Beginning Direct3D Game Programming: 6. First Steps to Animation. Division of Digital Contents, DongSeo University.

Size: px
Start display at page:

Download "Beginning Direct3D Game Programming: 6. First Steps to Animation. Division of Digital Contents, DongSeo University."

Transcription

1 Beginning Direct3D Game Programming: 6. First Steps to Animation Division of Digital Contents, DongSeo University. April 2016

2 Understanding Transformations At the head of the pipeline, a model's vertices are declared relative to a local coordinate system. This is a local origin and an orientation. 2

3 World Transform The first stage of the geometry pipeline transforms a model's vertices from their local coordinate system to a coordinate system that is used by all the objects in a scene. The process of reorienting the vertices is called the world transform. 3

4 View Transform In the next stage, the vertices that describe your 3D world are oriented with respect to a camera. That is, your application chooses a point-of-view for the scene, and world space coordinates are relocated and rotated around the camera's view, turning world space into camera space. 4

5 Projection Transform In this part of the pipeline, objects are usually scaled with relation to their distance from the viewer in order to give the illusion of depth to a scene; close objects are made to appear larger than distant objects, and so on. 5

6 Clipping In the final part of the pipeline, any vertices that will not be visible on the screen are removed. 6

7 Transform Pipeline 7

8 World Transform You move an object in a 3D world using a world transformation. Figure 6.1 shows two cubes that are the same size but have different positions and orientations. 8

9 1. The cube is standing with its origin in the origin of the world coordinate system. 2. Rotate the cube. 3. Move the cube to its new position. 9

10 1. The cube is standing with its origin in the origin of the world coordinate system. 2. Move the cube to its new position. 3. Rotate the cube. 10

11 A 4 4 world matrix contains four vectors, which might represent the orientation and position of an object. The u, v, and w vectors describe the orientation of the object s vertices compared to the world coordinate system. The t vector describes the position of the object s vertex compared to the world coordinate system. Every vertex of the cube gets the correct orientation and position by being multiplied by this matrix. 11

12 To describe the position of the cube in Figure 6.4, you must multiply the following matrix by every vertex of the cube. D3DMATRIX mat; mat._11 = 1.0f; mat._12 = 0.0f; mat._13 = 0.0f; mat._14 = 0.0f; mat._21 = 0.0f; mat._22 = 1.0f; mat._23 = 0.0f; mat._24 = 0.0f; mat._31 = 0.0f; mat._32 = 0.0f; mat._33 = 1.0f; mat._34 = 0.0f; mat._41 = 2.0f; mat._42 = 2.0f; mat._43 = 2.0f; mat._44 = 1.0f; 12

13 D3DXMatrixTranslation() D3DXMatrixTranslation() might look like this: inline VOID D3DXMatrixTranslation (D3DXMATRIX* m, FLOAT tx, FLOAT ty, FLOAT tz ) { D3DXMatrixIdentity(m ); m._41 = tx; m._42 = ty; m._43 = tz; } = tx ty tz 1 13

14 D3DXMatrixRotationY() VOID D3DXMatrixRotationY( D3DXMATRIX* mat, FLOAT frads ) { D3DXMatrixIdentity(mat); mat._11 = cosf( frads ); mat._13 = -sinf( frads ); mat._31 = sinf( frads ); mat._33 = cosf( frads ); } = cosf(frads) 0 sinf(frads) sinf(frads) 0 cosf(frads)

15 Concatenating Matrices One advantage of using matrices is that you can combine the effects of two or more matrices by multiplying them. Use the D3DXMatrixMultiply function to perform matrix multiplication. 15

16 D3DXMatrixMultiply() D3DXMATRIX* D3DXMatrixMultiply(D3DXMATRIX* pout, CONST D3DXMATRIX* pm1, CONST D3DMATRIX* pm2) { } FLOAT pm[16]; ZeroMemory( pm, sizeof(d3dxmatrix) ); for( WORD i=0; i<4; i++ ) for( WORD j=0; j<4; j++ ) for( WORD k=0; k<4; k++ ) pm[4*i+j] += pm1[4*i+k] * pm2[4*k+j]; memcpy( pout, pm, sizeof(d3dxmatrix) ); return (pout); 16

17 IDirect3DDevice9::SetTransform After you prepare the world matrix, call the IDirect3DDevice9::SetTransform method to set it, specifying the D3DTS_WORLD macro for the first parameter. // Set up the rotation matrix to generate 1 full rotation (2*PI radians) // every 1000 ms. To avoid the loss of precision inherent in very high // floating point numbers, the system time is modulated by the rotation // period before conversion to a radian angle. UINT itime = timegettime() % 1000; FLOAT fangle = itime * ( 2.0f * D3DX_PI ) / f; D3DXMatrixRotationY( &matworld, fangle ); g_pd3ddevice->settransform( D3DTS_WORLD, &matworld ); 17

18 View Transform The view transform locates the viewer in world space, transforming vertices into camera space. In this formula, V is the view matrix being created, T is a translation matrix that repositions objects in the world, and R x through R z are rotation matrices that rotate objects along the x-, y-, and z-axis. 18

19 Setting Up a View Matrix The following example creates a view matrix for left-handed coordinates. D3DXMATRIX mview; D3DXVECTOR3 eye(2,3,3); D3DXVECTOR3 at(0,0,0); D3DXVECTOR3 up(0,1,0); D3DXMatrixLookAtLH(&mView, &eye, &at, &up); g_pd3ddevice->settransform( D3DTS_VIEW, &mview); 19

20 Projection Transform 20 The projection matrix is typically a scale and perspective projection. The projection transformation converts the viewing frustum into a cuboid shape.

21 How to Project? Two triangles are similar. ABC A'OC x:x' = (z+d):d x'(z+d) = xd x' = xd / (z+d) y' = yd / (z+d) z' = 0 21

22 x y z 1 x d y d 0 z + d = d d d x y z 1 x y z 1 ( ) (z + d) 22

23 Setting Up a Projection Matrix in DirectX In this matrix, Z n is the z-value of the near clipping plane. The variables w, h, and Q have the following meanings. Note that fov w and fov h represent the viewport's horizontal and vertical fields of view, in radians. 23

24 Trigonometric Functions z =zq-qz n z =Z n Q-QZ n =0 z =Z f Q-QZ n =Q(Z f -Z n )=Z f 24

25 Cot(x) graph 25

26 D3DXMatrixPerspectiveFovLH() D3DXMATRIX * D3DXMatrixPerspectiveFovLH( D3DXMATRIX * pout, FLOAT fovy, FLOAT Aspect, FLOAT zn, FLOAT zf ); // For the projection matrix, we set up a perspective transform (which // transforms geometry from 3D view space to 2D viewport space, with // a perspective divide making objects smaller in the distance). To build // a perpsective transform, we need the field of view (1/4 pi is common), // the aspect ratio, and the near and far clipping planes (which define at // what distances geometry should be no longer be rendered). D3DXMATRIXA16 matproj; D3DXMatrixPerspectiveFovLH( &matproj, D3DX_PI / 4, 1.0f, 1.0f, 100.0f ); g_pd3ddevice->settransform( D3DTS_PROJECTION, &matproj ); 26

27 Working with the Viewport Conceptually, a viewport is a two-dimensional (2D) rectangle into which a 3D scene is projected. In Direct3D, the rectangle exists as coordinates within a Direct3D surface that the system uses as a rendering target. 27

28 The Viewing Frustum A viewing frustum is 3D volume in a scene positioned relative to the viewport's camera. The shape of the volume affects how models are projected from camera space onto the screen. 28

29 29 The viewing frustum is defined by fov (field of view) and by the distances of the front and back clipping planes, specified in z-coordinates.

30 Viewport Rectangle You define the viewport rectangle in C++ by using the D3DVIEWPORT9 structure. The D3DVIEWPORT9 structure is used with the following viewport manipulation methods exposed. IDirect3DDevice9::GetViewport IDirect3DDevice9::SetViewport Use IDirect3DDevice9::Clear to clear the viewport. 30

31 You can use the following settings for the members of the D3DVIEWPORT9 structure to achieve this in C D3DVIEWPORT9 viewdata = { 0, 0, width, height, 0.0f, 1.0f }; After setting values in the D3DVIEWPORT9 structure, apply the viewport parameters to the device by calling its IDirect3DDevice9::SetViewport method. HRESULT hr; hr = pd3ddevice->setviewport(&viewdata); if(failed(hr)) return hr;

32 Depth Buffering A depth buffer, often called a z-buffer or a w-buffer, is a property of the device that stores depth information to be used by Direct3D. 32

33 Creating a Depth Buffer 33 To create a depth buffer that is managed by Direct3D, set the appropriate members of the D3DPRESENT_PARAMETERS structure. D3DPRESENT_PARAMETERS d3dpp; ZeroMemory( &d3dpp, sizeof(d3dpp) ); d3dpp.windowed d3dpp.swapeffect = TRUE; d3dpp.enableautodepthstencil = TRUE; = D3DSWAPEFFECT_COPY; d3dpp.autodepthstencilformat = D3DFMT_D16; if( FAILED( g_pd3d->createdevice( D3DADAPTER_DEFAULT, D3DDEVTYPE_HAL, hwnd, D3DCREATE_SOFTWARE_VERTEXPROCESSING, &d3dpp, &d3ddevice ) ) ) return E_FAIL;

34 Quaternion Quaternions contain a scalar component and a 3D vector component. With the Direct3D quaternion class, you use the w, x, y, and z components by adding.x,.y,.z, and.w to the variable names. 34

35 D3DXQUATERNION * D3DXQuaternionRotationAxis( D3DXQUATERNION *pout, CONST D3DXVECTOR3 *pv, FLOAT Angle ); D3DXQUATERNION * D3DXQuaternionRotationMatrix( D3DXQUATERNION * pout, CONST D3DXMATRIX * pm ); D3DXMATRIX * D3DXMatrixRotationQuaternion( D3DXMATRIX *pout, CONST D3DXQUATERNION *pq ); 35

36 Tutorial 03: Using Matrices This tutorial introduces the concept of matrices and shows how to use them. Step 1 - Defining the World Transformation Matrix Step 2 - Defining the View Transformation Matrix Step 3 - Defining the Projection Transformation Matrix 36

37 Step 1 - Defining the World Transformation Matrix The world transformation matrix defines how to translate, scale, and rotate the geometry in the 3D model space. D3DXMATRIX matworld; D3DXMatrixRotationY( &matworld, timegettime()/150.0f ); g_pd3ddevice->settransform( D3DTS_WORLD, &matworld ); 37

38 Step 2 - Defining the View Transformation Matrix The view transformation matrix defines the position and rotation of the view. The view matrix is the camera for the scene. D3DXVECTOR3 veyept ( 0.0f, 3.0f,-5.0f ); D3DXVECTOR3 vlookatpt( 0.0f, 0.0f, 0.0f ); D3DXVECTOR3 vupvec ( 0.0f, 1.0f, 0.0f ); D3DXMATRIXA16 matview; D3DXMatrixLookAtLH( &matview, &veyept, &vlookatpt, &vupvec ); g_pd3ddevice->settransform( D3DTS_VIEW, &matview ); 38

39 Step 3 - Defining the Projection Transformation Matrix The projection transformation matrix defines how geometry is transformed from 3D view space to 2D viewport space. D3DXMATRIX matproj; D3DXMatrixPerspectiveFovLH( &matproj, D3DX_PI/4, 1.0f, 1.0f, 100.0f ); g_pd3ddevice->settransform( D3DTS_PROJECTION, &matproj ); 39

40 Practice Achieve similar animation by setting View Matrix. Rotate the triangle about x-axis. Translate the triangle about (5,5,0), then rotate. Rotate the triangle, the translate (5,5,0). Check differences between two transforms. Modify the Fov of Projection matrix and check the visual differences. 40

41 References 41

42

DirectX Programming #1. Hyunna Lee Computer Graphics, 2010 Spring

DirectX Programming #1. Hyunna Lee Computer Graphics, 2010 Spring DirectX Programming #1 Hyunna Lee Computer Graphics, 2010 Spring Contents } Installation and Settings } Introduction to Direct3D 9 Graphics } Initializing Direct3D } Rendering Vertices } The D3D coordinate

More information

DirectX Programming #1. Kang, Seong-tae Computer Graphics, 2007 Fall

DirectX Programming #1. Kang, Seong-tae Computer Graphics, 2007 Fall DirectX Programming #1 Kang, Seong-tae Computer Graphics, 2007 Fall Contents Installation and Settings Introduction to Direct3D 9 Graphics Initializing Direct3D Rendering Vertices The D3D coordinate system

More information

The Importance of Matrices in the DirectX API. by adding support in the programming language for frequently used calculations.

The Importance of Matrices in the DirectX API. by adding support in the programming language for frequently used calculations. Hermann Chong Dr. King Linear Algebra Applications 28 November 2001 The Importance of Matrices in the DirectX API In the world of 3D gaming, there are two APIs (Application Program Interface) that reign

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

D3DX Concrete Types. Chapter Overview Colors

D3DX Concrete Types. Chapter Overview Colors Chapter 16 D3DX Concrete Types The study of mathematics, like the Nile, begins in minuteness, but ends in magnificence. C. C. Colton: Lacon, 1820 16.1 Overview D3DX provides some concrete C ++ datatypes

More information

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing

3D Graphics for Game Programming (J. Han) Chapter II Vertex Processing Chapter II Vertex Processing Rendering Pipeline Main stages in the pipeline The vertex processing stage operates on every input vertex stored in the vertex buffer and performs various operations such as

More information

Virtual Cameras and The Transformation Pipeline

Virtual Cameras and The Transformation Pipeline Virtual Cameras and The Transformation Pipeline Anton Gerdelan gerdela@scss.tcd.ie with content from Rachel McDonnell 13 Oct 2014 Virtual Camera We want to navigate through our scene in 3d Solution = create

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009

Lecture 3 Sections 2.2, 4.4. Mon, Aug 31, 2009 Model s Lecture 3 Sections 2.2, 4.4 World s Eye s Clip s s s Window s Hampden-Sydney College Mon, Aug 31, 2009 Outline Model s World s Eye s Clip s s s Window s 1 2 3 Model s World s Eye s Clip s s s Window

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

1 OpenGL - column vectors (column-major ordering)

1 OpenGL - column vectors (column-major ordering) OpenGL - column vectors (column-major ordering) OpenGL uses column vectors and matrices are written in a column-major order. As a result, matrices are concatenated in right-to-left order, with the first

More information

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #4: Vertex Transformation. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Project 2 due Friday, October 12

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation

CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation CSE 167: Introduction to Computer Graphics Lecture #4: Vertex Transformation Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Project 2 due Friday, October 11

More information

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification Wire-Frame 3D Graphics Accelerator IP Core C Library Specification Kenji Ishimaru 1 / 29 Revision History Rev. Date Author Description 1.0 2015/09/30 Kenji Ishimaru First release

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-845; Fax: (631)632-8334 qin@cs.stonybrook.edu

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017

CSE 167: Introduction to Computer Graphics Lecture #5: Projection. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 CSE 167: Introduction to Computer Graphics Lecture #5: Projection Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2017 Announcements Friday: homework 1 due at 2pm Upload to TritonEd

More information

Three-Dimensional Viewing Hearn & Baker Chapter 7

Three-Dimensional Viewing Hearn & Baker Chapter 7 Three-Dimensional Viewing Hearn & Baker Chapter 7 Overview 3D viewing involves some tasks that are not present in 2D viewing: Projection, Visibility checks, Lighting effects, etc. Overview First, set up

More information

Chapter 5. Projections and Rendering

Chapter 5. Projections and Rendering Chapter 5 Projections and Rendering Topics: Perspective Projections The rendering pipeline In order to view manipulate and view a graphics object we must find ways of storing it a computer-compatible way.

More information

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker

CMSC427 Transformations II: Viewing. Credit: some slides from Dr. Zwicker CMSC427 Transformations II: Viewing Credit: some slides from Dr. Zwicker What next? GIVEN THE TOOLS OF The standard rigid and affine transformations Their representation with matrices and homogeneous coordinates

More information

CSE328 Fundamentals of Computer Graphics

CSE328 Fundamentals of Computer Graphics CSE328 Fundamentals of Computer Graphics Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 794--44 Tel: (63)632-845; Fax: (63)632-8334 qin@cs.sunysb.edu

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation

SUMMARY. CS380: Introduction to Computer Graphics Projection Chapter 10. Min H. Kim KAIST School of Computing 18/04/12. Smooth Interpolation CS38: Introduction to Computer Graphics Projection Chapter Min H. Kim KAIST School of Computing Smooth Interpolation SUMMARY 2 Cubic Bezier Spline To evaluate the function c(t) at any value of t, we perform

More information

Chap 7, 2008 Spring Yeong Gil Shin

Chap 7, 2008 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 28 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a synthetic camera)

More information

Viewing with Computers (OpenGL)

Viewing with Computers (OpenGL) We can now return to three-dimension?', graphics from a computer perspective. Because viewing in computer graphics is based on the synthetic-camera model, we should be able to construct any of the classical

More information

Overview. By end of the week:

Overview. By end of the week: Overview By end of the week: - Know the basics of git - Make sure we can all compile and run a C++/ OpenGL program - Understand the OpenGL rendering pipeline - Understand how matrices are used for geometric

More information

CSC 305 The Graphics Pipeline-1

CSC 305 The Graphics Pipeline-1 C. O. P. d y! "#"" (-1, -1) (1, 1) x z CSC 305 The Graphics Pipeline-1 by Brian Wyvill The University of Victoria Graphics Group Perspective Viewing Transformation l l l Tools for creating and manipulating

More information

Viewing COMPSCI 464. Image Credits: Encarta and

Viewing COMPSCI 464. Image Credits: Encarta and Viewing COMPSCI 464 Image Credits: Encarta and http://www.sackville.ednet.ns.ca/art/grade/drawing/perspective4.html Graphics Pipeline Graphics hardware employs a sequence of coordinate systems The location

More information

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment

Notes on Assignment. Notes on Assignment. Notes on Assignment. Notes on Assignment Notes on Assignment Notes on Assignment Objects on screen - made of primitives Primitives are points, lines, polygons - watch vertex ordering The main object you need is a box When the MODELVIEW matrix

More information

A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros

A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros A Conceptual and Practical Look into Spherical Curvilinear Projection By Danny Oros IMPORTANT NOTE : This document and technology is the legal property of Matrox Graphics, Inc. However, this technique

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Prof. Feng Liu. Fall /19/2016

Prof. Feng Liu. Fall /19/2016 Prof. Feng Liu Fall 26 http://www.cs.pdx.edu/~fliu/courses/cs447/ /9/26 Last time More 2D Transformations Homogeneous Coordinates 3D Transformations The Viewing Pipeline 2 Today Perspective projection

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Guided Problem Solving

Guided Problem Solving -1 Guided Problem Solving GPS Student Page 57, Exercises 1 1: Match each rule with the correct translation. A. (x, y) (x, y 1 ) I. P(, 1) P (3, ) B. (x, y) (x 1 3, y) II. Q(3, 0) Q (3, ) C. (x, y) (x 1,

More information

CS Exam 1 Review Problems Fall 2017

CS Exam 1 Review Problems Fall 2017 CS 45500 Exam 1 Review Problems Fall 2017 1. What is a FrameBuffer data structure? What does it contain? What does it represent? How is it used in a graphics rendering pipeline? 2. What is a Scene data

More information

Lecture 4. Viewing, Projection and Viewport Transformations

Lecture 4. Viewing, Projection and Viewport Transformations Notes on Assignment Notes on Assignment Hw2 is dependent on hw1 so hw1 and hw2 will be graded together i.e. You have time to finish both by next monday 11:59p Email list issues - please cc: elif@cs.nyu.edu

More information

Perspective matrix, OpenGL style

Perspective matrix, OpenGL style Perspective matrix, OpenGL style Stefan Gustavson May 7, 016 Gortler s book presents perspective transformation using a slightly different matrix than what is common in OpenGL applications. This document

More information

CS 418: Interactive Computer Graphics. Projection

CS 418: Interactive Computer Graphics. Projection CS 418: Interactive Computer Graphics Projection Eric Shaffer Based on John Hart s CS 418 Slides Hierarchical Solar System Model Without push/pop, You can t move the Earth scale to before you draw the

More information

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space

Basic Elements. Geometry is the study of the relationships among objects in an n-dimensional space Basic Elements Geometry is the study of the relationships among objects in an n-dimensional space In computer graphics, we are interested in objects that exist in three dimensions We want a minimum set

More information

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside

CS230 : Computer Graphics Lecture 6: Viewing Transformations. Tamar Shinar Computer Science & Engineering UC Riverside CS230 : Computer Graphics Lecture 6: Viewing Transformations Tamar Shinar Computer Science & Engineering UC Riverside Rendering approaches 1. image-oriented foreach pixel... 2. object-oriented foreach

More information

Projection and viewing. Computer Graphics CSE 167 Lecture 4

Projection and viewing. Computer Graphics CSE 167 Lecture 4 Projection and viewing Computer Graphics CSE 167 Lecture 4 CSE 167: Computer Graphics Review: transformation from the object (or model) coordinate frame to the camera (or eye) coordinate frame Projection

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Albrecht Dürer, Underweysung der Messung mit

More information

Chap 7, 2009 Spring Yeong Gil Shin

Chap 7, 2009 Spring Yeong Gil Shin Three-Dimensional i Viewingi Chap 7, 29 Spring Yeong Gil Shin Viewing i Pipeline H d fi i d? How to define a window? How to project onto the window? Rendering "Create a picture (in a snthetic camera) Specification

More information

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics

Evening s Goals. Mathematical Transformations. Discuss the mathematical transformations that are utilized for computer graphics Evening s Goals Discuss the mathematical transformations that are utilized for computer graphics projection viewing modeling Describe aspect ratio and its importance Provide a motivation for homogenous

More information

Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design:

Software Engineering. ò Look up Design Patterns. ò Code Refactoring. ò Code Documentation? ò One of the lessons to learn for good design: Software Engineering ò Look up Design Patterns ò Code Refactoring ò Code Documentation? ò One of the lessons to learn for good design: ò Coupling: the amount of interconnectedness between classes ò Cohesion:

More information

COMS 4160: Problems on Transformations and OpenGL

COMS 4160: Problems on Transformations and OpenGL COMS 410: Problems on Transformations and OpenGL Ravi Ramamoorthi 1. Write the homogeneous 4x4 matrices for the following transforms: Translate by +5 units in the X direction Rotate by 30 degrees about

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

Models and The Viewing Pipeline. Jian Huang CS456

Models and The Viewing Pipeline. Jian Huang CS456 Models and The Viewing Pipeline Jian Huang CS456 Vertex coordinates list, polygon table and (maybe) edge table Auxiliary: Per vertex normal Neighborhood information, arranged with regard to vertices and

More information

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode

Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to mode Graphic Pipeline 1 Rendering If we have a precise computer representation of the 3D world, how realistic are the 2D images we can generate? What are the best way to model 3D world? How to render them?

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

The Graphics Pipeline and OpenGL I: Transformations!

The Graphics Pipeline and OpenGL I: Transformations! ! The Graphics Pipeline and OpenGL I: Transformations! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 2! stanford.edu/class/ee267/!! Logistics Update! all homework submissions:

More information

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points

Viewing. Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective Projection Implementation Vanishing Points Viewing Announcements. A Note About Transformations. Orthographic and Perspective

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012.

CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions. The Midterm Exam was given in class on Tuesday, October 16, 2012. CS 381 Computer Graphics, Fall 2012 Midterm Exam Solutions The Midterm Exam was given in class on Tuesday, October 16, 2012. 1. [7 pts] Synthetic-Camera Model. Describe the Synthetic-Camera Model : how

More information

Fachhochschule Regensburg, Germany, February 15, 2017

Fachhochschule Regensburg, Germany, February 15, 2017 s Operations Fachhochschule Regensburg, Germany, February 15, 2017 s Motivating Example s Operations To take a photograph of a scene: Set up your tripod and point camera at the scene (Viewing ) Position

More information

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics

Motivation. What we ve seen so far. Demo (Projection Tutorial) Outline. Projections. Foundations of Computer Graphics Foundations of Computer Graphics Online Lecture 5: Viewing Orthographic Projection Ravi Ramamoorthi Motivation We have seen transforms (between coord sstems) But all that is in 3D We still need to make

More information

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

Data Visualization. What is the goal? A generalized environment for manipulation and visualization of multidimensional data

Data Visualization. What is the goal? A generalized environment for manipulation and visualization of multidimensional data Data Visualization NIH-NSF NSF BBSI: Simulation and Computer Visualization of Biological Systems at Multiple Scales June 2-4, 2 2004 Joel R. Stiles, MD, PhD What is the goal? A generalized environment

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard

Announcements. Submitting Programs Upload source and executable(s) (Windows or Mac) to digital dropbox on Blackboard Now Playing: Vertex Processing: Viewing Coulibaly Amadou & Mariam from Dimanche a Bamako Released August 2, 2005 Rick Skarbez, Instructor COMP 575 September 27, 2007 Announcements Programming Assignment

More information

Transformation Pipeline

Transformation Pipeline Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space Coordinate

More information

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo)

CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) CS602 Midterm Subjective Solved with Reference By WELL WISHER (Aqua Leo) www.vucybarien.com Question No: 1 What are the two focusing methods in CRT? Explain briefly. Page no : 26 1. Electrostatic focusing

More information

CS559 Computer Graphics Fall 2015

CS559 Computer Graphics Fall 2015 CS559 Computer Graphics Fall 2015 Practice Midterm Exam Time: 2 hrs 1. [XX Y Y % = ZZ%] MULTIPLE CHOICE SECTION. Circle or underline the correct answer (or answers). You do not need to provide a justification

More information

Computer graphics 2: Graduate seminar in computational aesthetics

Computer graphics 2: Graduate seminar in computational aesthetics Computer graphics 2: Graduate seminar in computational aesthetics Angus Forbes evl.uic.edu/creativecoding/cs526 Homework 2 RJ ongoing... - Follow the suggestions in the Research Journal handout and find

More information

3D Viewing. CS 4620 Lecture 8

3D Viewing. CS 4620 Lecture 8 3D Viewing CS 46 Lecture 8 13 Steve Marschner 1 Viewing, backward and forward So far have used the backward approach to viewing start from pixel ask what part of scene projects to pixel explicitly construct

More information

CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions. The Midterm Exam was given in class on Thursday, October 23, 2008.

CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions. The Midterm Exam was given in class on Thursday, October 23, 2008. CS 381 Computer Graphics, Fall 2008 Midterm Exam Solutions The Midterm Exam was given in class on Thursday, October 23, 2008. 1. [4 pts] Drawing Where? Your instructor says that objects should always be

More information

Computer Graphics. Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D)

Computer Graphics. Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D) Computer Graphics Chapter 1 (Related to Introduction to Computer Graphics Using Java 2D and 3D) Introduction Applications of Computer Graphics: 1) Display of Information 2) Design 3) Simulation 4) User

More information

Instruction for IVR interface

Instruction for IVR interface This document is aimed at helping users to use IVR interface developing applications that will be able to run and display on integrated computer. Instruction for IVR interface IDEALENS 2016.11.1 CONTENTS

More information

CS1950U Setup Spring 2018

CS1950U Setup Spring 2018 CS1950U Topics in 3D Game Engine Development Barbara Meier CS1950U Setup Spring 2018 Introduction Hi there! This guide is designed to help you get setup for taking CS1950U. It will go through the basics

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

GRAFIKA KOMPUTER. ~ M. Ali Fauzi

GRAFIKA KOMPUTER. ~ M. Ali Fauzi GRAFIKA KOMPUTER ~ M. Ali Fauzi Drawing 2D Graphics VIEWPORT TRANSFORMATION Recall :Coordinate System glutreshapefunc(reshape); void reshape(int w, int h) { glviewport(0,0,(glsizei) w, (GLsizei) h); glmatrixmode(gl_projection);

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

CGT520 Transformations

CGT520 Transformations CGT520 Transformations Bedrich Benes, Ph.D. Purdue University Department of Computer Graphics GLM A concise library for transforms and OpenGL mathematics All overloaded, predefined, optimized glm (OpenGL

More information

CS464 Oct 3 rd Assignment 3 Due 10/6/2017 Due 10/8/2017 Implementation Outline

CS464 Oct 3 rd Assignment 3 Due 10/6/2017 Due 10/8/2017 Implementation Outline CS464 Oct 3 rd 2017 Assignment 3 Due 10/6/2017 Due 10/8/2017 Implementation Outline Assignment 3 Skeleton A good sequence to implement the program 1. Start with a flat terrain sitting at Y=0 and Cam at

More information

Viewing. Reading: Angel Ch.5

Viewing. Reading: Angel Ch.5 Viewing Reading: Angel Ch.5 What is Viewing? Viewing transform projects the 3D model to a 2D image plane 3D Objects (world frame) Model-view (camera frame) View transform (projection frame) 2D image View

More information

Lecture 9 Sections 2.6, 5.1, 5.2. Wed, Sep 16, 2009

Lecture 9 Sections 2.6, 5.1, 5.2. Wed, Sep 16, 2009 Lecture 9 Sections 2.6, 5.1, 5.2 Hampden-Sydney College Wed, Sep 16, 2009 Outline 1 2 3 4 5 6 Controlling 7 Definition () A frustum is a truncated pyramid. Definition ( ) The view frustum is the region

More information

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing

To Do. Demo (Projection Tutorial) Motivation. What we ve seen so far. Outline. Foundations of Computer Graphics (Fall 2012) CS 184, Lecture 5: Viewing Foundations of Computer Graphics (Fall 0) CS 84, Lecture 5: Viewing http://inst.eecs.berkele.edu/~cs84 To Do Questions/concerns about assignment? Remember it is due Sep. Ask me or TAs re problems Motivation

More information

Computer Graphics. Lecture 04 3D Projection and Visualization. Edirlei Soares de Lima.

Computer Graphics. Lecture 04 3D Projection and Visualization. Edirlei Soares de Lima. Computer Graphics Lecture 4 3D Projection and Visualization Edirlei Soares de Lima Projection and Visualization An important use of geometric transformations in computer

More information

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera

CITSTUDENTS.IN VIEWING. Computer Graphics and Visualization. Classical and computer viewing. Viewing with a computer. Positioning of the camera UNIT - 6 7 hrs VIEWING Classical and computer viewing Viewing with a computer Positioning of the camera Simple projections Projections in OpenGL Hiddensurface removal Interactive mesh displays Parallelprojection

More information

UNIT 2 2D TRANSFORMATIONS

UNIT 2 2D TRANSFORMATIONS UNIT 2 2D TRANSFORMATIONS Introduction With the procedures for displaying output primitives and their attributes, we can create variety of pictures and graphs. In many applications, there is also a need

More information

Shadows in Computer Graphics

Shadows in Computer Graphics Shadows in Computer Graphics Steven Janke November 2014 Steven Janke (Seminar) Shadows in Computer Graphics November 2014 1 / 49 Shadows (from Doom) Steven Janke (Seminar) Shadows in Computer Graphics

More information

Perspective transformations

Perspective transformations Perspective transformations Transformation pipeline Modelview: model (position objects) + view (position the camera) Projection: map viewing volume to a standard cube Perspective division: project D to

More information

Advanced Lighting Techniques Due: Monday November 2 at 10pm

Advanced Lighting Techniques Due: Monday November 2 at 10pm CMSC 23700 Autumn 2015 Introduction to Computer Graphics Project 3 October 20, 2015 Advanced Lighting Techniques Due: Monday November 2 at 10pm 1 Introduction This assignment is the third and final part

More information

Mouse Ray Picking Explained

Mouse Ray Picking Explained Mouse Ray Picking Explained Brian Hook http://www.bookofhook.com April 5, 2005 1 Introduction There comes a time in every 3D game where the user needs to click on something in the scene. Maybe he needs

More information

Computer Graphics - Treasure Hunter

Computer Graphics - Treasure Hunter Computer Graphics - Treasure Hunter CS 4830 Dr. Mihail September 16, 2015 1 Introduction In this assignment you will implement an old technique to simulate 3D scenes called billboarding, sometimes referred

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev

C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE. Mikhail Bessmeltsev C P S C 314 S H A D E R S, O P E N G L, & J S RENDERING PIPELINE UGRAD.CS.UBC.C A/~CS314 Mikhail Bessmeltsev 1 WHAT IS RENDERING? Generating image from a 3D scene 2 WHAT IS RENDERING? Generating image

More information

Open Source Tools for Game Development. Ryan C. Gordon, icculus.org

Open Source Tools for Game Development. Ryan C. Gordon, icculus.org Open Source Tools for Game Development Ryan C. Gordon, icculus.org A few notes... Please tweet with #flourish Feel free to interrupt! Slides are at http://icculus.org/flourish/ Who am I? Game developer,

More information

3.6: First Person Computer Games

3.6: First Person Computer Games 3.6: First Person Computer Games Projections of 3-D Objects Alice is an educational software program that uses a 3-D environment to teach students programming. If you have not done so already, please download

More information

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline

To Do. Motivation. Demo (Projection Tutorial) What we ve seen so far. Computer Graphics. Summary: The Whole Viewing Pipeline Computer Graphics CSE 67 [Win 9], Lecture 5: Viewing Ravi Ramamoorthi http://viscomp.ucsd.edu/classes/cse67/wi9 To Do Questions/concerns about assignment? Remember it is due tomorrow! (Jan 6). Ask me or

More information

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system

Module 6: Pinhole camera model Lecture 32: Coordinate system conversion, Changing the image/world coordinate system The Lecture Contains: Back-projection of a 2D point to 3D 6.3 Coordinate system conversion file:///d /...(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2032/32_1.htm[12/31/2015

More information

CS 432 Interactive Computer Graphics

CS 432 Interactive Computer Graphics CS 432 Interactive Computer Graphics Lecture 4 3D Viewing Matt Burlick - Drexel University - CS 432 1 Reading Angel Chapters 3-4 Red Book Chapter 5, Appendix E Matt Burlick - Drexel University - CS 432

More information

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology

Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Ulf Assarsson Department of Computer Engineering Chalmers University of Technology Tracing Photons One way to form an image is to follow rays of light from a point source finding which rays enter the lens

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information