? solids f(x, y, z) dv where is the tetrhedron below the plne x + y + 3z = 1 nd in the first octnt. We will do this in three wys. The definition in the book of Type? solids re simply those for which the projection into coordinte plne cn be worked out. In prticulr, we will see tht the solid is Type 1, Type nd Type 3. 1 x y If we project into the xy plne we need to find ll x, y such tht z =. 3 The line x + y = 1 divides the first qudrnt into two pieces. The point (, ) lies in the tringle nd z > there so the tringle is the projection. Hence the projection into the xy plne is the tringle in the first qudrnt x + y = 1, denoted T 1. 1 x 3z If we project into the xz plne we need to find ll x, z such tht y =. The line x + 3z = 1 divides the first qudrnt into two pieces. The point (, ) lies in the tringle nd y > there so, the tringle is the projection. Hence the projection into the xz plne is the tringle in the first qudrnt x + 3z = 1, denoted T. If we project into the yz plne we need to find ll y, z such tht x = 1 y 3z. The line y + 3z = 1 divides the first qudrnt into two pieces. The point (, ) lies in the tringle nd x > there so, the tringle is the projection. Hence the projection into the yz plne is the tringle in the first qudrnt y + 3z = 1, denoted T 3. Then T 1 = = ( 1 x y 3 ( 1 x 3z T ( 1 y 3z T 3 f(x, y, z) dz f(x, y, z) dy ) ) da da ) f(x, y, z) dx da

7 Notice tht this gives triple iterted integrl problems where the integrl my be hrd to do in one setup but esier in nother From iterted to triple Just s in the -dimensionl cse, given n iterted integrl it is pretty esy to work out description of the solid. trt with b b(x) ω(x,z) (x) α(x,z) f(x, y, z)dy dz dx nd describe the solid over which we re integrting. We hve projected into the xz plne nd there we hve the region bove z = (x), below z = b(x) nd x b. Over the region in the xz plne we re bove the grph y = α(x, z) nd below the grph y = ω(x, z). id nother wy = { (x, y, z) } x b, (x) z b(x), α(x, z) y ω(x, z) Of course if you re ever lucky enough to get solid described to you by three such inequlities, the setup of one iterted integrl is immedite. Wrning: You my choose, b, (x), b(x), α(x, z) nd ω(x, z) rbitrrily nd the iterted integrl mkes sense if the functions re continuous. However, the inequlities bove my not describe solid. Built into the nottion re the ssumptions tht < b; tht for ny x [, b], (x) b(x); nd for ny (x, z) with x [, b] nd (x) z b(x), α(x, z) ω(x, z). 6. A philosophiclly stisfying lternte pproch One cn lso set up n iterted integrl s follows. As usul, let be our solid nd this time, pick n xis, sy z. ince is bounded, there is number such tht the plne z = just touches the solid from underneth. There is lso b such tht the plne z = b just touches the solid from bove. For n rbitrry z between nd b, the plne t tht height intersects the solid in region (z) (the region chnges s you chnge z). Then b f(x, y, z) da dz This method is less common becuse for some reson people re not so fond of vrying regions. It cn be useful in solving the rewriting problem s in xmple 4 from the book (pge 145). Note tht even with the 7th edition there re still typos. (ee the coordintes of the regions.) The prt tht I don t like bout the exmple is tht the book just sserts the projections re wht they re without much help to the reder. But figuring out the projections is the hrd prt! Anywy, we strt with (z) 1 x y f(x, y, z) dz dy dx To switch the outer two vribles is esy (or t lest it is problem you hve lredy studied). y where is

8 8 This is esy to set up the other wy: y = 1 1 y y f(x, y, z) dz dx dy A hrder problem is to switch the two inner vribles, but here the lternte pproch to setup is useful. Let us switch x nd z in this lst integrl. 1 1 y y f(x, y, z) dz dx dy = 1 ( ) f(x, y, z) da dy (y) Here (y) is the rectngle in the xz plne where x runs between nd 1 nd z runs between nd y. ince this is rectngle, it is esy to switch the order of integrtion nd get 1 1 y 1 y 1 f(x, y, z) dz dx dy = f(x, y, z) dx dz dy y which is the nswer in the book. If you now wnt to switch z nd y in this lst integrl, this is the esy version. 1 y 1 1 f(x, y, z) dx dz dy = f(x, y, z) dx da where T is the region in the yz plne, y 1, z y. T Hence 1 y 1 f(x, y, z) dx dz dy = T 1 f(x, y, z) dx da = z f(x, y, z) dx dy dz

9 9 To switch x nd y in this lst integrl, write z where (z) is the region f(x, y, z) dx dy dz = 1 (z) f(x, y, z) da dz eversing the order on (z) gives z f(x, y, z) dx dy dz = 1 f(x, y, z) da dz = (z) 1 1 z x z f(x, y, z) dy dx dz

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy.

Iterated Integrals. f (x; y) dy dx. p(x) To evaluate a type I integral, we rst evaluate the inner integral Z q(x) f (x; y) dy. Iterted Integrls Type I Integrls In this section, we begin the study of integrls over regions in the plne. To do so, however, requires tht we exmine the importnt ide of iterted integrls, in which inde

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a

B. Definition: The volume of a solid of known integrable cross-section area A(x) from x = a Mth 176 Clculus Sec. 6.: Volume I. Volume By Slicing A. Introduction We will e trying to find the volume of solid shped using the sum of cross section res times width. We will e driving towrd developing

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus MATH 6 The Fundmentl Theorem of Clculus The Fundmentl Theorem of Clculus (FTC) gives method of finding the signed re etween the grph of f nd the x-xis on the intervl [, ]. The theorem is: FTC: If f is

More information

Supplemental Notes: Line Integrals

Supplemental Notes: Line Integrals Nottion: Supplementl Notes: Line Integrls Let be n oriented curve prmeterized by r(t) = x(t), y(t), z(t) where t b. denotes the curve with its orienttion reversed. 1 + 2 mens tke curve 1 nd curve 2 nd

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers

4452 Mathematical Modeling Lecture 4: Lagrange Multipliers Mth Modeling Lecture 4: Lgrnge Multipliers Pge 4452 Mthemticl Modeling Lecture 4: Lgrnge Multipliers Lgrnge multipliers re high powered mthemticl technique to find the mximum nd minimum of multidimensionl

More information

Pointwise convergence need not behave well with respect to standard properties such as continuity.

Pointwise convergence need not behave well with respect to standard properties such as continuity. Chpter 3 Uniform Convergence Lecture 9 Sequences of functions re of gret importnce in mny res of pure nd pplied mthemtics, nd their properties cn often be studied in the context of metric spces, s in Exmples

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

)

) Chpter Five /SOLUTIONS Since the speed ws between nd mph during this five minute period, the fuel efficienc during this period is between 5 mpg nd 8 mpg. So the fuel used during this period is between

More information

Solutions to Math 41 Final Exam December 12, 2011

Solutions to Math 41 Final Exam December 12, 2011 Solutions to Mth Finl Em December,. ( points) Find ech of the following its, with justifiction. If there is n infinite it, then eplin whether it is or. ( ) / ln() () (5 points) First we compute the it:

More information

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Integrl When we compute the derivtive of complicted function, like + sin, we usull use differentition rules, like d [f()+g()] d f()+ d g(), to reduce the computtion d d d to

More information

Applications of the Definite Integral ( Areas and Volumes)

Applications of the Definite Integral ( Areas and Volumes) Mth1242 Project II Nme: Applictions of the Definite Integrl ( Ares nd Volumes) In this project, we explore some pplictions of the definite integrl. We use integrls to find the re etween the grphs of two

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information

Integration. September 28, 2017

Integration. September 28, 2017 Integrtion September 8, 7 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my

More information

Yoplait with Areas and Volumes

Yoplait with Areas and Volumes Yoplit with Ares nd Volumes Yoplit yogurt comes in two differently shped continers. One is truncted cone nd the other is n ellipticl cylinder (see photos below). In this exercise, you will determine the

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION Chpter 3 DACS 1 Lok 004/05 CHAPTER 5 APPLICATIONS OF INTEGRATION 5.1 Geometricl Interprettion-Definite Integrl (pge 36) 5. Are of Region (pge 369) 5..1 Are of Region Under Grph (pge 369) Figure 5.7 shows

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

Matlab s Numerical Integration Commands

Matlab s Numerical Integration Commands Mtlb s Numericl Integrtion Commnds The relevnt commnds we consider re qud nd dblqud, triplequd. See the Mtlb help files for other integrtion commnds. By the wy, qud refers to dptive qudrture. To integrte:

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E

4-1 NAME DATE PERIOD. Study Guide. Parallel Lines and Planes P Q, O Q. Sample answers: A J, A F, and D E 4-1 NAME DATE PERIOD Pges 142 147 Prllel Lines nd Plnes When plnes do not intersect, they re sid to e prllel. Also, when lines in the sme plne do not intersect, they re prllel. But when lines re not in

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan,

MA 124 (Calculus II) Lecture 2: January 24, 2019 Section A3. Professor Jennifer Balakrishnan, Wht is on tody Professor Jennifer Blkrishnn, jbl@bu.edu 1 Velocity nd net chnge 1 2 Regions between curves 3 1 Velocity nd net chnge Briggs-Cochrn-Gillett 6.1 pp. 398-46 Suppose you re driving long stright

More information

1 The Definite Integral

1 The Definite Integral The Definite Integrl Definition. Let f be function defined on the intervl [, b] where

More information

Math Line Integrals I

Math Line Integrals I Mth 213 - Line Integrls I Peter A. Perry University of Kentucky November 16, 2018 Homework Re-Red Section 16.2 for Mondy Work on Stewrt problems for 16.2: 1-21 (odd), 33-41 (odd), 49, 50 Begin Webwork

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

Lecture 7: Integration Techniques

Lecture 7: Integration Techniques Lecture 7: Integrtion Techniques Antiderivtives nd Indefinite Integrls. In differentil clculus, we were interested in the derivtive of given rel-vlued function, whether it ws lgeric, eponentil or logrithmic.

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Introduction. Chapter 4: Complex Integration. Introduction (Cont d)

Introduction. Chapter 4: Complex Integration. Introduction (Cont d) Introduction Chpter 4: Complex Integrtion Li, Yongzho Stte Key Lbortory of Integrted Services Networks, Xidin University October 10, 2010 The two-dimensionl nture of the complex plne required us to generlize

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals

Double Integrals. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Double Integrals Double Integrls MATH 375 Numericl Anlysis J. Robert Buchnn Deprtment of Mthemtics Fll 2013 J. Robert Buchnn Double Integrls Objectives Now tht we hve discussed severl methods for pproximting definite integrls

More information

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x

f[a] x + f[a + x] x + f[a +2 x] x + + f[b x] x Bsic Integrtion This chpter contins the fundmentl theory of integrtion. We begin with some problems to motivte the min ide: pproximtion by sum of slices. The chpter confronts this squrely, nd Chpter 3

More information

1.5 Extrema and the Mean Value Theorem

1.5 Extrema and the Mean Value Theorem .5 Extrem nd the Men Vlue Theorem.5. Mximum nd Minimum Vlues Definition.5. (Glol Mximum). Let f : D! R e function with domin D. Then f hs n glol mximum vlue t point c, iff(c) f(x) for ll x D. The vlue

More information

Math 17 - Review. Review for Chapter 12

Math 17 - Review. Review for Chapter 12 Mth 17 - eview Ying Wu eview for hpter 12 1. Given prmetric plnr curve x = f(t), y = g(t), where t b, how to eliminte the prmeter? (Use substitutions, or use trigonometry identities, etc). How to prmeterize

More information

Hyperbolas. Definition of Hyperbola

Hyperbolas. Definition of Hyperbola CHAT Pre-Clculus Hyperols The third type of conic is clled hyperol. For n ellipse, the sum of the distnces from the foci nd point on the ellipse is fixed numer. For hyperol, the difference of the distnces

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

Graphing Conic Sections

Graphing Conic Sections Grphing Conic Sections Definition of Circle Set of ll points in plne tht re n equl distnce, clled the rdius, from fixed point in tht plne, clled the center. Grphing Circle (x h) 2 + (y k) 2 = r 2 where

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs.

If you are at the university, either physically or via the VPN, you can download the chapters of this book as PDFs. Lecture 5 Wlks, Trils, Pths nd Connectedness Reding: Some of the mteril in this lecture comes from Section 1.2 of Dieter Jungnickel (2008), Grphs, Networks nd Algorithms, 3rd edition, which is ville online

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

9 Graph Cutting Procedures

9 Graph Cutting Procedures 9 Grph Cutting Procedures Lst clss we begn looking t how to embed rbitrry metrics into distributions of trees, nd proved the following theorem due to Brtl (1996): Theorem 9.1 (Brtl (1996)) Given metric

More information

It is recommended to change the limits of integration while doing a substitution.

It is recommended to change the limits of integration while doing a substitution. MAT 21 eptember 7, 216 Review Indrjit Jn. Generl Tips It is recommended to chnge the limits of integrtion while doing substitution. First write the min formul (eg. centroid, moment of inerti, mss, work

More information

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1)

Introduction Transformation formulae Polar graphs Standard curves Polar equations Test GRAPHS INU0114/514 (MATHS 1) POLAR EQUATIONS AND GRAPHS GEOMETRY INU4/54 (MATHS ) Dr Adrin Jnnett MIMA CMth FRAS Polr equtions nd grphs / 6 Adrin Jnnett Objectives The purpose of this presenttion is to cover the following topics:

More information

Lily Yen and Mogens Hansen

Lily Yen and Mogens Hansen SKOLID / SKOLID No. 8 Lily Yen nd Mogens Hnsen Skolid hs joined Mthemticl Myhem which is eing reformtted s stnd-lone mthemtics journl for high school students. Solutions to prolems tht ppered in the lst

More information

Algebra II Notes Unit Ten: Conic Sections

Algebra II Notes Unit Ten: Conic Sections Sllus Ojective: 0. The student will sketch the grph of conic section with centers either t or not t the origin. (PARABOLAS) Review: The Midpoint Formul The midpoint M of the line segment connecting the

More information

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral

5/9/17. Lesson 51 - FTC PART 2. Review FTC, PART 1. statement as the Integral Evaluation Theorem as it tells us HOW to evaluate the definite integral Lesson - FTC PART 2 Review! We hve seen definition/formul for definite integrl s n b A() = lim f ( i )Δ = f ()d = F() = F(b) F() n i=! where F () = f() (or F() is the ntiderivtive of f() b! And hve seen

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

Fall 2017 Midterm Exam 1 October 19, You may not use any books, notes, or electronic devices during this exam.

Fall 2017 Midterm Exam 1 October 19, You may not use any books, notes, or electronic devices during this exam. 15-112 Fll 2017 Midterm Exm 1 October 19, 2017 Nme: Andrew ID: Recittion Section: You my not use ny books, notes, or electronic devices during this exm. You my not sk questions bout the exm except for

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

Midterm 2 Sample solution

Midterm 2 Sample solution Nme: Instructions Midterm 2 Smple solution CMSC 430 Introduction to Compilers Fll 2012 November 28, 2012 This exm contins 9 pges, including this one. Mke sure you hve ll the pges. Write your nme on the

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Essential Question What are some of the characteristics of the graph of a rational function?

Essential Question What are some of the characteristics of the graph of a rational function? 8. TEXAS ESSENTIAL KNOWLEDGE AND SKILLS A..A A..G A..H A..K Grphing Rtionl Functions Essentil Question Wht re some of the chrcteristics of the grph of rtionl function? The prent function for rtionl functions

More information

Chapter 2 Sensitivity Analysis: Differential Calculus of Models

Chapter 2 Sensitivity Analysis: Differential Calculus of Models Chpter 2 Sensitivity Anlysis: Differentil Clculus of Models Abstrct Models in remote sensing nd in science nd engineering, in generl re, essentilly, functions of discrete model input prmeters, nd/or functionls

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an

Scanner Termination. Multi Character Lookahead. to its physical end. Most parsers require an end of file token. Lex and Jlex automatically create an Scnner Termintion A scnner reds input chrcters nd prtitions them into tokens. Wht hppens when the end of the input file is reched? It my be useful to crete n Eof pseudo-chrcter when this occurs. In Jv,

More information

Topics in Analytic Geometry

Topics in Analytic Geometry Nme Chpter 10 Topics in Anltic Geometr Section 10.1 Lines Objective: In this lesson ou lerned how to find the inclintion of line, the ngle between two lines, nd the distnce between point nd line. Importnt

More information

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals

Triple Integrals. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Triple Integrals Triple Integrals MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 211 Riemann Sum Approach Suppose we wish to integrate w f (x, y, z), a continuous function, on the box-shaped region

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

Math/CS 467/667 Programming Assignment 01. Adaptive Gauss Quadrature. q(x)p 4 (x) = 0

Math/CS 467/667 Programming Assignment 01. Adaptive Gauss Quadrature. q(x)p 4 (x) = 0 Adptive Guss Qudrture 1. Find n orthogonl polynomil p 4 of degree 4 such tht 1 1 q(x)p 4 (x) = 0 for every polynomil q(x) of degree 3 or less. You my use Mple nd the Grm Schmidt process s done in clss.

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have

P(r)dr = probability of generating a random number in the interval dr near r. For this probability idea to make sense we must have Rndom Numers nd Monte Crlo Methods Rndom Numer Methods The integrtion methods discussed so fr ll re sed upon mking polynomil pproximtions to the integrnd. Another clss of numericl methods relies upon using

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Study Sheet ( )

Study Sheet ( ) Key Terms prol circle Ellipse hyperol directrix focus focl length xis of symmetry vertex Study Sheet (11.1-11.4) Conic Section A conic section is section of cone. The ellipse, prol, nd hyperol, long with

More information

Summer Review Packet For Algebra 2 CP/Honors

Summer Review Packet For Algebra 2 CP/Honors Summer Review Pcket For Alger CP/Honors Nme Current Course Mth Techer Introduction Alger uilds on topics studied from oth Alger nd Geometr. Certin topics re sufficientl involved tht the cll for some review

More information

AVolumePreservingMapfromCubetoOctahedron

AVolumePreservingMapfromCubetoOctahedron Globl Journl of Science Frontier Reserch: F Mthemtics nd Decision Sciences Volume 18 Issue 1 Version 1.0 er 018 Type: Double Blind Peer Reviewed Interntionl Reserch Journl Publisher: Globl Journls Online

More information

Misrepresentation of Preferences

Misrepresentation of Preferences Misrepresenttion of Preferences Gicomo Bonnno Deprtment of Economics, University of Cliforni, Dvis, USA gfbonnno@ucdvis.edu Socil choice functions Arrow s theorem sys tht it is not possible to extrct from

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

6.3 Definite Integrals and Antiderivatives

6.3 Definite Integrals and Antiderivatives Section 6. Definite Integrls nd Antiderivtives 8 6. Definite Integrls nd Antiderivtives Wht ou will lern out... Properties of Definite Integrls Averge Vlue of Function Men Vlue Theorem for Definite Integrls

More information

Dr. D.M. Akbar Hussain

Dr. D.M. Akbar Hussain Dr. D.M. Akr Hussin Lexicl Anlysis. Bsic Ide: Red the source code nd generte tokens, it is similr wht humns will do to red in; just tking on the input nd reking it down in pieces. Ech token is sequence

More information

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs

Conic Sections Parabola Objective: Define conic section, parabola, draw a parabola, standard equations and their graphs Conic Sections Prol Ojective: Define conic section, prol, drw prol, stndrd equtions nd their grphs The curves creted y intersecting doule npped right circulr cone with plne re clled conic sections. If

More information

12.5 Triple Integrals

12.5 Triple Integrals 1.5 Triple Integrals Arkansas Tech University MATH 94: Calculus III r. Marcel B Finan In Sections 1.1-1., we showed how a function of two variables can be integrated over a region in -space and how integration

More information

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017

6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Math 1910 September 26, 2017 6.4: SHELL METHOD 6.5: WORK AND ENERGY NAME: SOLUTIONS Mt 9 September 26, 27 ONE-PAGE REVIEW Sell Metod: Wen you rotte te region between two grps round n xis, te segments prllel to te xis generte cylindricl

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus,

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus, 1 Triple Integrals Mass problem. Find the mass M of a solid whose density (the mass per unit volume) is a continuous nonnegative function δ(x, y, z). 1. Divide the box enclosing into subboxes, and exclude

More information

2 b. 3 Use the chain rule to find the gradient:

2 b. 3 Use the chain rule to find the gradient: Conic sections D x cos θ, y sinθ d y sinθ So tngent is y sin θ ( x cos θ) sinθ Eqution of tngent is x + y sinθ sinθ Norml grdient is sinθ So norml is y sin θ ( x cos θ) xsinθ ycos θ ( )sinθ, So eqution

More information

Surfaces. Differential Geometry Lia Vas

Surfaces. Differential Geometry Lia Vas Differentil Geometry Li Vs Surfces When studying curves, we studied how the curve twisted nd turned in spce. We now turn to surfces, two-dimensionl objects in three-dimensionl spce nd exmine how the concept

More information

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola.

called the vertex. The line through the focus perpendicular to the directrix is called the axis of the parabola. Review of conic sections Conic sections re grphs of the form REVIEW OF CONIC SECTIONS prols ellipses hperols P(, ) F(, p) O p =_p REVIEW OF CONIC SECTIONS In this section we give geometric definitions

More information