Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:

Size: px
Start display at page:

Download "Reading. 2. Fourier analysis and sampling theory. Required: Watt, Section 14.1 Recommended:"

Transcription

1 Reading Required: Watt, Section 14.1 Recommended: 2. Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction Filters in Computer Computer Graphics, Computer Graphics, (Proceedings of SIGGRAPH 88). 22 (4), pp ,

2 What is an image? Images as functions We can think of an image as a function, f, from R 2 to R: f( x, y ) gives the intensity of a channel at position ( x, y ) Realistically, we expect the image only to be defined over a rectangle, with a finite range: f: [a,b]x[c,d] [0,1] A color image is just three functions pasted together. We can write this as a vector-valued function: rxy (, ) f( x, y) = g( x, y) bxy (, ) We ll focus in grayscale (scalar-valued) images for now. 3 4

3 Digital images In computer graphics, we usually create or operate on digital (discrete) images: Sample the space on a regular grid Quantize each sample (round to nearest integer) If our samples are apart, we can write this as: f[i,j] = Quantize{ f(i, j ) } Motivation: filtering and resizing What if we now want to: smooth an image? sharpen an image? enlarge an image? shrink an image? Before we try these operations, it s helpful to think about images in a more mathematical way 5 6

4 Fourier transforms We can represent functions as a weighted sum of sines and cosines. We can think of a function in two complementary ways: Spatially in the spatial domain Spectrally in the frequency domain The Fourier transform and its inverse convert between these two domains: Fourier transforms (cont d) Spatial domain i2π sx Fs () = f( xe ) dx 2 f( x) Fse ( ) i π sx ds = Where do the sines and cosines come in? Frequency domain Spatial domain i2π sx Fs () f( xe ) dx = 2 f( x) Fse ( ) i π sx ds = Frequency domain f(x) is usually a real signal, but F(s) is generally complex: Fs () = As () + ibs () = Fs () e i2 πθ ( s) If f(x) is symmetric, i.e., f(x) = f(-x)), then F(s) = A(s). Why? 7 8

5 1D Fourier examples 2D Fourier transform Spatial domain i2 π ( s x+ s y) x y Fs (, s) f( x, ye ) dxdy x y = i2 π ( s x+ s y) x y x y x y f( x, y) Fs (, s ) e dsds = Frequency domain Spatial domain Frequency domain f( x, y) Fs (, s) x y 9 10

6 2D Fourier examples Convolution One of the most common methods for filtering a function is called convolution. In 1D, convolution is defined as: Spatial domain f( x, y) Frequency domain Fs (, s) x y gx ( ) = f( x) hx ( ) = f( x') h( x x') dx' = f( x') h% ( x' x) dx' where hx %( ) h( x)

7 Convolution properties Convolution in 2D Convolution exhibits a number of basic, but important properties. Commutativity: Associativity: ax ( ) bx ( ) = bx ( ) ax ( ) [ ax ( ) bx ( )] cx ( ) = ax ( ) [ bx ( ) cx ( )] In two dimensions, convolution becomes: gxy (, ) = f( xy, ) hxy (, ) = f ( x', y') h( x x', y y') dx' dy' = f ( x', y') h% ( x' x, y' y) dx' dy' where hxy %(, ) = h( x, y). Linearity: ax ( ) [ k bx ( )] = k [ ax ( ) bx ( )] ax ( ) ( bx ( ) + cx ( )) = ax ( ) bx ( ) + ax ( ) cx ( ) * = f(x,y) h(x,y) g(x,y) 13 14

8 Convolution theorems 1D convolution theorem example Convolution theorem: Convolution in the spatial domain is equivalent to multiplication in the frequency domain. f h F H Symmetric theorem: Convolution in the frequency domain is equivalent to multiplication in the spatial domain. f h F H 15 16

9 2D convolution theorem example The delta function f(x,y) F(s x,s y ) The Dirac delta function, δ(x), is a handy tool for sampling theory. It has zero width, infinite height, and unit area. It is usually drawn as: * h(x,y) H(s x,s y ) g(x,y) G(s x,s y ) 17 18

10 Sifting and shifting For sampling, the delta function has two important properties. Sifting: f( x) δ ( x a) = f( a) δ ( x a) The shah/comb function A string of delta functions is the key to sampling. The resulting function is called the shah or comb function: which looks like: III( x) = δ ( x nt) n= Shifting: f( x) δ ( x a) = f( x a) Amazingly, the Fourier transform of the shah function takes the same form: where s o = 1/T. III( s) = δ ( s ns ) n= o 19 20

11 Sampling Sampling and reconstruction Now, we can talk about sampling. The Fourier spectrum gets replicated by spatial sampling! How do we recover the signal? 21 22

12 Sampling and reconstruction in 2D Sampling theorem This result is known as the Sampling Theorem and is due to Claude Shannon who first discovered it in 1949: A signal can be reconstructed from its samples without loss of information, if the original signal has no energy in frequencies at or above ½ the sampling frequency. For a given bandlimited function, the minimum rate at which it must be sampled is the Nyquist frequency

13 Reconstruction filters The sinc filter, while ideal, has two drawbacks: It has large support (slow to compute) It introduces ringing in practice We can choose from many other filters Cubic filters Mitchell and Netravali (1988) experimented with cubic filters, reducing them all to the following form: 3 2 B C x + + B+ C x + B x < ( ) ( ) (6 2 ) rx ( ) = (( B 6 Cx ) + (6B+ 30 Cx ) + ( 12B 48 Cx ) + (8B+ 24 C) 1 x< otherwise The choice of B or C trades off between being too blurry or having too much ringing. B=C=1/3 was their visually best choice. The resulting reconstruction filter is often called the Mitchell filter

14 Reconstruction filters in 2D Aliasing We can also perform reconstruction in 2D Sampling rate is too low 27 28

15 Aliasing What if we go below the Nyquist frequency? Anti-aliasing Anti-aliasing is the process of removing the frequencies before they alias

16 Anti-aliasing by analytic prefiltering We can fill the magic box with analytic prefiltering of the signal: Filtered downsampling Alternatively, we can sample the image at a higher rate, and then filter that signal: Why may this not generally be possible? We can now sample the signal at a lower rate. The whole process is called filtered downsampling or supersampling and averaging down

17 Practical upsampling Practical upsampling When resampling a function (e.g., when resizing an image), you do not need to reconstruct the complete continuous function. For zooming in on a function, you need only use a reconstruction filter and evaluate as needed for each new sample. Here s an example using a cubic filter: This can also be viewed as: 1. putting the reconstruction filter at the desired location 2. evaluating at the original sample positions 3. taking products with the sample values themselves 4. summing it up Important: filter should always be normalized! 33 34

18 Practical downsampling Downsampling is similar, but filter has larger support and smaller amplitude. Operationally: 1. Choose filter in downsampled space. 2. Compute the downsampling rate, d, ratio of new sampling rate to old sampling rate 3. Stretch the filter by 1/d and scale it down by d 4. Follow upsampling procedure (previous slides) to compute new values 2D resampling We ve been looking at separable filters: r ( x, y) = r ( x) r ( y) 2D 1D 1D How might you use this fact for efficient resampling in 2D? 35 36

19 Next class: Image Processing Reading: Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, Sections , 4.5(intro), 4.5.5, 4.5.6, (from course reader) Topics: - Implementing discrete convolution - Blurring and noise reduction - Sharpening - Edge detection 37

Fourier analysis and sampling theory

Fourier analysis and sampling theory Reading Required: Shirley, Ch. 9 Recommended: Fourier analysis and sampling theory Ron Bracewell, The Fourier Transform and Its Applications, McGraw-Hill. Don P. Mitchell and Arun N. Netravali, Reconstruction

More information

Sampling and Reconstruction

Sampling and Reconstruction Page 1 Sampling and Reconstruction The sampling and reconstruction process Real world: continuous Digital world: discrete Basic signal processing Fourier transforms The convolution theorem The sampling

More information

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017 Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. [online handout] Image processing Brian Curless CSE 457 Spring 2017 1 2 What is an

More information

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012)

Outline. Sampling and Reconstruction. Sampling and Reconstruction. Foundations of Computer Graphics (Fall 2012) Foundations of Computer Graphics (Fall 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Outline Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals)

Motivation. The main goal of Computer Graphics is to generate 2D images. 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

Outline. Foundations of Computer Graphics (Spring 2012)

Outline. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lectures 19: Sampling and Reconstruction http://inst.eecs.berkeley.edu/~cs184 Basic ideas of sampling, reconstruction, aliasing Signal processing

More information

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza

To Do. Advanced Computer Graphics. Sampling and Reconstruction. Outline. Sign up for Piazza Advanced Computer Graphics CSE 63 [Spring 207], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Sign up for Piazza To Do Assignment, Due Apr 28. Anyone need help finding partners? Any issues with

More information

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals)

The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) Motivation The main goal of Computer Graphics is to generate 2D images 2D images are continuous 2D functions (or signals) monochrome f(x,y) or color r(x,y), g(x,y), b(x,y) These functions are represented

More information

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010)

Basics. Sampling and Reconstruction. Sampling and Reconstruction. Outline. (Spatial) Aliasing. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 3: Sampling and Reconstruction Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Some slides courtesy Thomas Funkhouser and Pat Hanrahan

More information

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines

EECS 556 Image Processing W 09. Interpolation. Interpolation techniques B splines EECS 556 Image Processing W 09 Interpolation Interpolation techniques B splines What is image processing? Image processing is the application of 2D signal processing methods to images Image representation

More information

Sampling: Application to 2D Transformations

Sampling: Application to 2D Transformations Sampling: Application to 2D Transformations University of the Philippines - Diliman August Diane Lingrand lingrand@polytech.unice.fr http://www.essi.fr/~lingrand Sampling Computer images are manipulated

More information

Lecture 5: Frequency Domain Transformations

Lecture 5: Frequency Domain Transformations #1 Lecture 5: Frequency Domain Transformations Saad J Bedros sbedros@umn.edu From Last Lecture Spatial Domain Transformation Point Processing for Enhancement Area/Mask Processing Transformations Image

More information

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing

Aliasing and Antialiasing. ITCS 4120/ Aliasing and Antialiasing Aliasing and Antialiasing ITCS 4120/5120 1 Aliasing and Antialiasing What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field

More information

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg

Advanced Computer Graphics. Aliasing. Matthias Teschner. Computer Science Department University of Freiburg Advanced Computer Graphics Aliasing Matthias Teschner Computer Science Department University of Freiburg Outline motivation Fourier analysis filtering sampling reconstruction / aliasing antialiasing University

More information

Introduction to Computer Vision. Week 3, Fall 2010 Instructor: Prof. Ko Nishino

Introduction to Computer Vision. Week 3, Fall 2010 Instructor: Prof. Ko Nishino Introduction to Computer Vision Week 3, Fall 2010 Instructor: Prof. Ko Nishino Last Week! Image Sensing " Our eyes: rods and cones " CCD, CMOS, Rolling Shutter " Sensing brightness and sensing color! Projective

More information

Computer Vision and Graphics (ee2031) Digital Image Processing I

Computer Vision and Graphics (ee2031) Digital Image Processing I Computer Vision and Graphics (ee203) Digital Image Processing I Dr John Collomosse J.Collomosse@surrey.ac.uk Centre for Vision, Speech and Signal Processing University of Surrey Learning Outcomes After

More information

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek

Computer Graphics. Sampling Theory & Anti-Aliasing. Philipp Slusallek Computer Graphics Sampling Theory & Anti-Aliasing Philipp Slusallek Dirac Comb (1) Constant & δ-function flash Comb/Shah function 2 Dirac Comb (2) Constant & δ-function Duality f(x) = K F(ω) = K (ω) And

More information

Lecture 2: 2D Fourier transforms and applications

Lecture 2: 2D Fourier transforms and applications Lecture 2: 2D Fourier transforms and applications B14 Image Analysis Michaelmas 2017 Dr. M. Fallon Fourier transforms and spatial frequencies in 2D Definition and meaning The Convolution Theorem Applications

More information

Sampling and Monte-Carlo Integration

Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Sampling and Monte-Carlo Integration Last Time Pixels are samples Sampling theorem Convolution & multiplication Aliasing: spectrum replication Ideal filter And its

More information

Broad field that includes low-level operations as well as complex high-level algorithms

Broad field that includes low-level operations as well as complex high-level algorithms Image processing About Broad field that includes low-level operations as well as complex high-level algorithms Low-level image processing Computer vision Computational photography Several procedures and

More information

Lecture 4: Image Processing

Lecture 4: Image Processing Lecture 4: Image Processing Definitions Many graphics techniques that operate only on images Image processing: operations that take images as input, produce images as output In its most general form, an

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) 1D: Common Transform Pairs Summary source FT Properties: Convolution See book DIP 4.2.5:

More information

Image Filtering, Warping and Sampling

Image Filtering, Warping and Sampling Image Filtering, Warping and Sampling Connelly Barnes CS 4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and David

More information

Digital Image Processing. Lecture 6

Digital Image Processing. Lecture 6 Digital Image Processing Lecture 6 (Enhancement in the Frequency domain) Bu-Ali Sina University Computer Engineering Dep. Fall 2016 Image Enhancement In The Frequency Domain Outline Jean Baptiste Joseph

More information

Drawing a Triangle (and an introduction to sampling)

Drawing a Triangle (and an introduction to sampling) Lecture 4: Drawing a Triangle (and an introduction to sampling) Computer Graphics CMU 15-462/15-662, Spring 2017 Assignment 1 is out! https://15462-s17.github.io/asst1_drawsvg/ Let s draw some triangles

More information

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing

Computer Graphics. Texture Filtering & Sampling Theory. Hendrik Lensch. Computer Graphics WS07/08 Texturing Computer Graphics Texture Filtering & Sampling Theory Hendrik Lensch Overview Last time Texture Parameterization Procedural Shading Today Texturing Filtering 2D Texture Mapping Forward mapping Object surface

More information

Image Processing. Bilkent University. CS554 Computer Vision Pinar Duygulu

Image Processing. Bilkent University. CS554 Computer Vision Pinar Duygulu Image Processing CS 554 Computer Vision Pinar Duygulu Bilkent University Today Image Formation Point and Blob Processing Binary Image Processing Readings: Gonzalez & Woods, Ch. 3 Slides are adapted from

More information

Scaled representations

Scaled representations Scaled representations Big bars (resp. spots, hands, etc.) and little bars are both interesting Stripes and hairs, say Inefficient to detect big bars with big filters And there is superfluous detail in

More information

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution

To Do. Advanced Computer Graphics. Discrete Convolution. Outline. Outline. Implementing Discrete Convolution Advanced Computer Graphics CSE 163 [Spring 2018], Lecture 4 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 1, Due Apr 27. Please START EARLY This lecture completes all the material you

More information

Drawing a Triangle (and an Intro to Sampling)

Drawing a Triangle (and an Intro to Sampling) Lecture 4: Drawing a Triangle (and an Intro to Sampling) Computer Graphics CMU 15-462/15-662, Spring 2018 HW 0.5 Due, HW 1 Out Today! GOAL: Implement a basic rasterizer - (Topic of today s lecture) - We

More information

Computational Aspects of MRI

Computational Aspects of MRI David Atkinson Philip Batchelor David Larkman Programme 09:30 11:00 Fourier, sampling, gridding, interpolation. Matrices and Linear Algebra 11:30 13:00 MRI Lunch (not provided) 14:00 15:30 SVD, eigenvalues.

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere Sampling sensitive to choice of samples less sensitive to choice of samples

More information

Lecture 6 Basic Signal Processing

Lecture 6 Basic Signal Processing Lecture 6 Basic Signal Processing Copyright c1996, 1997 by Pat Hanrahan Motivation Many aspects of computer graphics and computer imagery differ from aspects of conventional graphics and imagery because

More information

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image

Announcements. Image Matching! Source & Destination Images. Image Transformation 2/ 3/ 16. Compare a big image to a small image 2/3/ Announcements PA is due in week Image atching! Leave time to learn OpenCV Think of & implement something creative CS 50 Lecture #5 February 3 rd, 20 2/ 3/ 2 Compare a big image to a small image So

More information

Fourier transform of images

Fourier transform of images Fourier transform of images Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2014 2015 Extension to bidimensional domain The concepts

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/67 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

Theoretically Perfect Sensor

Theoretically Perfect Sensor Sampling 1/60 Sampling The ray tracer samples the geometry, only gathering information from the parts of the world that interact with a finite number of rays In contrast, a scanline renderer can push all

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 2 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ):

Aliasing. Can t draw smooth lines on discrete raster device get staircased lines ( jaggies ): (Anti)Aliasing and Image Manipulation for (y = 0; y < Size; y++) { for (x = 0; x < Size; x++) { Image[x][y] = 7 + 8 * sin((sqr(x Size) + SQR(y Size)) / 3.0); } } // Size = Size / ; Aliasing Can t draw

More information

Biomedical Image Analysis. Spatial Filtering

Biomedical Image Analysis. Spatial Filtering Biomedical Image Analysis Contents: Spatial Filtering The mechanics of Spatial Filtering Smoothing and sharpening filters BMIA 15 V. Roth & P. Cattin 1 The Mechanics of Spatial Filtering Spatial filter:

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Sampling, Aliasing, & Mipmaps Last Time? Monte-Carlo Integration Importance Sampling Ray Tracing vs. Path Tracing source hemisphere What is a Pixel? Sampling & Reconstruction Filters in Computer Graphics

More information

COMP 9517 Computer Vision

COMP 9517 Computer Vision COMP 9517 Computer Vision Frequency Domain Techniques 1 Frequency Versus Spa

More information

Filters and Fourier Transforms

Filters and Fourier Transforms Filters and Fourier Transforms NOTE: Before reading these notes, see 15-462 Basic Raster notes: http://www.cs.cmu.edu/afs/cs/academic/class/15462/web/notes/notes.html OUTLINE: The Cost of Filtering Fourier

More information

CS354 Computer Graphics Sampling and Aliasing

CS354 Computer Graphics Sampling and Aliasing Slide Credit: http://www.siggraph.org/education/materials/hypergraph/aliasing/alias0.htm CS354 Computer Graphics Sampling and Aliasing Qixing Huang February 12th 2018 Sampling and Aliasing Display is discrete

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision CPSC 425: Computer Vision Image Credit: https://docs.adaptive-vision.com/4.7/studio/machine_vision_guide/templatematching.html Lecture 9: Template Matching (cont.) and Scaled Representations ( unless otherwise

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging 1 Lucas Parra, CCNY BME I5000: Biomedical Imaging Lecture 11 Point Spread Function, Inverse Filtering, Wiener Filtering, Sharpening,... Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision:.4, dated: May 25, 26 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University

Computer Vision: 4. Filtering. By I-Chen Lin Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering By I-Chen Lin Dept. of CS, National Chiao Tung University Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth and Jean Ponce,

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sampling theorem, aliasing, interpolation, geometrical transformations Revision:.3, dated: December 7, 25 Tomáš Svoboda Czech Technical University, Faculty of Electrical

More information

Section Graphs of the Sine and Cosine Functions

Section Graphs of the Sine and Cosine Functions Section 5. - Graphs of the Sine and Cosine Functions In this section, we will graph the basic sine function and the basic cosine function and then graph other sine and cosine functions using transformations.

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 8 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

Image Processing: Discrete Images

Image Processing: Discrete Images 7 Image Processing: Discrete Images In the previous chapter we explored linear, shift-invariant systems in the continuous two-dimensional domain. In practice, we deal with images that are both limited

More information

Sampling and Reconstruction. Most slides from Steve Marschner

Sampling and Reconstruction. Most slides from Steve Marschner Sampling and Reconstruction Most slides from Steve Marschner 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Sampling and Reconstruction Sampled representations How to store and compute

More information

Sampling, Aliasing, & Mipmaps

Sampling, Aliasing, & Mipmaps Last Time? Sampling, Aliasing, & Mipmaps 2D Texture Mapping Perspective Correct Interpolation Common Texture Coordinate Projections Bump Mapping Displacement Mapping Environment Mapping Texture Maps for

More information

Ulrik Söderström 17 Jan Image Processing. Introduction

Ulrik Söderström 17 Jan Image Processing. Introduction Ulrik Söderström ulrik.soderstrom@tfe.umu.se 17 Jan 2017 Image Processing Introduction Image Processsing Typical goals: Improve images for human interpretation Image processing Processing of images for

More information

2D Image Processing INFORMATIK. Kaiserlautern University. DFKI Deutsches Forschungszentrum für Künstliche Intelligenz

2D Image Processing INFORMATIK. Kaiserlautern University.   DFKI Deutsches Forschungszentrum für Künstliche Intelligenz 2D Image Processing - Filtering Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 What is image filtering?

More information

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates

COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates COMP30019 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 9: Image alignment http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/ Szeliski: Chapter 6.1 Reading All 2D Linear Transformations

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

Introduction to Sampled Signals and Fourier Transforms

Introduction to Sampled Signals and Fourier Transforms Introduction to Sampled Signals and Fourier Transforms Physics116C, 4/28/06 D. Pellett References: Essick, Advanced LabVIEW Labs Press et al., Numerical Recipes, Ch. 12 Brigham, The Fast Fourier Transform

More information

Fourier transforms and convolution

Fourier transforms and convolution Fourier transforms and convolution (without the agonizing pain) CS/CME/BioE/Biophys/BMI 279 Oct. 26, 2017 Ron Dror 1 Why do we care? Fourier transforms Outline Writing functions as sums of sinusoids The

More information

Sampling, Resampling, and Warping. COS 426, Spring 2014 Tom Funkhouser

Sampling, Resampling, and Warping. COS 426, Spring 2014 Tom Funkhouser Sampling, Resampling, and Warping COS 426, Spring 2014 Tom Funkhouser Image Processing Goal: read an image, process it, write the result input.jpg output.jpg imgpro input.jpg output.jpg histogram_equalization

More information

Central Slice Theorem

Central Slice Theorem Central Slice Theorem Incident X-rays y f(x,y) R x r x Detected p(, x ) The thick line is described by xcos +ysin =R Properties of Fourier Transform F [ f ( x a)] F [ f ( x)] e j 2 a Spatial Domain Spatial

More information

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava

Image Enhancement in Spatial Domain. By Dr. Rajeev Srivastava Image Enhancement in Spatial Domain By Dr. Rajeev Srivastava CONTENTS Image Enhancement in Spatial Domain Spatial Domain Methods 1. Point Processing Functions A. Gray Level Transformation functions for

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

Image Acquisition + Histograms

Image Acquisition + Histograms Image Processing - Lesson 1 Image Acquisition + Histograms Image Characteristics Image Acquisition Image Digitization Sampling Quantization Histograms Histogram Equalization What is an Image? An image

More information

Lecture 4: Spatial Domain Transformations

Lecture 4: Spatial Domain Transformations # Lecture 4: Spatial Domain Transformations Saad J Bedros sbedros@umn.edu Reminder 2 nd Quiz on the manipulator Part is this Fri, April 7 205, :5 AM to :0 PM Open Book, Open Notes, Focus on the material

More information

Blob-Representation of Multidimensional Objects and Surfaces

Blob-Representation of Multidimensional Objects and Surfaces Blob-Representation of Multidimensional Objects and Surfaces Edgar Garduño and Gabor T. Herman Department of Computer Science The Graduate Center City University of New York Presentation Outline Reconstruction

More information

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection

convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection COS 429: COMPUTER VISON Linear Filters and Edge Detection convolution shift invariant linear system Fourier Transform Aliasing and sampling scale representation edge detection corner detection Reading:

More information

Picking. Lecture 9. Using Back Buffer. Hw notes. Using OpenGL Selection Using Back Buffer

Picking. Lecture 9. Using Back Buffer. Hw notes. Using OpenGL Selection Using Back Buffer Picking Lecture 9 Picking Image Processing Using OpenGL Selection Using Back Buffer Hw notes Loop Boundary - ignore edge vertex near boundary rule. use them same edge vertex rule. Make sure to use the

More information

Image Sampling and Quantisation

Image Sampling and Quantisation Image Sampling and Quantisation Introduction to Signal and Image Processing Prof. Dr. Philippe Cattin MIAC, University of Basel 1 of 46 22.02.2016 09:17 Contents Contents 1 Motivation 2 Sampling Introduction

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Image Sampling & Quantisation

Image Sampling & Quantisation Image Sampling & Quantisation Biomedical Image Analysis Prof. Dr. Philippe Cattin MIAC, University of Basel Contents 1 Motivation 2 Sampling Introduction and Motivation Sampling Example Quantisation Example

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

Filtering theory: Battling Aliasing with Antialiasing. Department of Computer Engineering Chalmers University of Technology

Filtering theory: Battling Aliasing with Antialiasing. Department of Computer Engineering Chalmers University of Technology Filtering theory: Battling Aliasing with Antialiasing Department of Computer Engineering Chalmers University of Technology 1 What is aliasing? 2 Why care at all? l Quality!! l Example: Final fantasy The

More information

Being edited by Prof. Sumana Gupta 1

Being edited by Prof. Sumana Gupta 1 Being edited by Prof. Sumana Gupta 1 Introduction Digital Image Processing: refers to processing of 2-D picture by a digital Computer- in a broader context refers to digital proc of any 2-d data. A digital

More information

Phys. 428, Lecture 6

Phys. 428, Lecture 6 Phys. 428, Lecture 6 Mid-Term & Weekly questions Since we are behind in the material, there will be no midterm Instead the final project will be subdivided into graded stages Class Project Pick: An imaging

More information

Problem 1 (10 Points)

Problem 1 (10 Points) Problem 1 (10 Points) Please explain the following phenomena. The three images shown are the blurred versions of image (a) (Note: vertical bars have width of 5 and height of 100, they are spaced 20 pixels

More information

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University

Image restoration. Lecture 14. Milan Gavrilovic Centre for Image Analysis Uppsala University Image restoration Lecture 14 Milan Gavrilovic milan@cb.uu.se Centre for Image Analysis Uppsala University Computer Assisted Image Analysis 2009-05-08 M. Gavrilovic (Uppsala University) L14 Image restoration

More information

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201

Image Restoration. Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Image Restoration Yao Wang Polytechnic Institute of NYU, Brooklyn, NY 11201 Partly based on A. K. Jain, Fundamentals of Digital Image Processing, and Gonzalez/Woods, Digital Image Processing Figures from

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

UNIT-2 IMAGE REPRESENTATION IMAGE REPRESENTATION IMAGE SENSORS IMAGE SENSORS- FLEX CIRCUIT ASSEMBLY

UNIT-2 IMAGE REPRESENTATION IMAGE REPRESENTATION IMAGE SENSORS IMAGE SENSORS- FLEX CIRCUIT ASSEMBLY 18-08-2016 UNIT-2 In the following slides we will consider what is involved in capturing a digital image of a real-world scene Image sensing and representation Image Acquisition Sampling and quantisation

More information

CS1114 Section 8: The Fourier Transform March 13th, 2013

CS1114 Section 8: The Fourier Transform March 13th, 2013 CS1114 Section 8: The Fourier Transform March 13th, 2013 http://xkcd.com/26 Today you will learn about an extremely useful tool in image processing called the Fourier transform, and along the way get more

More information

Signals and Sampling. CMPT 461/761 Image Synthesis Torsten Möller. Machiraju/Möller

Signals and Sampling. CMPT 461/761 Image Synthesis Torsten Möller. Machiraju/Möller Signals and Sampling CMPT 461/761 Image Synthesis Torsten Möller Reading Chapter 7 of Physically Based Rendering by Pharr&Humphreys Chapter 14.10 of CG: Principles & Practice by Foley, van Dam et al. Chapter

More information

Applications of Image Filters

Applications of Image Filters 02/04/0 Applications of Image Filters Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem Review: Image filtering g[, ] f [.,.] h[.,.] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 90

More information

Fourier Transforms. Laboratory & Computational Physics 2

Fourier Transforms. Laboratory & Computational Physics 2 Fourier Transforms Laboratory & Computational Physics 2 Last compiled August 8, 2017 1 Contents 1 Introduction 3 1.1 Prelab questions................................ 3 2 Background theory 5 2.1 Physical

More information

Image processing in frequency Domain

Image processing in frequency Domain Image processing in frequency Domain Introduction to Frequency Domain Deal with images in: -Spatial domain -Frequency domain Frequency Domain In the frequency or Fourier domain, the value and location

More information

From multiple images to catalogs

From multiple images to catalogs Lecture 14 From multiple images to catalogs Image reconstruction Optimal co-addition Sampling-reconstruction-resampling Resolving faint galaxies Automated object detection Photometric catalogs Deep CCD

More information

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing

Topics. View Aliasing. CT Sampling Requirements. Sampling Requirements in CT Sampling Theory Aliasing Topics Bioengineering 280A Principles of Biomedical Imaging Sampling Requirements in CT Sampling Theory Aliasing Fall Quarter 2010 CT/Fourier Lecture 5 CT Sampling Requirements View Aliasing What should

More information

L. David Sabbagh, Harold A. Sabbagh and James S. Klopfenstein Sabbagh Associates, Inc Round Hill Lane Bloomington, IN 47401

L. David Sabbagh, Harold A. Sabbagh and James S. Klopfenstein Sabbagh Associates, Inc Round Hill Lane Bloomington, IN 47401 IMAGE ENHANCEMENT VIA EXTRAPOLATION TECHNIQUES: A TWO DIMENSIONAL ITERATIVE SCHEME A DIRECT MATRIX INVERSION SCHEME L. David Sabbagh, Harold A. Sabbagh and James S. Klopfenstein Sabbagh Associates, Inc.

More information

Aliasing And Anti-Aliasing Sampling and Reconstruction

Aliasing And Anti-Aliasing Sampling and Reconstruction Aliasing And Anti-Aliasing Sampling and Reconstruction An Introduction Computer Overview Intro - Aliasing Problem definition, Examples Ad-hoc Solutions Sampling theory Fourier transform Convolution Reconstruction

More information

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids

EEM 561 Machine Vision. Week 3: Fourier Transform and Image Pyramids EEM 561 Machine Vision Week 3: Fourier Transform and Image Pyramids Spring 2015 Instructor: Hatice Çınar Akakın, Ph.D. haticecinarakakin@anadolu.edu.tr Anadolu University Linear Image Transformations In

More information

Thinking in Frequency

Thinking in Frequency Thinking in Frequency Computer Vision Jia-Bin Huang, Virginia Tech Dali: Gala Contemplating the Mediterranean Sea (1976) Administrative stuffs Course website: http://bit.ly/vt-computer-vision-fall-2017

More information

Examination in Digital Image Processing, TSBB08

Examination in Digital Image Processing, TSBB08 Examination in Digital Image Processing, TSBB8 Time: 215-1-23, 14.-18. Location: TER4 Examiner: Maria Magnusson will visit the classroom at 15. and 16.45, tel. 281336, 73-84 38 67 Permitted equipment:

More information

Digital Signal Processing Lecture Notes 22 November 2010

Digital Signal Processing Lecture Notes 22 November 2010 Digital Signal Processing Lecture otes 22 ovember 2 Topics: Discrete Cosine Transform FFT Linear and Circular Convolution Rate Conversion Includes review of Fourier transforms, properties of Fourier transforms,

More information

Filtering theory: Battling Aliasing with Antialiasing. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology

Filtering theory: Battling Aliasing with Antialiasing. Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology Filtering theory: Battling Aliasing with Antialiasing Tomas Akenine-Möller Department of Computer Engineering Chalmers University of Technology 1 What is aliasing? 2 Why care at all? l Quality!! l Example:

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

f(x,y) is the original image H is the degradation process (or function) n(x,y) represents noise g(x,y) is the obtained degraded image p q

f(x,y) is the original image H is the degradation process (or function) n(x,y) represents noise g(x,y) is the obtained degraded image p q Image Restoration Image Restoration G&W Chapter 5 5.1 The Degradation Model 5.2 5.105.10 browse through the contents 5.11 Geometric Transformations Goal: Reconstruct an image that has been degraded in

More information

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

Edges, interpolation, templates. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edges, interpolation, templates Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Edge detection edge detection has many applications in image processing an edge detector implements

More information