1 Quad-Edge Construction Operators

Size: px
Start display at page:

Download "1 Quad-Edge Construction Operators"

Transcription

1 CS48: Computer Grphics Hndout # Geometric Modeling Originl Hndout #5 Stnford University Tuesdy, 8 December 99 Originl Lecture #5: 9 November 99 Topics: Mnipultions with Qud-Edge Dt Structures Scribe: Mike Lenz nd Michel Goldwsser In the previous lecture we introduced the qud-edge dt structure, in which ech edge of surfce is represented by n edge record. The record contins pointers to the four neighboring edges e Onext, e Lnext, e Dnext, nd e Rnext. Vertices nd fces re represented by circulr, linked lists of edges. Qud-Edge Construction Opertors We introduce two opertors for creting edge records nd combining them to form representtions of complex shpes. Both opertors hve the property tht they lwys return vlid qud-edge structures when given vlid inputs. A vlid qud-edge structure is one in which the xiom e Rot Onext Rot Onext = e holds for ech edge. The MkeEdge opertor cretes n edge record; it tkes no rguments. When new edge is creted, ech of its four pointers must point to some edge, for the structure to be vlid; since there is no other edge vilble, they must in fct point bck t the newly-creted edge. Figure shows the two possible rrngements of pointers tht rise in vlid qud-edge dt structures with single edge. The subdivision tht ech rrngement represents is shown in Figure. In the left-hnd pictures, we hve two vertices connected by priml edge, nd single fce. In the right-hnd pictures, single vertex is connected to itself by priml edge tht is loop, seprting the plne into two fces. Ech digrm is the dul of the other. By convention, the first digrm represents the result of cll to MkeEdge: topologicl sphere contining two points with n edge between them. The second opertor, Splice, is used to connect qud-edge structures together, to split them prt, nd to rerrnge them in other wys. Remember tht vertices nd fces re represented by circulr lists which must be mintined for the structure to be vlid. A group of circulr lists hs the property tht, if you swp the outgoing pointers of two nodes, the result is gin group of circulr lists. In prticulr, performing Swp[,b] on nodes nd b gives the following result. If the nodes were in the sme list, tht list is split into two circulr lists, one contining nd the other contining b. If the nodes were in different lists, those two lists re combined into single circulr list. In either cse, second swp restores the originl structure. The requirement for pplying Splice[,b] is tht edges nd b must either both be priml, or both be dul. The lgorithm for cll to Splice is s follows:. α := Onext Rot. β := bonext Rot

2 CS48: Hndout # Dnext Dnext Lnext Lnext Onext Rnext Rnext Onext Figure : Two possible results of cll to MkeEdge Dul Edge Priml Edge b Priml Edge Dul Edge Figure : Geometric interprettions of ech edge structure. Swp[Onext,bOnext] 4. Swp[α Onext,β Onext] The first exchnge swps the next edges in the origin rings of nd b. The second swp hs similr effect on the edges left-fce rings. To see wht this does, consider the four possible cses. Cse. Edges nd b shre the sme origin but hve different left fces. After splicing, the origin is split into two vertices, one now the origin of nd the other the origin of b. The edges two left fces, on the other hnd, re merged into single fce. See Figure. Cse. Edges nd b shre the sme left fce but hve different origins. The two origins re merged into single vertex, but the fce is split into two seprte fces. This is lso shown in Figure, but reding from right to left.

3 CS48: Hndout # lph = F u G 7 bet 6 Splice[,5] lph u F=G u = 7 bet 4 5=b 4 5=b 6 Figure : Effects of Splice[,b] on single origin ring Cse. Edges nd b re in different origin rings nd different left-fce rings. After splicing, they shre the sme origin s well s the sme left fce. See Figure 4, in which the shpe on the bottom is something like brbell or telephone receiver. The topologicl effect of this type of splice depends upon whether the edges nd b strted out in the sme connected component or not. If they strted out in seprte components, doing this splice pstes those two components together into single component. If they strted out in the sme component, doing this splice dds hndle to tht component, hence incresing the number of holes tht component hs. For exmple, if nd b both strted out belonging to the sme sphere-like component, tht component will be torus-like fter the splice. Cse 4. Edges nd b shre the sme origin nd the sme left fce. After splicing, both their origins nd their left fces re distinct. This is lso shown in Figure 4, but reding from bottom to top. Topologiclly, this type of splice cn either split one connected component into two or else reduce by one the number of hndles tht some component hs. Topology Review The Euler Chrcteristic, χ, of surfce is the number of vertices, minus the number of edges, plus the number of fces. It is lso twice the difference between the number of connected components nd the totl genus of the surfce. χ = V E + F = (c g) Consider the result of cll to MkeEdge, topologicl sphere with two vertices, one edge, nd one fce. Thus χ is, which is consistent with connected component of genus 0. Ech

4 4 CS48: Hndout # F G u 4= 5 v 7=b 6 Splice[4,7] u=v F=G 7=b 4= 5 6 Figure 4: Effects of Splice[,b] on seprte rings cll to MkeEdge increses the totl Euler Chrcteristic by, in effect dding connected component ( new sphere) to the surfce. In the cse of torus, we my hve pir of edges from single vertex tht still prtition the surfce into only one fce. In this cse χ is 0, since the genus is, indicting surfce contining one hole or hndle. Note tht orientble surfces hve even, but possibly negtive, vlues of χ; non-orientble surfces hve odd vlues of χ. For cll to Splice, cse increments the number V of vertices nd decrements the number F of fces; cse does the opposite. In either cse, the Euler Chrcteristic is unchnged. In cse, both V nd F re decremented, so χ is decresed by. There re two wys this cn hppen: either two connected components re combined into one, or the genus is incresed by one by dding hndle to the surfce. In cse 4, both V nd F re incremented, so the Euler Chrcteristic is incresed by. There re two wys tht this cn hppen lso: either

5 CS48: Hndout # 5 c b d c b Figure 5: Two simple polygons with directed edges one connected component is split into two, or the genus is decresed by one by removing one hndle. Polygons in the Plne We turn to the problem of finding the interior of simple (not self-intersecting) polygon in the plne. For ech directed edge e, let us designte the hlf-plne on its left side by e. Consider the first polygon in Figure 5, mde up of three convex corners (tht is, t ech corner, the polygon mkes counterclockwise turn). Its interior is bc, where multipliction represents logicl nd, tht is, intersection. The second polygon hs concve (clockwise) corner, nd its interior is (b + c)d, where ddition stnds for logicl or, tht is, union. Suppose we wnt to find generl formul for the interior of simple polygon. The criteri re tht we use ech literl only once, the vrious sub-expressions being combined by either ddition or multipliction. The tricky prt is determining how to prenthesize the resulting expression. To do this, we recursively build formul by splitting the boundry of the polygon into smller nd smller polygonl chins. When combining the formuls for two smller chins to get formul for lrger chin, we use either nd or or s the opertor, depending upon whether the joint between the two subchins is convex or concve. For more bout this, see Hndout. Homework 4 dels with different formul for the interior of simple polygon. Tht formul is more complicted in tht it uses complement, intersection, nd exclusive-or s its opertors, insted of the two opertors intersection nd union. But it is simpler in tht there re no tricky issues bout prentheses. 4 How does the surfce give you solid? In discussing the surfced-bsed txonomy of solid-modeling, we hve left out n importnt question. Given representtion of surfce, how do we decide wht points re in the solid

6 6 CS48: Hndout # - Figure 6: Winding numbers represented by the surfce. We hve n intuitive notion of the solid being the interior of the surfce, nd this notion is formlized in two-dimensionl topology by the Jordn Curve Theorem, which sttes tht every closed boundry divides the spce into pieces, the unbounded exterior, the boundry itself, nd the bounded interior. It is this interior, tht we wnt to use s the solid defined by the boundry. For simplicity, we consider this problem in lower dimension. The concepts we discuss re esily generlized. Thus the question is, given closed curve, C, in the plne, nd point p, how do we know if the point is inside the curve? We introduce the concept of the winding number of point p with respect to curve C, denoted by ω(p,c). An intuitive notion of winding number is s follows: A viewer stnding t point p, wtches cr trce the curve from some rbitrry strting point until it reches tht point gin. The winding number of p with respect to the curve is the number of full revolutions the viewer hs mde t the end of the process. For instnce, let C be circle. If you re t point inside the circle, nd wtch the cr round, you will end up mking one full turn, nd so your winding number will be or depending on the orienttion of the circle. However if you re t point outside of the circle, the winding number is 0. You might turn to the right or left s you wtch, but t the end of the process, you hve not mde ny full rottions from when you strted. Figure 6 shows few curves, nd the winding number of the regions creted by the curves. Although we hve defined this notion of winding number, we still hve not nswered the question of how to define the interior of the curve. There re two seprte conventions for this. (p is inside C)if(ω(p,C) 0) (p is inside C)if(ω(p,C) is odd) Notice tht in the first nd third curves of Figure 6, these conventions gree completely, however in the second curve, the region with winding number is treted differently. The clssifiction of this region is determined by the convention chosen. Now tht we hve use for the winding number, given point nd curve, how do we efficiently compute the vlue. One school of thought is to divide up the curve into smll

7 CS48: Hndout # 7 w(p,c) = + +/ Figure 7: Ry Shooting to clculte winding numbers pieces, nd then for ech piece, ctully clculte the difference in ngles between p nd the two endpoints. The winding number is clculted by summing these ngles for ll the pieces. (To use this method, the pieces must be smll enough so tht no single piece winds completely round the point) A second, nd more populr, method of computing the winding number is by shooting out hlf-infinite ry from the point, nd then crefully counting the crossings between tht ry nd the curve. By counting the crossings in n oriented wy, the result is the winding number. Whenever the ry crosses the curve, we dd or subtrct one from the vlue, with the sign bsed on whether we cross the curve from left-to-right, or from right-to-left. As with most geometric lgorithms, degenercies cuse some concern. We must be creful in cses where our ry crosses curve t the intersection of two segments. If our ry hits the endpoint between two segments, does the ry intersect both segments? Does it intersect either segment? Fortuntely, there is solution to this problem. (Unlike most geometric lgorithms). If we shoot horizontl ry out from one side of the point, then we ignore ll of the horizontl segments in the curve. For ll of the other segments, we will sy tht every segment contins only the higher endpoint. (This notion of higher cn esily be fixed reltive to the horizontl ry) By using this method, we correctly compute the winding number, despite ny degenercies cused by our ry pssing through endpoints. Figure 7 gives n exmple of using ry shooting to compute the winding number of point.

Stained Glass Design. Teaching Goals:

Stained Glass Design. Teaching Goals: Stined Glss Design Time required 45-90 minutes Teching Gols: 1. Students pply grphic methods to design vrious shpes on the plne.. Students pply geometric trnsformtions of grphs of functions in order to

More information

6.2 Volumes of Revolution: The Disk Method

6.2 Volumes of Revolution: The Disk Method mth ppliction: volumes by disks: volume prt ii 6 6 Volumes of Revolution: The Disk Method One of the simplest pplictions of integrtion (Theorem 6) nd the ccumultion process is to determine so-clled volumes

More information

Geometric transformations

Geometric transformations Geometric trnsformtions Computer Grphics Some slides re bsed on Shy Shlom slides from TAU mn n n m m T A,,,,,, 2 1 2 22 12 1 21 11 Rows become columns nd columns become rows nm n n m m A,,,,,, 1 1 2 22

More information

2 Computing all Intersections of a Set of Segments Line Segment Intersection

2 Computing all Intersections of a Set of Segments Line Segment Intersection 15-451/651: Design & Anlysis of Algorithms Novemer 14, 2016 Lecture #21 Sweep-Line nd Segment Intersection lst chnged: Novemer 8, 2017 1 Preliminries The sweep-line prdigm is very powerful lgorithmic design

More information

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it.

6.3 Volumes. Just as area is always positive, so is volume and our attitudes towards finding it. 6.3 Volumes Just s re is lwys positive, so is volume nd our ttitudes towrds finding it. Let s review how to find the volume of regulr geometric prism, tht is, 3-dimensionl oject with two regulr fces seprted

More information

MATH 2530: WORKSHEET 7. x 2 y dz dy dx =

MATH 2530: WORKSHEET 7. x 2 y dz dy dx = MATH 253: WORKSHT 7 () Wrm-up: () Review: polr coordintes, integrls involving polr coordintes, triple Riemnn sums, triple integrls, the pplictions of triple integrls (especilly to volume), nd cylindricl

More information

INTRODUCTION TO SIMPLICIAL COMPLEXES

INTRODUCTION TO SIMPLICIAL COMPLEXES INTRODUCTION TO SIMPLICIAL COMPLEXES CASEY KELLEHER AND ALESSANDRA PANTANO 0.1. Introduction. In this ctivity set we re going to introduce notion from Algebric Topology clled simplicil homology. The min

More information

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve.

If f(x, y) is a surface that lies above r(t), we can think about the area between the surface and the curve. Line Integrls The ide of line integrl is very similr to tht of single integrls. If the function f(x) is bove the x-xis on the intervl [, b], then the integrl of f(x) over [, b] is the re under f over the

More information

Ray surface intersections

Ray surface intersections Ry surfce intersections Some primitives Finite primitives: polygons spheres, cylinders, cones prts of generl qudrics Infinite primitives: plnes infinite cylinders nd cones generl qudrics A finite primitive

More information

Improper Integrals. October 4, 2017

Improper Integrals. October 4, 2017 Improper Integrls October 4, 7 Introduction We hve seen how to clculte definite integrl when the it is rel number. However, there re times when we re interested to compute the integrl sy for emple 3. Here

More information

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork

MA1008. Calculus and Linear Algebra for Engineers. Course Notes for Section B. Stephen Wills. Department of Mathematics. University College Cork MA1008 Clculus nd Liner Algebr for Engineers Course Notes for Section B Stephen Wills Deprtment of Mthemtics University College Cork s.wills@ucc.ie http://euclid.ucc.ie/pges/stff/wills/teching/m1008/ma1008.html

More information

Lecture 7: Building 3D Models (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Lecture 7: Building 3D Models (Part 1) Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Grphics (CS 4731) Lecture 7: Building 3D Models (Prt 1) Prof Emmnuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Stndrd d Unit itvectors Define y i j 1,0,0 0,1,0 k i k 0,0,1

More information

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1.

Fig.1. Let a source of monochromatic light be incident on a slit of finite width a, as shown in Fig. 1. Answer on Question #5692, Physics, Optics Stte slient fetures of single slit Frunhofer diffrction pttern. The slit is verticl nd illuminted by point source. Also, obtin n expression for intensity distribution

More information

Subtracting Fractions

Subtracting Fractions Lerning Enhncement Tem Model Answers: Adding nd Subtrcting Frctions Adding nd Subtrcting Frctions study guide. When the frctions both hve the sme denomintor (bottom) you cn do them using just simple dding

More information

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1

a < a+ x < a+2 x < < a+n x = b, n A i n f(x i ) x. i=1 i=1 Mth 33 Volume Stewrt 5.2 Geometry of integrls. In this section, we will lern how to compute volumes using integrls defined by slice nlysis. First, we recll from Clculus I how to compute res. Given the

More information

Section 10.4 Hyperbolas

Section 10.4 Hyperbolas 66 Section 10.4 Hyperbols Objective : Definition of hyperbol & hyperbols centered t (0, 0). The third type of conic we will study is the hyperbol. It is defined in the sme mnner tht we defined the prbol

More information

1 Drawing 3D Objects in Adobe Illustrator

1 Drawing 3D Objects in Adobe Illustrator Drwing 3D Objects in Adobe Illustrtor 1 1 Drwing 3D Objects in Adobe Illustrtor This Tutoril will show you how to drw simple objects with three-dimensionl ppernce. At first we will drw rrows indicting

More information

AML710 CAD LECTURE 16 SURFACES. 1. Analytical Surfaces 2. Synthetic Surfaces

AML710 CAD LECTURE 16 SURFACES. 1. Analytical Surfaces 2. Synthetic Surfaces AML7 CAD LECTURE 6 SURFACES. Anlticl Surfces. Snthetic Surfces Surfce Representtion From CAD/CAM point of view surfces re s importnt s curves nd solids. We need to hve n ide of curves for surfce cretion.

More information

Unit 5 Vocabulary. A function is a special relationship where each input has a single output.

Unit 5 Vocabulary. A function is a special relationship where each input has a single output. MODULE 3 Terms Definition Picture/Exmple/Nottion 1 Function Nottion Function nottion is n efficient nd effective wy to write functions of ll types. This nottion llows you to identify the input vlue with

More information

9.1 apply the distance and midpoint formulas

9.1 apply the distance and midpoint formulas 9.1 pply the distnce nd midpoint formuls DISTANCE FORMULA MIDPOINT FORMULA To find the midpoint between two points x, y nd x y 1 1,, we Exmple 1: Find the distnce between the two points. Then, find the

More information

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig

CS311H: Discrete Mathematics. Graph Theory IV. A Non-planar Graph. Regions of a Planar Graph. Euler s Formula. Instructor: Işıl Dillig CS311H: Discrete Mthemtics Grph Theory IV Instructor: Işıl Dillig Instructor: Işıl Dillig, CS311H: Discrete Mthemtics Grph Theory IV 1/25 A Non-plnr Grph Regions of Plnr Grph The plnr representtion of

More information

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula:

50 AMC LECTURES Lecture 2 Analytic Geometry Distance and Lines. can be calculated by the following formula: 5 AMC LECTURES Lecture Anlytic Geometry Distnce nd Lines BASIC KNOWLEDGE. Distnce formul The distnce (d) between two points P ( x, y) nd P ( x, y) cn be clculted by the following formul: d ( x y () x )

More information

ON THE DEHN COMPLEX OF VIRTUAL LINKS

ON THE DEHN COMPLEX OF VIRTUAL LINKS ON THE DEHN COMPLEX OF VIRTUAL LINKS RACHEL BYRD, JENS HARLANDER Astrct. A virtul link comes with vriety of link complements. This rticle is concerned with the Dehn spce, pseudo mnifold with oundry, nd

More information

Section 3.1: Sequences and Series

Section 3.1: Sequences and Series Section.: Sequences d Series Sequences Let s strt out with the definition of sequence: sequence: ordered list of numbers, often with definite pttern Recll tht in set, order doesn t mtter so this is one

More information

MATH 25 CLASS 5 NOTES, SEP

MATH 25 CLASS 5 NOTES, SEP MATH 25 CLASS 5 NOTES, SEP 30 2011 Contents 1. A brief diversion: reltively prime numbers 1 2. Lest common multiples 3 3. Finding ll solutions to x + by = c 4 Quick links to definitions/theorems Euclid

More information

In the last lecture, we discussed how valid tokens may be specified by regular expressions.

In the last lecture, we discussed how valid tokens may be specified by regular expressions. LECTURE 5 Scnning SYNTAX ANALYSIS We know from our previous lectures tht the process of verifying the syntx of the progrm is performed in two stges: Scnning: Identifying nd verifying tokens in progrm.

More information

CPSC (T1) 2nd Midterm Exam

CPSC (T1) 2nd Midterm Exam Signture: Fire Alrm Code: CPSC 44 2-2 (T) 2nd Midterm Exm Deprtment of Computer Science University of British Columbi K. Booth & R. Schrein Exm Instructions (Red Crefully). Sign the first pge of the exm

More information

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X

a(e, x) = x. Diagrammatically, this is encoded as the following commutative diagrams / X 4. Mon, Sept. 30 Lst time, we defined the quotient topology coming from continuous surjection q : X! Y. Recll tht q is quotient mp (nd Y hs the quotient topology) if V Y is open precisely when q (V ) X

More information

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997.

F. R. K. Chung y. University ofpennsylvania. Philadelphia, Pennsylvania R. L. Graham. AT&T Labs - Research. March 2,1997. Forced convex n-gons in the plne F. R. K. Chung y University ofpennsylvni Phildelphi, Pennsylvni 19104 R. L. Grhm AT&T Ls - Reserch Murry Hill, New Jersey 07974 Mrch 2,1997 Astrct In seminl pper from 1935,

More information

CS201 Discussion 10 DRAWTREE + TRIES

CS201 Discussion 10 DRAWTREE + TRIES CS201 Discussion 10 DRAWTREE + TRIES DrwTree First instinct: recursion As very generic structure, we could tckle this problem s follows: drw(): Find the root drw(root) drw(root): Write the line for the

More information

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications.

Fall 2018 Midterm 1 October 11, ˆ You may not ask questions about the exam except for language clarifications. 15-112 Fll 2018 Midterm 1 October 11, 2018 Nme: Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES)

1. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) Numbers nd Opertions, Algebr, nd Functions 45. SEQUENCES INVOLVING EXPONENTIAL GROWTH (GEOMETRIC SEQUENCES) In sequence of terms involving eponentil growth, which the testing service lso clls geometric

More information

Angle properties of lines and polygons

Angle properties of lines and polygons chievement Stndrd 91031 pply geometric resoning in solving problems Copy correctly Up to 3% of workbook Copying or scnning from ES workbooks is subject to the NZ Copyright ct which limits copying to 3%

More information

Angle Properties in Polygons. Part 1 Interior Angles

Angle Properties in Polygons. Part 1 Interior Angles 2.4 Angle Properties in Polygons YOU WILL NEED dynmic geometry softwre OR protrctor nd ruler EXPLORE A pentgon hs three right ngles nd four sides of equl length, s shown. Wht is the sum of the mesures

More information

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012

Grade 7/8 Math Circles Geometric Arithmetic October 31, 2012 Fculty of Mthemtics Wterloo, Ontrio N2L 3G1 Grde 7/8 Mth Circles Geometric Arithmetic Octoer 31, 2012 Centre for Eduction in Mthemtics nd Computing Ancient Greece hs given irth to some of the most importnt

More information

10.5 Graphing Quadratic Functions

10.5 Graphing Quadratic Functions 0.5 Grphing Qudrtic Functions Now tht we cn solve qudrtic equtions, we wnt to lern how to grph the function ssocited with the qudrtic eqution. We cll this the qudrtic function. Grphs of Qudrtic Functions

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012

Dynamic Programming. Andreas Klappenecker. [partially based on slides by Prof. Welch] Monday, September 24, 2012 Dynmic Progrmming Andres Klppenecker [prtilly bsed on slides by Prof. Welch] 1 Dynmic Progrmming Optiml substructure An optiml solution to the problem contins within it optiml solutions to subproblems.

More information

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1):

Before We Begin. Introduction to Spatial Domain Filtering. Introduction to Digital Image Processing. Overview (1): Administrative Details (1): Overview (): Before We Begin Administrtive detils Review some questions to consider Winter 2006 Imge Enhncement in the Sptil Domin: Bsics of Sptil Filtering, Smoothing Sptil Filters, Order Sttistics Filters

More information

COMP 423 lecture 11 Jan. 28, 2008

COMP 423 lecture 11 Jan. 28, 2008 COMP 423 lecture 11 Jn. 28, 2008 Up to now, we hve looked t how some symols in n lphet occur more frequently thn others nd how we cn sve its y using code such tht the codewords for more frequently occuring

More information

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus

Unit #9 : Definite Integral Properties, Fundamental Theorem of Calculus Unit #9 : Definite Integrl Properties, Fundmentl Theorem of Clculus Gols: Identify properties of definite integrls Define odd nd even functions, nd reltionship to integrl vlues Introduce the Fundmentl

More information

such that the S i cover S, or equivalently S

such that the S i cover S, or equivalently S MATH 55 Triple Integrls Fll 16 1. Definition Given solid in spce, prtition of consists of finite set of solis = { 1,, n } such tht the i cover, or equivlently n i. Furthermore, for ech i, intersects i

More information

Answer Key Lesson 6: Workshop: Angles and Lines

Answer Key Lesson 6: Workshop: Angles and Lines nswer Key esson 6: tudent Guide ngles nd ines Questions 1 3 (G p. 406) 1. 120 ; 360 2. hey re the sme. 3. 360 Here re four different ptterns tht re used to mke quilts. Work with your group. se your Power

More information

MTH 146 Conics Supplement

MTH 146 Conics Supplement 105- Review of Conics MTH 146 Conics Supplement In this section we review conics If ou ne more detils thn re present in the notes, r through section 105 of the ook Definition: A prol is the set of points

More information

Math 35 Review Sheet, Spring 2014

Math 35 Review Sheet, Spring 2014 Mth 35 Review heet, pring 2014 For the finl exm, do ny 12 of the 15 questions in 3 hours. They re worth 8 points ech, mking 96, with 4 more points for netness! Put ll your work nd nswers in the provided

More information

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012

Math 464 Fall 2012 Notes on Marginal and Conditional Densities October 18, 2012 Mth 464 Fll 2012 Notes on Mrginl nd Conditionl Densities klin@mth.rizon.edu October 18, 2012 Mrginl densities. Suppose you hve 3 continuous rndom vribles X, Y, nd Z, with joint density f(x,y,z. The mrginl

More information

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area:

Area & Volume. Chapter 6.1 & 6.2 September 25, y = 1! x 2. Back to Area: Bck to Are: Are & Volume Chpter 6. & 6. Septemer 5, 6 We cn clculte the re etween the x-xis nd continuous function f on the intervl [,] using the definite integrl:! f x = lim$ f x * i )%x n i= Where fx

More information

SIMPLIFYING ALGEBRA PASSPORT.

SIMPLIFYING ALGEBRA PASSPORT. SIMPLIFYING ALGEBRA PASSPORT www.mthletics.com.u This booklet is ll bout turning complex problems into something simple. You will be ble to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give

More information

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis

CS143 Handout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexical Analysis CS143 Hndout 07 Summer 2011 June 24 th, 2011 Written Set 1: Lexicl Anlysis In this first written ssignment, you'll get the chnce to ply round with the vrious constructions tht come up when doing lexicl

More information

Pythagoras theorem and trigonometry (2)

Pythagoras theorem and trigonometry (2) HPTR 10 Pythgors theorem nd trigonometry (2) 31 HPTR Liner equtions In hpter 19, Pythgors theorem nd trigonometry were used to find the lengths of sides nd the sizes of ngles in right-ngled tringles. These

More information

Study Guide for Exam 3

Study Guide for Exam 3 Mth 05 Elementry Algebr Fll 00 Study Guide for Em Em is scheduled for Thursdy, November 8 th nd ill cover chpters 5 nd. You my use "5" note crd (both sides) nd scientific clcultor. You re epected to no

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3..1 Single slit diffrction ves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. e will consider this lter. Tke

More information

Algorithms for graphs on surfaces

Algorithms for graphs on surfaces Algorithms for grphs on surfces Éric Colin de Verdière École normle supérieure, 20112012 ALGORITHMS FOR GRAPHS ON SURFACES Foreword nd introduction Foreword These notes re certinly not in nl shpe, nd comments

More information

arxiv:cs.cg/ v1 18 Oct 2005

arxiv:cs.cg/ v1 18 Oct 2005 A Pir of Trees without Simultneous Geometric Embedding in the Plne rxiv:cs.cg/0510053 v1 18 Oct 2005 Mrtin Kutz Mx-Plnck-Institut für Informtik, Srbrücken, Germny mkutz@mpi-inf.mpg.de October 19, 2005

More information

Math 142, Exam 1 Information.

Math 142, Exam 1 Information. Mth 14, Exm 1 Informtion. 9/14/10, LC 41, 9:30-10:45. Exm 1 will be bsed on: Sections 7.1-7.5. The corresponding ssigned homework problems (see http://www.mth.sc.edu/ boyln/sccourses/14f10/14.html) At

More information

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples

COMPUTER SCIENCE 123. Foundations of Computer Science. 6. Tuples COMPUTER SCIENCE 123 Foundtions of Computer Science 6. Tuples Summry: This lecture introduces tuples in Hskell. Reference: Thompson Sections 5.1 2 R.L. While, 2000 3 Tuples Most dt comes with structure

More information

Introduction to Integration

Introduction to Integration Introduction to Integrtion Definite integrls of piecewise constnt functions A constnt function is function of the form Integrtion is two things t the sme time: A form of summtion. The opposite of differentition.

More information

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association

9 4. CISC - Curriculum & Instruction Steering Committee. California County Superintendents Educational Services Association 9. CISC - Curriculum & Instruction Steering Committee The Winning EQUATION A HIGH QUALITY MATHEMATICS PROFESSIONAL DEVELOPMENT PROGRAM FOR TEACHERS IN GRADES THROUGH ALGEBRA II STRAND: NUMBER SENSE: Rtionl

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

3.5.1 Single slit diffraction

3.5.1 Single slit diffraction 3.5.1 Single slit diffrction Wves pssing through single slit will lso diffrct nd produce n interference pttern. The reson for this is to do with the finite width of the slit. We will consider this lter.

More information

ASTs, Regex, Parsing, and Pretty Printing

ASTs, Regex, Parsing, and Pretty Printing ASTs, Regex, Prsing, nd Pretty Printing CS 2112 Fll 2016 1 Algeric Expressions To strt, consider integer rithmetic. Suppose we hve the following 1. The lphet we will use is the digits {0, 1, 2, 3, 4, 5,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

ZZ - Advanced Math Review 2017

ZZ - Advanced Math Review 2017 ZZ - Advnced Mth Review Mtrix Multipliction Given! nd! find the sum of the elements of the product BA First, rewrite the mtrices in the correct order to multiply The product is BA hs order x since B is

More information

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming

Lecture 10 Evolutionary Computation: Evolution strategies and genetic programming Lecture 10 Evolutionry Computtion: Evolution strtegies nd genetic progrmming Evolution strtegies Genetic progrmming Summry Negnevitsky, Person Eduction, 2011 1 Evolution Strtegies Another pproch to simulting

More information

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers

What do all those bits mean now? Number Systems and Arithmetic. Introduction to Binary Numbers. Questions About Numbers Wht do ll those bits men now? bits (...) Number Systems nd Arithmetic or Computers go to elementry school instruction R-formt I-formt... integer dt number text chrs... floting point signed unsigned single

More information

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5

CS321 Languages and Compiler Design I. Winter 2012 Lecture 5 CS321 Lnguges nd Compiler Design I Winter 2012 Lecture 5 1 FINITE AUTOMATA A non-deterministic finite utomton (NFA) consists of: An input lphet Σ, e.g. Σ =,. A set of sttes S, e.g. S = {1, 3, 5, 7, 11,

More information

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you.

Naming 3D objects. 1 Name the 3D objects labelled in these models. Use the word bank to help you. Nming 3D ojects 1 Nme the 3D ojects lelled in these models. Use the word nk to help you. Word nk cue prism sphere cone cylinder pyrmid D A C F A B C D cone cylinder cue cylinder E B E prism F cue G G pyrmid

More information

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts

Class-XI Mathematics Conic Sections Chapter-11 Chapter Notes Key Concepts Clss-XI Mthemtics Conic Sections Chpter-11 Chpter Notes Key Concepts 1. Let be fixed verticl line nd m be nother line intersecting it t fixed point V nd inclined to it t nd ngle On rotting the line m round

More information

Lists in Lisp and Scheme

Lists in Lisp and Scheme Lists in Lisp nd Scheme Lists in Lisp nd Scheme Lists re Lisp s fundmentl dt structures, ut there re others Arrys, chrcters, strings, etc. Common Lisp hs moved on from eing merely LISt Processor However,

More information

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers?

Questions About Numbers. Number Systems and Arithmetic. Introduction to Binary Numbers. Negative Numbers? Questions About Numbers Number Systems nd Arithmetic or Computers go to elementry school How do you represent negtive numbers? frctions? relly lrge numbers? relly smll numbers? How do you do rithmetic?

More information

EXPONENTIAL & POWER GRAPHS

EXPONENTIAL & POWER GRAPHS Eponentil & Power Grphs EXPONENTIAL & POWER GRAPHS www.mthletics.com.u Eponentil EXPONENTIAL & Power & Grphs POWER GRAPHS These re grphs which result from equtions tht re not liner or qudrtic. The eponentil

More information

3 4. Answers may vary. Sample: Reteaching Vertical s are.

3 4. Answers may vary. Sample: Reteaching Vertical s are. Chpter 7 Answers Alterntive Activities 7-2 1 2. Check students work. 3. The imge hs length tht is 2 3 tht of the originl segment nd is prllel to the originl segment. 4. The segments pss through the endpoints

More information

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards

A Tautology Checker loosely related to Stålmarck s Algorithm by Martin Richards A Tutology Checker loosely relted to Stålmrck s Algorithm y Mrtin Richrds mr@cl.cm.c.uk http://www.cl.cm.c.uk/users/mr/ University Computer Lortory New Museum Site Pemroke Street Cmridge, CB2 3QG Mrtin

More information

Fall 2018 Midterm 2 November 15, 2018

Fall 2018 Midterm 2 November 15, 2018 Nme: 15-112 Fll 2018 Midterm 2 November 15, 2018 Andrew ID: Recittion Section: ˆ You my not use ny books, notes, extr pper, or electronic devices during this exm. There should be nothing on your desk or

More information

MENSURATION-IV

MENSURATION-IV MENSURATION-IV Theory: A solid is figure bounded by one or more surfce. Hence solid hs length, bredth nd height. The plne surfces tht bind solid re clled its fces. The fundmentl difference between plne

More information

8.2 Areas in the Plane

8.2 Areas in the Plane 39 Chpter 8 Applictions of Definite Integrls 8. Ares in the Plne Wht ou will lern out... Are Between Curves Are Enclosed Intersecting Curves Boundries with Chnging Functions Integrting with Respect to

More information

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES

SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES SOME EXAMPLES OF SUBDIVISION OF SMALL CATEGORIES MARCELLO DELGADO Abstrct. The purpose of this pper is to build up the bsic conceptul frmework nd underlying motivtions tht will llow us to understnd ctegoricl

More information

A dual of the rectangle-segmentation problem for binary matrices

A dual of the rectangle-segmentation problem for binary matrices A dul of the rectngle-segmenttion prolem for inry mtrices Thoms Klinowski Astrct We consider the prolem to decompose inry mtrix into smll numer of inry mtrices whose -entries form rectngle. We show tht

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

12-B FRACTIONS AND DECIMALS

12-B FRACTIONS AND DECIMALS -B Frctions nd Decimls. () If ll four integers were negtive, their product would be positive, nd so could not equl one of them. If ll four integers were positive, their product would be much greter thn

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd processes. Introducing technology

More information

MIPS I/O and Interrupt

MIPS I/O and Interrupt MIPS I/O nd Interrupt Review Floting point instructions re crried out on seprte chip clled coprocessor 1 You hve to move dt to/from coprocessor 1 to do most common opertions such s printing, clling functions,

More information

Small Business Networking

Small Business Networking Why network is n essentil productivity tool for ny smll business Effective technology is essentil for smll businesses looking to increse the productivity of their people nd business. Introducing technology

More information

Orientation & Quaternions. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017

Orientation & Quaternions. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2017 Orienttion & Quternions CSE69: Computer Animtion Instructor: Steve Rotenberg UCSD, Winter 7 Orienttion Orienttion We will define orienttion to men n object s instntneous rottionl configurtion Think of

More information

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen

Edge-Unfolding Almost-Flat Convex Polyhedral Terrains. Yanping Chen Edge-Unfolding Almost-Flt Convex Polyhedrl Terrins by Ynping Chen Submitted to the Deprtment of Electricl Engineering nd Computer Science in prtil fulfillment of the requirements for the degree of Mster

More information

Lecture 5: Spatial Analysis Algorithms

Lecture 5: Spatial Analysis Algorithms Lecture 5: Sptil Algorithms GEOG 49: Advnced GIS Sptil Anlsis Algorithms Bsis of much of GIS nlsis tod Mnipultion of mp coordintes Bsed on Eucliden coordinte geometr http://stronom.swin.edu.u/~pbourke/geometr/

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Dt Mining y I. H. Witten nd E. Frnk Simplicity first Simple lgorithms often work very well! There re mny kinds of simple structure, eg: One ttriute does ll the work All ttriutes contriute eqully

More information

Illumination and Shading

Illumination and Shading Illumintion nd hding In order to produce relistic imges, we must simulte the ppernce of surfces under vrious lighting conditions. Illumintion models: given the illumintion incident t point on surfce, wht

More information

Introduction to Computer Engineering EECS 203 dickrp/eecs203/ CMOS transmission gate (TG) TG example

Introduction to Computer Engineering EECS 203  dickrp/eecs203/ CMOS transmission gate (TG) TG example Introduction to Computer Engineering EECS 23 http://ziyng.eecs.northwestern.edu/ dickrp/eecs23/ CMOS trnsmission gte TG Instructor: Robert Dick Office: L477 Tech Emil: dickrp@northwestern.edu Phone: 847

More information

arxiv: v2 [math.ho] 4 Jun 2012

arxiv: v2 [math.ho] 4 Jun 2012 Volumes of olids of Revolution. Unified pproch Jorge Mrtín-Morles nd ntonio M. Oller-Mrcén jorge@unizr.es, oller@unizr.es rxiv:5.v [mth.ho] Jun Centro Universitrio de l Defens - IUM. cdemi Generl Militr,

More information

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials

Product of polynomials. Introduction to Programming (in C++) Numerical algorithms. Product of polynomials. Product of polynomials Product of polynomils Introduction to Progrmming (in C++) Numericl lgorithms Jordi Cortdell, Ricrd Gvldà, Fernndo Orejs Dept. of Computer Science, UPC Given two polynomils on one vrile nd rel coefficients,

More information

10/9/2012. Operator is an operation performed over data at runtime. Arithmetic, Logical, Comparison, Assignment, Etc. Operators have precedence

10/9/2012. Operator is an operation performed over data at runtime. Arithmetic, Logical, Comparison, Assignment, Etc. Operators have precedence /9/22 P f Performing i Si Simple l Clcultions C l l ti with ith C#. Opertors in C# nd Opertor Precedence 2. Arithmetic Opertors 3. Logicl Opertors 4. Bitwise Opertors 5. Comprison Opertors 6. Assignment

More information

Fig.25: the Role of LEX

Fig.25: the Role of LEX The Lnguge for Specifying Lexicl Anlyzer We shll now study how to uild lexicl nlyzer from specifiction of tokens in the form of list of regulr expressions The discussion centers round the design of n existing

More information

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure

Lecture Overview. Knowledge-based systems in Bioinformatics, 1MB602. Procedural abstraction. The sum procedure. Integration as a procedure Lecture Overview Knowledge-bsed systems in Bioinformtics, MB6 Scheme lecture Procedurl bstrction Higher order procedures Procedures s rguments Procedures s returned vlues Locl vribles Dt bstrction Compound

More information

Definition of Regular Expression

Definition of Regular Expression Definition of Regulr Expression After the definition of the string nd lnguges, we re redy to descrie regulr expressions, the nottion we shll use to define the clss of lnguges known s regulr sets. Recll

More information

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization

An Efficient Divide and Conquer Algorithm for Exact Hazard Free Logic Minimization An Efficient Divide nd Conquer Algorithm for Exct Hzrd Free Logic Minimiztion J.W.J.M. Rutten, M.R.C.M. Berkelr, C.A.J. vn Eijk, M.A.J. Kolsteren Eindhoven University of Technology Informtion nd Communiction

More information

Simplifying Algebra. Simplifying Algebra. Curriculum Ready.

Simplifying Algebra. Simplifying Algebra. Curriculum Ready. Simplifying Alger Curriculum Redy www.mthletics.com This ooklet is ll out turning complex prolems into something simple. You will e le to do something like this! ( 9- # + 4 ' ) ' ( 9- + 7-) ' ' Give this

More information

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example:

cisc1110 fall 2010 lecture VI.2 call by value function parameters another call by value example: cisc1110 fll 2010 lecture VI.2 cll y vlue function prmeters more on functions more on cll y vlue nd cll y reference pssing strings to functions returning strings from functions vrile scope glol vriles

More information

Integration. October 25, 2016

Integration. October 25, 2016 Integrtion October 5, 6 Introduction We hve lerned in previous chpter on how to do the differentition. It is conventionl in mthemtics tht we re supposed to lern bout the integrtion s well. As you my hve

More information