Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018)

Size: px
Start display at page:

Download "Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018)"

Transcription

1 Darwin: A Genomic Co-processor gives up to 15,000X speedup on long read assembly (To appear in ASPLOS 2018) Yatish Turakhia EE PhD candidate Stanford University Prof. Bill Dally (Electrical Engineering and Computer Science) Prof. Gill Bejerano (Computer Science, Developmental Biology and Pediatrics)

2 DNA sequencing costs and data explosion 1 st gen 2nd gen 3rd gen Key players: 1. Illumina/Moleculo 2. Pacific Biosciences 3. Oxford nanopore 4. Ion Torrent (ThermoFisher) 5. Roche/Genia 6. Veritas Genetics 7. 10x Genomics and many others. Since 2003, genomics data doubling every 7 months! Exabyte data by M to 2B genomes to be sequenced! Stephens, Zachary D., et al. "Big data: astronomical or genomical?." PLoS Biology (2015) Illumina Hiseq X Oxford Minion 2

3 DNA sequencing costs and data explosion [phys.org/news] Uganda Antartica Oxford Minion 3

4 Patient Diagnosis: Sample-to-answer Patient Reads 1 ATGTCGAT CGATACGA GAGTCATC ACTGACGT 2 Read assembly Genome (3 Billion base pairs) REFERENCE:--ATGTCGATGATCCAGAGGATACTAGGATAT- PATIENT: --ATGTCTATGATC--GAGGATATTAGGATAT- Mutations 3 Genome Sequencing Machine Find the causal mutation Long reads (>10Kbp) offer a better resolution of the mutation spectrum but have high error rate (15-40%) >1,300 CPU hours for reference-guided assembly of noisy long reads 14.2M CPU-years for 100M individuals >15,600 CPU hours for de novo assembly of noisy long reads 178M CPU-years for 100M individuals 4

5 Darwin: A Genomics Co-processor Query (Q) D-SOFT Reference (R) D-SOFT (filter) D-SOFT API Darwin GACT (aligner) GACT API Query (Q) GACT Software Aligner Reference (R) High speed and programmability 1. D-SOFT: Tunable speed/precision to match any error profile 2. GACT: First algorithm with O(1) memory for computeintensive step of alignment allowing arbitrarily long alignments in hardware ideal for long reads 3. First framework shown to accelerate reference-guided as well as de novo assembly of reads in hardware 5

6 6 GACT algorithm and hardware design

7 Strategies for long sequence alignment Algorithm Time Space (compute-intensive step) Optimal Smith-Waterman O(mn) O(mn) Y Hirschberg O(mn) O(m+n) Y Banded Smith- Waterman O(n) O(n) N X-drop O(n) O(n) N GACT O(n) O(1) N m, n: sequence lengths m >= n Profound hardware design implications Prior assumptions (hardware) Small upper bound on sequence length n OR Trace-back of alignment in software SLOW! 7

8 Smith-Waterman Alignment } Given: Reference (R) and size m and Query (Q) of size n } Two step procedure 1. Compute scores H of every cell in the dynamic programming (DP) matrix using Smith- Waterman equations and scoring matrix W 2. Traceback from high-scoring cells to obtain final alignments Smith-Waterman equations Scoring Matrix W A C G T A C G T gap = 1 Query (Q) Reference (R) * G G C G A C T T T * G G T C G T T T G G - C G A C T T T G G T C G - - T T T

9 Genome Alignment using Constant-memory Trace-back (GACT) 1. Initialize I curr, J curr in R, Q 2. Form tile of maximum size T around I curr, J curr in R, Q 3. Align tile with trace-back from I curr, J curr with at most (T-O) steps 4. Update I curr, J curr with traceback end coordinates 5. Repeat 2-4 till extension no longer possible Query (Q) * G G T C G T T T Reference (R) * G G C G A C T T T Tile 1 Tile 3 T = 5, O=2 Tile 2 (I curr, J curr ) (I curr, J curr ) Optimal Alignment G G - C G A C T T T G G T C G - - T T T Score = 11 Alignment G G - C G A C T T T G G T C G - - T T T Score = 11 9

10 GACT empirically provides optimal alignments } GACT compared to optimal Smith-Waterman for 200,000 10Kbp sequences with 3 error profiles: PacBio (15% error), ONT_2D (30% error) and ONT_1D (40% error) } Simple scoring (match: +1, mismatch: -1, gap: -1) } At T=320, O=128, all observed alignments were optimal Optimal (T, O) settings Hardware throughput 10

11 GACT Hardware-acceleration Reference A C T A A G G T C G G T A T = 9 PE 0 PE 1 PE 2 PE 3 G C T G A G T Query Block 1 SRAM SRAM SRAM SRAM Query C A C T Query Block 2 A TB Logic T Query Block 3 } Systolic array of N pe (= 4) processing elements (PEs) solve Smith-Waterma equations } Tile with size T > N pe, query divided into blocks, reference streamed through each block } Computation exploits wave-front parallelism } On-chip SRAM for storing trace-back state (4-bit per cell) } Total SRAM size = 4-bit x (T max ) 2 => For T max = 512, SRAM size = 128KB 11

12 Darwin: GACT Performance #Arrays = 64 #PEs/array (N pe ) = 64 Runtime scales linearly to sequence length X faster than Edlib (fastest software alignment library) >75,000X faster than software implementation of GACT 12

13 13 D-SOFT algorithm and hardware design

14 Seed Position table based exact matching R = AGCTATACTA Seed Positions AA AC 6 AG 0 AT 4 CA CC CG CT 2 7 GA GC 1 GG GT Q = GCTA Q GC:1 CT: 2, 7 TA: 3, 5, 8 Slope= R TA TC TG For human genome, seed position table size > 12GB (4B x 3 x 10 9 ) TT 14

15 Diagonal-band Seed Overlapping based Filtration Technique (D-SOFT) Query (Q) Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Reference (R) N B = 6 N = 10 k = 4 h = 7 } Divide R into N B bins (diagonal bands) } Use N seeds of size k bp from different offsets in Q } Lookup positions of seeds in R and assign each seed hit to corresponding bin (diagonal band) } Count non-overlapping Q base-pairs covered by seed hits for each bin and filter based on threshold h (same as DALIGNER) 15

16 Tuning D-SOFT settings Sensitivity (k=12, N=1000, h=25) False Hit Rate (k=12, N=1000, h=25) Data shown for ONT_2D reads with GraphMap used for Baseline sensitivity 16

17 D-SOFT hardware-acceleration design Random accesses to update bins using on-chip SRAM (bin count SRAM) Area and power both dominated by 64MB Bin count SRAM Hardware exploits DRAM channel parallelism for seed position lookup 17

18 Darwin: TSMC 40nm ASIC configuration Component Configuration Area Power 18 GACT D-SOFT 64 arrays x 64PEs 2KB memory/pe 2SPL + NoC + 16 UBL 64MB Bin-count SRAM 4MB NZ-bin SRAM W W DRAM 4 x 32GB W TOTAL W

19 D-SOFT hardware-acceleration throughput k Avg. hits per seed (Human Genome) Throughput (10 3 seeds/sec) Software Darwin Darwin speedup , X , X , X , X , , X } ~4X speedup from parallel DRAM channels } ~3X reduction in number of memory accesses to the DRAM } ~3-8X speedup by using predominantly sequential memory accesses to DRAM 19

20 20 Long read assembly on Darwin

21 Darwin: Read assembly Reference-guided De novo (Overlap step) 21

22 Darwin: Performance Results Reference-guided (54X human genome) Read Error Rate D-SOFT settings (k, N, h) Baseline Sensitivity Darwin Speedup 15% (14, 750, 24) 95.95% 99.91% 9,916X 30% (12, 1000, 25) 98.11% 98.40% 15,062X 40% (11, 1300, 22) 97.10% 97.40% 1,244X Baseline: BWA-MEM (15%), GraphMap (30%, 40%) De novo (54X human genome) Read Error Rate D-SOFT settings (k, N, h) Baseline Sensitivity Darwin Speedup (Bottleneck) 15% (14, 1300, 24) 99.80% 99.89% 710X Baseline: DALIGNER 22

23 Darwin: Hardware-Software Co-design 23

24 Thank you! Questions 24

Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment

Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment Darwin: A Hardware-acceleration Framework for Genomic Sequence Alignment Yatish Turakhia EE PhD candidate Stanford University Prof. Bill Dally (Electrical Engineering and Computer Science) Prof. Gill Bejerano

More information

Darwin-WGA. A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup

Darwin-WGA. A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup Darwin-WGA A Co-processor Provides Increased Sensitivity in Whole Genome Alignments with High Speedup Yatish Turakhia*, Sneha D. Goenka*, Prof. Gill Bejerano, Prof. William J. Dally * Equal contribution

More information

SAPLING: Suffix Array Piecewise Linear INdex for Genomics Michael Kirsche

SAPLING: Suffix Array Piecewise Linear INdex for Genomics Michael Kirsche SAPLING: Suffix Array Piecewise Linear INdex for Genomics Michael Kirsche mkirsche@jhu.edu StringBio 2018 Outline Substring Search Problem Caching and Learned Data Structures Methods Results Ongoing work

More information

BMI/CS 576 Fall 2015 Midterm Exam

BMI/CS 576 Fall 2015 Midterm Exam BMI/CS 576 Fall 2015 Midterm Exam Prof. Colin Dewey Tuesday, October 27th, 2015 11:00am-12:15pm Name: KEY Write your answers on these pages and show your work. You may use the back sides of pages as necessary.

More information

Finding homologous sequences in databases

Finding homologous sequences in databases Finding homologous sequences in databases There are multiple algorithms to search sequences databases BLAST (EMBL, NCBI, DDBJ, local) FASTA (EMBL, local) For protein only databases scan via Smith-Waterman

More information

Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture

Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture Accelerating Genomic Sequence Alignment Workload with Scalable Vector Architecture Dong-hyeon Park, Jon Beaumont, Trevor Mudge University of Michigan, Ann Arbor Genomics Past Weeks ~$3 billion Human Genome

More information

Aligners. J Fass 23 August 2017

Aligners. J Fass 23 August 2017 Aligners J Fass 23 August 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-08-23

More information

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT

OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT OPEN MP-BASED PARALLEL AND SCALABLE GENETIC SEQUENCE ALIGNMENT Asif Ali Khan*, Laiq Hassan*, Salim Ullah* ABSTRACT: In bioinformatics, sequence alignment is a common and insistent task. Biologists align

More information

A Design of a Hybrid System for DNA Sequence Alignment

A Design of a Hybrid System for DNA Sequence Alignment IMECS 2008, 9-2 March, 2008, Hong Kong A Design of a Hybrid System for DNA Sequence Alignment Heba Khaled, Hossam M. Faheem, Tayseer Hasan, Saeed Ghoneimy Abstract This paper describes a parallel algorithm

More information

Sequence Assembly. BMI/CS 576 Mark Craven Some sequencing successes

Sequence Assembly. BMI/CS 576  Mark Craven Some sequencing successes Sequence Assembly BMI/CS 576 www.biostat.wisc.edu/bmi576/ Mark Craven craven@biostat.wisc.edu Some sequencing successes Yersinia pestis Cannabis sativa The sequencing problem We want to determine the identity

More information

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA

INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS. Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA INTRODUCING NVBIO: HIGH PERFORMANCE PRIMITIVES FOR COMPUTATIONAL GENOMICS Jonathan Cohen, NVIDIA Nuno Subtil, NVIDIA Jacopo Pantaleoni, NVIDIA SEQUENCING AND MOORE S LAW Slide courtesy Illumina DRAM I/F

More information

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014

Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic Programming User Manual v1.0 Anton E. Weisstein, Truman State University Aug. 19, 2014 Dynamic programming is a group of mathematical methods used to sequentially split a complicated problem into

More information

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching

SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching SlopMap: a software application tool for quick and flexible identification of similar sequences using exact k-mer matching Ilya Y. Zhbannikov 1, Samuel S. Hunter 1,2, Matthew L. Settles 1,2, and James

More information

Biostrings. Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA June 2009

Biostrings. Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA June 2009 Biostrings Martin Morgan Bioconductor / Fred Hutchinson Cancer Research Center Seattle, WA, USA 15-19 June 2009 Biostrings Representation DNA, RNA, amino acid, and general biological strings Manipulation

More information

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations:

Lecture Overview. Sequence search & alignment. Searching sequence databases. Sequence Alignment & Search. Goals: Motivations: Lecture Overview Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating

More information

Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT

Algorithms and Tools for Bioinformatics on GPUs. Bertil SCHMIDT Algorithms and Tools for Bioinformatics on GPUs Bertil SCHMIDT Contents Motivation Pairwise Sequence Alignment Multiple Sequence Alignment Short Read Error Correction using CUDA Some other CUDA-enabled

More information

Sequence comparison: Local alignment

Sequence comparison: Local alignment Sequence comparison: Local alignment Genome 559: Introuction to Statistical an Computational Genomics Prof. James H. Thomas http://faculty.washington.eu/jht/gs559_217/ Review global alignment en traceback

More information

Sequence Alignment & Search

Sequence Alignment & Search Sequence Alignment & Search Karin Verspoor, Ph.D. Faculty, Computational Bioscience Program University of Colorado School of Medicine With credit and thanks to Larry Hunter for creating the first version

More information

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014

Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Review of Recent NGS Short Reads Alignment Tools BMI-231 final project, Chenxi Chen Spring 2014 Deciphering the information contained in DNA sequences began decades ago since the time of Sanger sequencing.

More information

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm

Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Heterogeneous Hardware/Software Acceleration of the BWA-MEM DNA Alignment Algorithm Nauman Ahmed, Vlad-Mihai Sima, Ernst Houtgast, Koen Bertels and Zaid Al-Ars Computer Engineering Lab, Delft University

More information

A Scalable Coprocessor for Bioinformatic Sequence Alignments

A Scalable Coprocessor for Bioinformatic Sequence Alignments A Scalable Coprocessor for Bioinformatic Sequence Alignments Scott F. Smith Department of Electrical and Computer Engineering Boise State University Boise, ID, U.S.A. Abstract A hardware coprocessor for

More information

GPU Accelerated API for Alignment of Genomics Sequencing Data

GPU Accelerated API for Alignment of Genomics Sequencing Data GPU Accelerated API for Alignment of Genomics Sequencing Data Nauman Ahmed, Hamid Mushtaq, Koen Bertels and Zaid Al-Ars Computer Engineering Laboratory, Delft University of Technology, Delft, The Netherlands

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies November 17, 2012 1 Introduction Introduction 2 BLAST What is BLAST? The algorithm 3 Genome assembly De

More information

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question:

Database Workload. from additional misses in this already memory-intensive databases? interference could be a problem) Key question: Database Workload + Low throughput (0.8 IPC on an 8-wide superscalar. 1/4 of SPEC) + Naturally threaded (and widely used) application - Already high cache miss rates on a single-threaded machine (destructive

More information

DNA / RNA sequencing

DNA / RNA sequencing Outline Ways to generate large amounts of sequence Understanding the contents of large sequence files Fasta format Fastq format Sequence quality metrics Summarizing sequence data quality/quantity Using

More information

Under the Hood of Alignment Algorithms for NGS Researchers

Under the Hood of Alignment Algorithms for NGS Researchers Under the Hood of Alignment Algorithms for NGS Researchers April 16, 2014 Gabe Rudy VP of Product Development Golden Helix Questions during the presentation Use the Questions pane in your GoToWebinar window

More information

Genome 373: Mapping Short Sequence Reads I. Doug Fowler

Genome 373: Mapping Short Sequence Reads I. Doug Fowler Genome 373: Mapping Short Sequence Reads I Doug Fowler Two different strategies for parallel amplification BRIDGE PCR EMULSION PCR Two different strategies for parallel amplification BRIDGE PCR EMULSION

More information

Short Read Alignment. Mapping Reads to a Reference

Short Read Alignment. Mapping Reads to a Reference Short Read Alignment Mapping Reads to a Reference Brandi Cantarel, Ph.D. & Daehwan Kim, Ph.D. BICF 05/2018 Introduction to Mapping Short Read Aligners DNA vs RNA Alignment Quality Pitfalls and Improvements

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 04: Variations of sequence alignments http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html Slides adapted from Dr. Shaojie Zhang (University

More information

Read Mapping. Slides by Carl Kingsford

Read Mapping. Slides by Carl Kingsford Read Mapping Slides by Carl Kingsford Bowtie Ultrafast and memory-efficient alignment of short DNA sequences to the human genome Ben Langmead, Cole Trapnell, Mihai Pop and Steven L Salzberg, Genome Biology

More information

Energy-efficient acceleration of task dependency trees on CPU-GPU hybrids

Energy-efficient acceleration of task dependency trees on CPU-GPU hybrids Energy-efficient acceleration of task dependency trees on CPU-GPU hybrids Mark Silberstein - Technion Naoya Maruyama Tokyo Institute of Technology Mark Silberstein, Technion 1 The case for heterogeneous

More information

Fast Sequence Alignment Method Using CUDA-enabled GPU

Fast Sequence Alignment Method Using CUDA-enabled GPU Fast Sequence Alignment Method Using CUDA-enabled GPU Yeim-Kuan Chang Department of Computer Science and Information Engineering National Cheng Kung University Tainan, Taiwan ykchang@mail.ncku.edu.tw De-Yu

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics Find the best alignment between 2 sequences with lengths n and m, respectively Best alignment is very dependent upon the substitution matrix and gap penalties The Global Alignment Problem tries to find

More information

Aligners. J Fass 21 June 2017

Aligners. J Fass 21 June 2017 Aligners J Fass 21 June 2017 Definitions Assembly: I ve found the shredded remains of an important document; put it back together! UC Davis Genome Center Bioinformatics Core J Fass Aligners 2017-06-21

More information

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST

An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST An Analysis of Pairwise Sequence Alignment Algorithm Complexities: Needleman-Wunsch, Smith-Waterman, FASTA, BLAST and Gapped BLAST Alexander Chan 5075504 Biochemistry 218 Final Project An Analysis of Pairwise

More information

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems.

Sequencing. Short Read Alignment. Sequencing. Paired-End Sequencing 6/10/2010. Tobias Rausch 7 th June 2010 WGS. ChIP-Seq. Applied Biosystems. Sequencing Short Alignment Tobias Rausch 7 th June 2010 WGS RNA-Seq Exon Capture ChIP-Seq Sequencing Paired-End Sequencing Target genome Fragments Roche GS FLX Titanium Illumina Applied Biosystems SOLiD

More information

GPU Accelerated Smith-Waterman

GPU Accelerated Smith-Waterman GPU Accelerated Smith-Waterman Yang Liu 1,WayneHuang 1,2, John Johnson 1, and Sheila Vaidya 1 1 Lawrence Livermore National Laboratory 2 DOE Joint Genome Institute, UCRL-CONF-218814 {liu24, whuang, jjohnson,

More information

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it.

Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence Alignments Overview Sequence alignment is an essential concept for bioinformatics, as most of our data analysis and interpretation techniques make use of it. Sequence alignment means arranging

More information

RNA-seq Data Analysis

RNA-seq Data Analysis Seyed Abolfazl Motahari RNA-seq Data Analysis Basics Next Generation Sequencing Biological Samples Data Cost Data Volume Big Data Analysis in Biology تحلیل داده ها کنترل سیستمهای بیولوژیکی تشخیص بیماریها

More information

FastA & the chaining problem

FastA & the chaining problem FastA & the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 1 Sources for this lecture: Lectures by Volker Heun, Daniel Huson and Knut Reinert,

More information

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units

GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units GPUBwa -Parallelization of Burrows Wheeler Aligner using Graphical Processing Units Abstract A very popular discipline in bioinformatics is Next-Generation Sequencing (NGS) or DNA sequencing. It specifies

More information

Graph Algorithms in Bioinformatics

Graph Algorithms in Bioinformatics Graph Algorithms in Bioinformatics Computational Biology IST Ana Teresa Freitas 2015/2016 Sequencing Clone-by-clone shotgun sequencing Human Genome Project Whole-genome shotgun sequencing Celera Genomics

More information

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:

FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10: FastA and the chaining problem, Gunnar Klau, December 1, 2005, 10:56 4001 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem

More information

BLAST & Genome assembly

BLAST & Genome assembly BLAST & Genome assembly Solon P. Pissis Tomáš Flouri Heidelberg Institute for Theoretical Studies May 15, 2014 1 BLAST What is BLAST? The algorithm 2 Genome assembly De novo assembly Mapping assembly 3

More information

Computational Genomics and Molecular Biology, Fall

Computational Genomics and Molecular Biology, Fall Computational Genomics and Molecular Biology, Fall 2015 1 Sequence Alignment Dannie Durand Pairwise Sequence Alignment The goal of pairwise sequence alignment is to establish a correspondence between the

More information

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA

Comparative Analysis of Protein Alignment Algorithms in Parallel environment using CUDA Comparative Analysis of Protein Alignment Algorithms in Parallel environment using BLAST versus Smith-Waterman Shadman Fahim shadmanbracu09@gmail.com Shehabul Hossain rudrozzal@gmail.com Gulshan Jubaed

More information

Sequencing. Computational Biology IST Ana Teresa Freitas 2011/2012. (BACs) Whole-genome shotgun sequencing Celera Genomics

Sequencing. Computational Biology IST Ana Teresa Freitas 2011/2012. (BACs) Whole-genome shotgun sequencing Celera Genomics Computational Biology IST Ana Teresa Freitas 2011/2012 Sequencing Clone-by-clone shotgun sequencing Human Genome Project Whole-genome shotgun sequencing Celera Genomics (BACs) 1 Must take the fragments

More information

Bioinformatics explained: Smith-Waterman

Bioinformatics explained: Smith-Waterman Bioinformatics Explained Bioinformatics explained: Smith-Waterman May 1, 2007 CLC bio Gustav Wieds Vej 10 8000 Aarhus C Denmark Telephone: +45 70 22 55 09 Fax: +45 70 22 55 19 www.clcbio.com info@clcbio.com

More information

Mapping NGS reads for genomics studies

Mapping NGS reads for genomics studies Mapping NGS reads for genomics studies Valencia, 28-30 Sep 2015 BIER Alejandro Alemán aaleman@cipf.es Genomics Data Analysis CIBERER Where are we? Fastq Sequence preprocessing Fastq Alignment BAM Visualization

More information

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis

de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis de novo assembly Simon Rasmussen 36626: Next Generation Sequencing analysis DTU Bioinformatics 27626 - Next Generation Sequencing Analysis Generalized NGS analysis Data size Application Assembly: Compare

More information

Pre-processing and quality control of sequence data. Barbera van Schaik KEBB - Bioinformatics Laboratory

Pre-processing and quality control of sequence data. Barbera van Schaik KEBB - Bioinformatics Laboratory Pre-processing and quality control of sequence data Barbera van Schaik KEBB - Bioinformatics Laboratory b.d.vanschaik@amc.uva.nl Topic: quality control and prepare data for the interesting stuf Keep Throw

More information

Lecture 10. Sequence alignments

Lecture 10. Sequence alignments Lecture 10 Sequence alignments Alignment algorithms: Overview Given a scoring system, we need to have an algorithm for finding an optimal alignment for a pair of sequences. We want to maximize the score

More information

Sequence Assembly Required!

Sequence Assembly Required! Sequence Assembly Required! 1 October 3, ISMB 20172007 1 Sequence Assembly Genome Sequenced Fragments (reads) Assembled Contigs Finished Genome 2 Greedy solution is bounded 3 Typical assembly strategy

More information

A BANDED SMITH-WATERMAN FPGA ACCELERATOR FOR MERCURY BLASTP

A BANDED SMITH-WATERMAN FPGA ACCELERATOR FOR MERCURY BLASTP A BANDED SITH-WATERAN FPGA ACCELERATOR FOR ERCURY BLASTP Brandon Harris*, Arpith C. Jacob*, Joseph. Lancaster*, Jeremy Buhler*, Roger D. Chamberlain* *Dept. of Computer Science and Engineering, Washington

More information

Brief review from last class

Brief review from last class Sequence Alignment Brief review from last class DNA is has direction, we will use only one (5 -> 3 ) and generate the opposite strand as needed. DNA is a 3D object (see lecture 1) but we will model it

More information

The Future of Interconnect Technology

The Future of Interconnect Technology The Future of Interconnect Technology Michael Kagan, CTO HPC Advisory Council Stanford, 2014 Exponential Data Growth Best Interconnect Required 44X 0.8 Zetabyte 2009 35 Zetabyte 2020 2014 Mellanox Technologies

More information

Rsubread package: high-performance read alignment, quantification and mutation discovery

Rsubread package: high-performance read alignment, quantification and mutation discovery Rsubread package: high-performance read alignment, quantification and mutation discovery Wei Shi 14 September 2015 1 Introduction This vignette provides a brief description to the Rsubread package. For

More information

Short Read Alignment Algorithms

Short Read Alignment Algorithms Short Read Alignment Algorithms Raluca Gordân Department of Biostatistics and Bioinformatics Department of Computer Science Department of Molecular Genetics and Microbiology Center for Genomic and Computational

More information

Hardware Accelerator for Biological Sequence Alignment using Coreworks Processing Engine

Hardware Accelerator for Biological Sequence Alignment using Coreworks Processing Engine Hardware Accelerator for Biological Sequence Alignment using Coreworks Processing Engine José Cabrita, Gilberto Rodrigues, Paulo Flores INESC-ID / IST, Technical University of Lisbon jpmcabrita@gmail.com,

More information

High-throughout sequencing and using short-read aligners. Simon Anders

High-throughout sequencing and using short-read aligners. Simon Anders High-throughout sequencing and using short-read aligners Simon Anders High-throughput sequencing (HTS) Sequencing millions of short DNA fragments in parallel. a.k.a.: next-generation sequencing (NGS) massively-parallel

More information

Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster

Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster Biosequence Similarity Search on the Mercury System Praveen Krishnamurthy, Jeremy Buhler, Roger Chamberlain, Mark Franklin, Kwame Gyang, and Joseph Lancaster Praveen Krishnamurthy, Jeremy Buhler, Roger

More information

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein

Sequence Comparison: Dynamic Programming. Genome 373 Genomic Informatics Elhanan Borenstein Sequence omparison: Dynamic Programming Genome 373 Genomic Informatics Elhanan Borenstein quick review: hallenges Find the best global alignment of two sequences Find the best global alignment of multiple

More information

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi

SEASHORE / SARUMAN. Short Read Matching using GPU Programming. Tobias Jakobi SEASHORE SARUMAN Summary 1 / 24 SEASHORE / SARUMAN Short Read Matching using GPU Programming Tobias Jakobi Center for Biotechnology (CeBiTec) Bioinformatics Resource Facility (BRF) Bielefeld University

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Caches Martha A. Kim Columbia University Fall 215 Illustrations Copyright 27 Elsevier 1 / 23 Computer Systems Performance depends on which is slowest: the processor or

More information

Accelerating Smith-Waterman on Kepler. Erich Elsen. Vishal Vaidyanathan

Accelerating Smith-Waterman on Kepler. Erich Elsen. Vishal Vaidyanathan Accelerating Smith-Waterman on Kepler Erich Elsen Vishal Vaidyanathan 1 The Alignment Problem Target Query ATTGACTGAATCGA CATTACTGAAACGA l minimize inserts, deletes and replacements -ATTGACTGAATCGA CATT-ACTGAAACGA

More information

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350):

The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): The Memory Hierarchy & Cache Review of Memory Hierarchy & Cache Basics (from 350): Motivation for The Memory Hierarchy: { CPU/Memory Performance Gap The Principle Of Locality Cache $$$$$ Cache Basics:

More information

Rsubread package: high-performance read alignment, quantification and mutation discovery

Rsubread package: high-performance read alignment, quantification and mutation discovery Rsubread package: high-performance read alignment, quantification and mutation discovery Wei Shi 14 September 2015 1 Introduction This vignette provides a brief description to the Rsubread package. For

More information

Sequence Alignment. part 2

Sequence Alignment. part 2 Sequence Alignment part 2 Dynamic programming with more realistic scoring scheme Using the same initial sequences, we ll look at a dynamic programming example with a scoring scheme that selects for matches

More information

A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms

A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms Delft University of Technology A Comparison of Seed-and-Extend Techniques in Modern DNA Read Alignment Algorithms Ahmed, Nauman; Bertels, Koen; Al-Ars, Zaid DOI 10.1109/BIBM.2016.7822731 Publication date

More information

Read Mapping and Assembly

Read Mapping and Assembly Statistical Bioinformatics: Read Mapping and Assembly Stefan Seemann seemann@rth.dk University of Copenhagen April 9th 2019 Why sequencing? Why sequencing? Which organism does the sample comes from? Assembling

More information

Single Pass, BLAST-like, Approximate String Matching on FPGAs*

Single Pass, BLAST-like, Approximate String Matching on FPGAs* Single Pass, BLAST-like, Approximate String Matching on FPGAs* Martin Herbordt Josh Model Yongfeng Gu Bharat Sukhwani Tom VanCourt Computer Architecture and Automated Design Laboratory Department of Electrical

More information

Scoring and heuristic methods for sequence alignment CG 17

Scoring and heuristic methods for sequence alignment CG 17 Scoring and heuristic methods for sequence alignment CG 17 Amino Acid Substitution Matrices Used to score alignments. Reflect evolution of sequences. Unitary Matrix: M ij = 1 i=j { 0 o/w Genetic Code Matrix:

More information

Configurable and scalable class of high performance hardware accelerators for simultaneous DNA sequence alignment

Configurable and scalable class of high performance hardware accelerators for simultaneous DNA sequence alignment CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2013; 25:1319 1339 Published online 12 October 2012 in Wiley Online Library (wileyonlinelibrary.com)..2934 SPECIAL

More information

Sequence analysis Pairwise sequence alignment

Sequence analysis Pairwise sequence alignment UMF11 Introduction to bioinformatics, 25 Sequence analysis Pairwise sequence alignment 1. Sequence alignment Lecturer: Marina lexandersson 12 September, 25 here are two types of sequence alignments, global

More information

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh

Transparent Offloading and Mapping (TOM) Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Transparent Offloading and Mapping () Enabling Programmer-Transparent Near-Data Processing in GPU Systems Kevin Hsieh Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike O Connor, Nandita Vijaykumar,

More information

COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1. Database Searching

COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1. Database Searching COS 551: Introduction to Computational Molecular Biology Lecture: Oct 17, 2000 Lecturer: Mona Singh Scribe: Jacob Brenner 1 Database Searching In database search, we typically have a large sequence database

More information

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs

Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Masher: Mapping Long(er) Reads with Hash-based Genome Indexing on GPUs Anas Abu-Doleh 1,2, Erik Saule 1, Kamer Kaya 1 and Ümit V. Çatalyürek 1,2 1 Department of Biomedical Informatics 2 Department of Electrical

More information

Long Read RNA-seq Mapper

Long Read RNA-seq Mapper UNIVERSITY OF ZAGREB FACULTY OF ELECTRICAL ENGENEERING AND COMPUTING MASTER THESIS no. 1005 Long Read RNA-seq Mapper Josip Marić Zagreb, February 2015. Table of Contents 1. Introduction... 1 2. RNA Sequencing...

More information

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture

Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Accelerating InDel Detection on Modern Multi-Core SIMD CPU Architecture Da Zhang Collaborators: Hao Wang, Kaixi Hou, Jing Zhang Advisor: Wu-chun Feng Evolution of Genome Sequencing1 In 20032: 1 human genome

More information

COSINE: non-seeding method for mapping long noisy sequences

COSINE: non-seeding method for mapping long noisy sequences Published online 6 June 2017 Nucleic Acids Research, 2017, Vol. 45, No. 14 e132 doi: 10.1093/nar/gkx511 COSINE: non-seeding method for mapping long noisy sequences Pegah Tootoonchi Afshar 1 and Wing Hung

More information

Lecture 5: Markov models

Lecture 5: Markov models Master s course Bioinformatics Data Analysis and Tools Lecture 5: Markov models Centre for Integrative Bioinformatics Problem in biology Data and patterns are often not clear cut When we want to make a

More information

Genome 373: Genome Assembly. Doug Fowler

Genome 373: Genome Assembly. Doug Fowler Genome 373: Genome Assembly Doug Fowler What are some of the things we ve seen we can do with HTS data? We ve seen that HTS can enable a wide variety of analyses ranging from ID ing variants to genome-

More information

Data Preprocessing. Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis

Data Preprocessing. Next Generation Sequencing analysis DTU Bioinformatics Next Generation Sequencing Analysis Data Preprocessing Next Generation Sequencing analysis DTU Bioinformatics Generalized NGS analysis Data size Application Assembly: Compare Raw Pre- specific: Question Alignment / samples / Answer? reads

More information

Pairwise alignment II

Pairwise alignment II Pairwise alignment II Agenda - Previous Lesson: Minhala + Introduction - Review Dynamic Programming - Pariwise Alignment Biological Motivation Today: - Quick Review: Sequence Alignment (Global, Local,

More information

High-throughput Sequence Alignment using Graphics Processing Units

High-throughput Sequence Alignment using Graphics Processing Units High-throughput Sequence Alignment using Graphics Processing Units Michael Schatz & Cole Trapnell May 21, 2009 UMD NVIDIA CUDA Center Of Excellence Presentation Searching Wikipedia How do you find all

More information

Data Preprocessing : Next Generation Sequencing analysis CBS - DTU Next Generation Sequencing Analysis

Data Preprocessing : Next Generation Sequencing analysis CBS - DTU Next Generation Sequencing Analysis Data Preprocessing 27626: Next Generation Sequencing analysis CBS - DTU Generalized NGS analysis Data size Application Assembly: Compare Raw Pre- specific: Question Alignment / samples / Answer? reads

More information

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics

Overcoming the Memory System Challenge in Dataflow Processing. Darren Jones, Wave Computing Drew Wingard, Sonics Overcoming the Memory System Challenge in Dataflow Processing Darren Jones, Wave Computing Drew Wingard, Sonics Current Technology Limits Deep Learning Performance Deep Learning Dataflow Graph Existing

More information

RUNTIME SUPPORT FOR ADAPTIVE SPATIAL PARTITIONING AND INTER-KERNEL COMMUNICATION ON GPUS

RUNTIME SUPPORT FOR ADAPTIVE SPATIAL PARTITIONING AND INTER-KERNEL COMMUNICATION ON GPUS RUNTIME SUPPORT FOR ADAPTIVE SPATIAL PARTITIONING AND INTER-KERNEL COMMUNICATION ON GPUS Yash Ukidave, Perhaad Mistry, Charu Kalra, Dana Schaa and David Kaeli Department of Electrical and Computer Engineering

More information

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy Chapter 5B Large and Fast: Exploiting Memory Hierarchy One Transistor Dynamic RAM 1-T DRAM Cell word access transistor V REF TiN top electrode (V REF ) Ta 2 O 5 dielectric bit Storage capacitor (FET gate,

More information

Omega: an Overlap-graph de novo Assembler for Metagenomics

Omega: an Overlap-graph de novo Assembler for Metagenomics Omega: an Overlap-graph de novo Assembler for Metagenomics B a h l e l H a i d e r, Ta e - H y u k A h n, B r i a n B u s h n e l l, J u a n j u a n C h a i, A l e x C o p e l a n d, C h o n g l e Pa n

More information

Index-assisted approximate matching

Index-assisted approximate matching Index-assisted approximate matching Ben Langmead Department of Computer Science You are free to use these slides. If you do, please sign the guestbook (www.langmead-lab.org/teaching-materials), or email

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms. COMP Spring 2015 Luay Nakhleh, Rice University Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 - Spring 2015 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment The number of all possible pairwise alignments (if

More information

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE

HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER PROF. BRYANT PROF. KAYVON 15618: PARALLEL COMPUTER ARCHITECTURE HYPERDRIVE IMPLEMENTATION AND ANALYSIS OF A PARALLEL, CONJUGATE GRADIENT LINEAR SOLVER AVISHA DHISLE PRERIT RODNEY ADHISLE PRODNEY 15618: PARALLEL COMPUTER ARCHITECTURE PROF. BRYANT PROF. KAYVON LET S

More information

Creating a custom mappings similarity matrix

Creating a custom mappings similarity matrix BioNumerics Tutorial: Creating a custom mappings similarity matrix 1 Aim In BioNumerics, character values can be mapped to categorical names according to predefined criteria (see tutorial Importing non-numerical

More information

An FPGA-Based Systolic Array to Accelerate the BWA-MEM Genomic Mapping Algorithm

An FPGA-Based Systolic Array to Accelerate the BWA-MEM Genomic Mapping Algorithm An FPGA-Based Systolic Array to Accelerate the BWA-MEM Genomic Mapping Algorithm Ernst Joachim Houtgast, Vlad-Mihai Sima, Koen Bertels and Zaid Al-Ars Faculty of EEMCS, Delft University of Technology,

More information

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University

Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University 1 Pairwise Sequence Alignment: Dynamic Programming Algorithms COMP 571 Luay Nakhleh, Rice University DP Algorithms for Pairwise Alignment 2 The number of all possible pairwise alignments (if gaps are allowed)

More information

Fundamentals of Computer Systems

Fundamentals of Computer Systems Fundamentals of Computer Systems Caches Stephen A. Edwards Columbia University Summer 217 Illustrations Copyright 27 Elsevier Computer Systems Performance depends on which is slowest: the processor or

More information

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures

Lectures by Volker Heun, Daniel Huson and Knut Reinert, in particular last years lectures 4 FastA and the chaining problem We will discuss: Heuristics used by the FastA program for sequence alignment Chaining problem 4.1 Sources for this lecture Lectures by Volker Heun, Daniel Huson and Knut

More information

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory

TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory TETRIS: Scalable and Efficient Neural Network Acceleration with 3D Memory Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, Christos Kozyrakis Stanford University Platform Lab Review Feb 2017 Deep Neural

More information

Reducing Genome Assembly Complexity with Optical Maps

Reducing Genome Assembly Complexity with Optical Maps Reducing Genome Assembly Complexity with Optical Maps AMSC 663 Mid-Year Progress Report 12/13/2011 Lee Mendelowitz Lmendelo@math.umd.edu Advisor: Mihai Pop mpop@umiacs.umd.edu Computer Science Department

More information