A log n lower bound to compute any function in parallel Reduction and broadcast in O(log n) time Parallel prefix (scan) in O(log n) time

Size: px
Start display at page:

Download "A log n lower bound to compute any function in parallel Reduction and broadcast in O(log n) time Parallel prefix (scan) in O(log n) time"

Transcription

1 CS 267 Tricks with Trees Outlie A log lower boud to compute ay fuctio i parallel Reductio ad broadcast i O(log ) time Parallel prefix (sca) i O(log ) time Addig two -bit itegers i O(log ) time Multiplyig -by- matrices i O(log ) time Ivertig -by- triagular matrices i O(log 2 ) time Ivertig -by- dese matrices i O(log 2 ) time Evaluatig arbitrary expressios i O(log ) time Evaluatig recurreces i O(log ) time James Demmel 1! 2! Outlie Outlie A log lower boud to compute ay fuctio i parallel Reductio ad broadcast i O(log ) time A log lower boud to compute ay fuctio i parallel Reductio ad broadcast i O(log ) time Parallel prefix (sca) i O(log ) time Parallel prefix (sca) i O(log ) time Addig two -bit itegers i O(log ) time Addig two -bit itegers i O(log ) time Multiplyig -by- matrices i O(log ) time Ivertig -by- triagular matrices i O(log 2 ) time Multiplyig -by- matrices i O(log ) time Ivertig -by- triagular matrices i O(log 2 ) time Ivertig -by- dese matrices i O(log 2 ) time Ivertig -by- dese matrices i O(log 2 ) time Evaluatig arbitrary expressios i O(log ) time Evaluatig arbitrary expressios i O(log ) time Evaluatig recurreces i O(log ) time Evaluatig recurreces i O(log ) time 2D parallel prefix, for image segmetatio (Brya Catazaro, Kurt Keutzer) 2D parallel prefix, for image segmetatio (Brya Catazaro, Kurt Keutzer) Sparse-Matrix-Vector-Multiply (SpMV) usig Segmeted Sca Sparse-Matrix-Vector-Multiply (SpMV) usig Segmeted Sca Parallel page layout i a browser (Leo Meyerovich, Ras Bodik) Parallel page layout i a browser (Leo Meyerovich, Ras Bodik) Solvig -by- tridiagoal matrices i O(log ) time Traversig liked lists Computig miimal spaig trees Computig covex hulls of poit sets 3! 4! 1

2 A log lower boud to compute ay fuctio of variables Broadcasts ad Reductios o Trees Assume we ca oly use biary operatios, oe per time uit After 1 time uit, a output ca oly deped o two iputs Use iductio to show that after k time uits, a output ca oly deped o 2 k iputs After log 2 time uits, output depeds o at most iputs A biary tree performs such a computatio 5! 6! Parallel Prefix, or Sca If + is a associative operator, ad x[0],,x[p-1] are iput data the parallel prefix operatio computes y[j] = x[0] + x[1] + + x[j] for j=0,1,,p-1 Notatio: j:k meas x[j]+x[j+1]+ +x[k], blue is fial value Mappig Parallel Prefix oto a Tree - Details Up-the-tree phase (from leaves to root) 1) Get values L ad R from left ad right childre 2) Save L i a local register Lsave 3) Pass sum L+R to paret By iductio, Lsave = sum of all leaves i left subtree Dow the tree phase (from root to leaves) 1) Get value S from paret (the root gets 0) 2) Sed S to the left child 3) Sed S + Lsave to the right child By iductio, S = sum of all leaves to left of vertex receivig S 7! 8! 2

3 E.g., Fiboacci via Matrix Multiply Prefix F +1 = F + F -1 F F + 1 = 1 F 0 F -1 Ca compute all F by matmul_prefix o [ 1 0 ] the select the upper left etry Addig two -bit itegers i O(log ) time Let a = a[-1]a[-2] a[0] ad b = b[-1]b[-2] b[0] be two -bit biary umbers We wat their sum s = a+b = s[]s[-1] s[0] c[-1] = 0 rightmost carry bit for i = 0 to -1 c[i] = ( (a[i] xor b[i]) ad c[i-1] ) or ( a[i] ad b[i] )... ext carry bit s[i] = ( a[i] xor b[i] ) xor c[i-1] Challege: compute all c[i] i O(log ) time via parallel prefix for all (0 <= i <= -1) p[i] = a[i] xor b[i] for all (0 <= i <= -1) g[i] = a[i] ad b[i] propagate bit geerate bit c[i] = ( p[i] ad c[i-1] ) or g[i] = p[i] g[i] * c[i-1] = C[i] * c[i-1] by-2 Boolea matrix multiplicatio (associative) = C[i] * C[i-1] * C[0] * 0 1 evaluate each P[i] = C[i] * C[i-1] * * C[0] by parallel prefix Used i all computers to implemet additio - Carry look-ahead Slide source: Ala Edelma, MIT 9! 10! Other applicatios of sca = parallel prefix There are may applicatios of scas, some more obvious tha others add multi-precisio umbers (represeted as array of umbers) evaluate recurreces, expressios solve tridiagoal systems (but umerically ustable!) implemet bucket sort ad radix sort to dyamically allocate processors to search for regular expressio (e.g., grep) may others Names: +\ (APL), cumsum (Matlab), MPI_SCAN Note: 2 operatios used whe oly -1 eeded Multiplyig -by- matrices i O(log ) time For all (1 <= i,j,k <= ) P(i,j,k) = A(i,k) * B(k,j) cost = 1 time uit, usig 3 processors For all (1 <= i,j <= ) C(i,j) = Σ P(i,j,k) cost = O(log ) time, usig 2 k =1 trees with 3 / 2 processors 11! 12! 3

4 Ivertig triagular -by- matrices i O(log 2 ) time Fact: A 0 C B -1 = -1 A B CA B Fuctio Tri_Iv(T) assume = dim(t) = 2 m for simplicity If T is 1-by-1 retur 1/T else Write T = A 0 C B I parallel do { iva = Tri_Iv(A) ivb = Tri_Iv(B) } ewc = -ivb * C * iva Retur iva 0 ewc ivb time(tri_iv()) = time(tri_iv(/2)) + O(log()) Chage variable to m = log to get time(tri_iv()) = O(log 2 ) implicitly uses a tree 13! Ivertig Dese -by- matrices i O(log ) time Lemma 1: Cayley-Hamilto Theorem expressio for A -1 via characteristic polyomial i A Lemma 2: Newto s Idetities Triagular system of equatios for coefficiets of characteristic 02/05/2015 polyomial, where matrix etries = s k Lemma 3: s k = trace(a k ) = Σ A k [i,i] Csaky s Algorithm (1976) 1) Compute the powers A 2, A 3,,A -1 by parallel prefix cost = O(log 2 ) 2) Compute the traces s k = trace(a k ) cost = O(log ) 3) Solve Newto idetities for coefficiets of characteristic polyomial cost = O(log 2 ) 4) Evaluate A -1 usig Cayley-Hamilto Theorem cost = O(log ) i=1 o Completely umerically ustable CS267 Lecture ! Evaluatig arbitrary expressios Let E be a arbitrary expressio formed from +, -, *, /, paretheses, ad variables, where each appearace of each variable is couted separately Ca thik of E as arbitrary expressio tree with leaves (the variables) ad iteral odes labeled by +, -, * ad / Theorem (Bret): E ca be evaluated i O(log ) time, if we reorgaize it usig laws of commutativity, associativity ad distributivity Sketch of (moder) proof: evaluate expressio tree E greedily by repeatedly collapsig all leaves ito their parets at each time step evaluatig all chais i E with parallel prefix Evaluatig recurreces Let x i = f i (x i-1 ), f i a ratioal fuctio, x 0 give How fast ca we compute x? Theorem (Kug): Suppose degree(f i ) = d for all i If d=1, x ca be evaluated i O(log ) usig parallel prefix If d>1, evaluatig x takes Ω() time, i.e. o speedup is possible Sketch of proof whe d=1 x i = f i (x i-1 ) = (a i * x i-1 + b i )/( c i * x i-1 + d i ) ca be writte as x i = um i / de i = (a i * um i-1 + b i * de i-1 )/(c i * um i-1 + d i * de i-1 ) or um i = a i b i * um i-1 = M i * um i-1 = M i * M i-1 * * M 1 * um 0 dem i c i d i de i-1 de i-1 de 0 Ca use parallel prefix with 2-by-2 matrix multiplicatio Sketch of proof whe d>1 degree(x i ) as a fuctio of x 0 is d i After i parallel steps, degree(aythig) 2 i Computig x i take Ω(i) steps 15! 16! 4

5 Image Segmetatio (1/4) Cotours are subjective they deped o perspective Surprise: Humas agree (somewhat) Goal: geerate cotours automatically Use them to break images ito separate segmets (subimages) J. Malik s group has leadig algorithm Eable automatic image search ad retrieval ( Fid all the pictures with Fred ) Image Segmetatio (2/4) Thik of image as matrix A(i,j) of pixels Each pixel has separate R(ed), G(ree), B(lue) itesities Bottleeck (so far) of Malik s algorithm is to compute other matrices idicatig whether pixel (i,j) likely to be o cotour Ex: C(i,j) = average R itesity of pixels i rectagle above (i,j) average R itesity of pixels i rectagle below (i,j) C(i,j) large for pixel (i,j) marked with cotour, so (i,j) likely to be o Image Huma Geerated Cotours Machie Geerated Cotours 17! Algorithm evetually computes eigevectors of sparse matrix with etries computed from matrices like C Aalogous to graph partitioig i later lecture 18! Image Segmetatio (3/4) Bottleeck: Give A(i,j), compute C(i,j) where Sa(i,j) = sum of A(i,j) for etries i k x (2k+1) rectagle above A(i,j) = Σ A(r,s) for i-k r i-1 ad j-k s j+k Sb(i,j) = similar sum of rectagle below A(i,j) C(i,j) = Sa(i,j) Sb(i,j) Approach (Brya Catazaro) Compute S(i,j) = Σ A(r,s) for r i ad s j The sum of A(i,j) over ay rectagle (I low i I high, J low j J high ) is S(I high, J high ) - S(I low -1, J high ) - S(I high, J low -1) + S(I low -1, J low -1) j J low J high Image Segmetatio (4/4) New Bottleeck: Give A(i,j), compute S(i,j) where S(i,j) = Σ A(r,s) for r i ad s j 2 dimesioal parallel prefix Do parallel prefix idepedetly o each row of A(i,j) : - S row (i,j) = Σ A(i,s) for s j Do parallel prefix idepedetly o each colum of S row - S(i,j) = Σ S row (r,j) for r i = Σ A(r,s) for s j ad r i j i S(i,j) I low I high = = =0 +1 i S(i,j) 19! 20! 5

6 Sparse-Matrix-Vector-Multiply (SpMV) y = A*x Usig Segmeted Sca (SegSca) Segsca computes prefix sums of arbitrary segmets Use CSR format of Sparse Matrix A, store x desely P = [ ] Create array S showig where segmets (rows) start Compute SegSca( P, S ) = Extract A*x = [ ] Segsca ( [3, 1, 4, 5, 6, 1, 2, 3 ], [T, F, F, T, T, F, F, T ]) = [3, 4, 8, 5, 6, 7, 9, 3] Val = [ ] A = Col_Id = [ ] Row_Ptr=[ ] Create array P of all ozero A(i,j)*x(j) = Val(k)*x(Col_Id(k)) S = [ T F F T F F T F ] [ ] 21! x= Page layout i a browser Applyig layout rules to html descriptio of a webpage is a bottleeck, sca ca help Simplest example Give widths [x 1, x 2,, x ] of items to display o page, where should each item go? Item j starts at x 1 + x x j-1 Real examples have complicated costraits Defied by geeral trees, sice i html each object to display ca be composed of other objects To get locatio of each object, eed to do preorder traversal of tree, addig up costraits of previous objects Sca ca do preorder traversal of ay tree i parallel - Not just biary trees Ras Bodik, Leo Meyerovich 22! Summary of tree algorithms Lots of problems ca be doe quickly - i theory - usig trees Some algorithms are widely used broadcasts, reductios, parallel prefix carry look ahead additio Some are of theoretical iterest oly Csaky s method for matrix iversio Solvig tridiagoal liear systems (without pivotig) Both umerically ustable Csaky eeds too may processors Embedded i various systems MPI, Split-C, Titaium, NESL, other laguages CM-5 hardware cotrol etwork 23! 6

Lecture 1: Introduction and Strassen s Algorithm

Lecture 1: Introduction and Strassen s Algorithm 5-750: Graduate Algorithms Jauary 7, 08 Lecture : Itroductio ad Strasse s Algorithm Lecturer: Gary Miller Scribe: Robert Parker Itroductio Machie models I this class, we will primarily use the Radom Access

More information

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance

Pseudocode ( 1.1) Analysis of Algorithms. Primitive Operations. Pseudocode Details. Running Time ( 1.1) Estimating performance Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Pseudocode ( 1.1) High-level descriptio of a algorithm More structured

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Ruig Time of a algorithm Ruig Time Upper Bouds Lower Bouds Examples Mathematical facts Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite

More information

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n))

A graphical view of big-o notation. c*g(n) f(n) f(n) = O(g(n)) ca see that time required to search/sort grows with size of We How do space/time eeds of program grow with iput size? iput. time: cout umber of operatios as fuctio of iput Executio size operatio Assigmet:

More information

Thompson s Group F (p + 1) is not Minimally Almost Convex

Thompson s Group F (p + 1) is not Minimally Almost Convex Thompso s Group F (p + ) is ot Miimally Almost Covex Claire Wladis Thompso s Group F (p + ). A Descriptio of F (p + ) Thompso s group F (p + ) ca be defied as the group of piecewiseliear orietatio-preservig

More information

Data Structures and Algorithms. Analysis of Algorithms

Data Structures and Algorithms. Analysis of Algorithms Data Structures ad Algorithms Aalysis of Algorithms Outlie Ruig time Pseudo-code Big-oh otatio Big-theta otatio Big-omega otatio Asymptotic algorithm aalysis Aalysis of Algorithms Iput Algorithm Output

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Last Time EE Digital Sigal Processig Lecture 7 Block Covolutio, Overlap ad Add, FFT Discrete Fourier Trasform Properties of the Liear covolutio through circular Today Liear covolutio with Overlap ad add

More information

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time ( 3.1) Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time ( 3.1) Aalysis of Algorithms Iput Algorithm Output A algorithm is a step- by- step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects.

More information

Analysis of Algorithms

Analysis of Algorithms Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Ruig Time Most algorithms trasform iput objects ito output objects. The

More information

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments

Running Time. Analysis of Algorithms. Experimental Studies. Limitations of Experiments Ruig Time Aalysis of Algorithms Iput Algorithm Output A algorithm is a step-by-step procedure for solvig a problem i a fiite amout of time. Most algorithms trasform iput objects ito output objects. The

More information

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis

Outline and Reading. Analysis of Algorithms. Running Time. Experimental Studies. Limitations of Experiments. Theoretical Analysis Outlie ad Readig Aalysis of Algorithms Iput Algorithm Output Ruig time ( 3.) Pseudo-code ( 3.2) Coutig primitive operatios ( 3.3-3.) Asymptotic otatio ( 3.6) Asymptotic aalysis ( 3.7) Case study Aalysis

More information

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov

Sorting in Linear Time. Data Structures and Algorithms Andrei Bulatov Sortig i Liear Time Data Structures ad Algorithms Adrei Bulatov Algorithms Sortig i Liear Time 7-2 Compariso Sorts The oly test that all the algorithms we have cosidered so far is compariso The oly iformatio

More information

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0

Polynomial Functions and Models. Learning Objectives. Polynomials. P (x) = a n x n + a n 1 x n a 1 x + a 0, a n 0 Polyomial Fuctios ad Models 1 Learig Objectives 1. Idetify polyomial fuctios ad their degree 2. Graph polyomial fuctios usig trasformatios 3. Idetify the real zeros of a polyomial fuctio ad their multiplicity

More information

Lecture 5. Counting Sort / Radix Sort

Lecture 5. Counting Sort / Radix Sort Lecture 5. Coutig Sort / Radix Sort T. H. Corme, C. E. Leiserso ad R. L. Rivest Itroductio to Algorithms, 3rd Editio, MIT Press, 2009 Sugkyukwa Uiversity Hyuseug Choo choo@skku.edu Copyright 2000-2018

More information

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4

9 x and g(x) = 4. x. Find (x) 3.6. I. Combining Functions. A. From Equations. Example: Let f(x) = and its domain. Example: Let f(x) = and g(x) = x x 4 1 3.6 I. Combiig Fuctios A. From Equatios Example: Let f(x) = 9 x ad g(x) = 4 f x. Fid (x) g ad its domai. 4 Example: Let f(x) = ad g(x) = x x 4. Fid (f-g)(x) B. From Graphs: Graphical Additio. Example:

More information

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70

Major CSL Write your name and entry no on every sheet of the answer script. Time 2 Hrs Max Marks 70 NOTE:. Attempt all seve questios. Major CSL 02 2. Write your ame ad etry o o every sheet of the aswer script. Time 2 Hrs Max Marks 70 Q No Q Q 2 Q 3 Q 4 Q 5 Q 6 Q 7 Total MM 6 2 4 0 8 4 6 70 Q. Write a

More information

Lecture 18. Optimization in n dimensions

Lecture 18. Optimization in n dimensions Lecture 8 Optimizatio i dimesios Itroductio We ow cosider the problem of miimizig a sigle scalar fuctio of variables, f x, where x=[ x, x,, x ]T. The D case ca be visualized as fidig the lowest poit of

More information

How do we evaluate algorithms?

How do we evaluate algorithms? F2 Readig referece: chapter 2 + slides Algorithm complexity Big O ad big Ω To calculate ruig time Aalysis of recursive Algorithms Next time: Litterature: slides mostly The first Algorithm desig methods:

More information

condition w i B i S maximum u i

condition w i B i S maximum u i ecture 10 Dyamic Programmig 10.1 Kapsack Problem November 1, 2004 ecturer: Kamal Jai Notes: Tobias Holgers We are give a set of items U = {a 1, a 2,..., a }. Each item has a weight w i Z + ad a utility

More information

Name of the Student: Unit I (Logic and Proofs) 1) Truth Table: Conjunction Disjunction Conditional Biconditional

Name of the Student: Unit I (Logic and Proofs) 1) Truth Table: Conjunction Disjunction Conditional Biconditional SUBJECT NAME : Discrete Mathematics SUBJECT CODE : MA 2265 MATERIAL NAME : Formula Material MATERIAL CODE : JM08ADM009 (Sca the above QR code for the direct dowload of this material) Name of the Studet:

More information

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015

15-859E: Advanced Algorithms CMU, Spring 2015 Lecture #2: Randomized MST and MST Verification January 14, 2015 15-859E: Advaced Algorithms CMU, Sprig 2015 Lecture #2: Radomized MST ad MST Verificatio Jauary 14, 2015 Lecturer: Aupam Gupta Scribe: Yu Zhao 1 Prelimiaries I this lecture we are talkig about two cotets:

More information

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS)

CSC165H1 Worksheet: Tutorial 8 Algorithm analysis (SOLUTIONS) CSC165H1, Witer 018 Learig Objectives By the ed of this worksheet, you will: Aalyse the ruig time of fuctios cotaiig ested loops. 1. Nested loop variatios. Each of the followig fuctios takes as iput a

More information

CIS 121. Introduction to Trees

CIS 121. Introduction to Trees CIS 121 Itroductio to Trees 1 Tree ADT Tree defiitio q A tree is a set of odes which may be empty q If ot empty, the there is a distiguished ode r, called root ad zero or more o-empty subtrees T 1, T 2,

More information

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only

Bezier curves. Figure 2 shows cubic Bezier curves for various control points. In a Bezier curve, only Edited: Yeh-Liag Hsu (998--; recommeded: Yeh-Liag Hsu (--9; last updated: Yeh-Liag Hsu (9--7. Note: This is the course material for ME55 Geometric modelig ad computer graphics, Yua Ze Uiversity. art of

More information

Chapter 24. Sorting. Objectives. 1. To study and analyze time efficiency of various sorting algorithms

Chapter 24. Sorting. Objectives. 1. To study and analyze time efficiency of various sorting algorithms Chapter 4 Sortig 1 Objectives 1. o study ad aalyze time efficiecy of various sortig algorithms 4. 4.7.. o desig, implemet, ad aalyze bubble sort 4.. 3. o desig, implemet, ad aalyze merge sort 4.3. 4. o

More information

Intro to Scientific Computing: Solutions

Intro to Scientific Computing: Solutions Itro to Scietific Computig: Solutios Dr. David M. Goulet. How may steps does it take to separate 3 objects ito groups of 4? We start with 5 objects ad apply 3 steps of the algorithm to reduce the pile

More information

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs

What are we going to learn? CSC Data Structures Analysis of Algorithms. Overview. Algorithm, and Inputs What are we goig to lear? CSC316-003 Data Structures Aalysis of Algorithms Computer Sciece North Carolia State Uiversity Need to say that some algorithms are better tha others Criteria for evaluatio Structure

More information

Algorithm. Counting Sort Analysis of Algorithms

Algorithm. Counting Sort Analysis of Algorithms Algorithm Coutig Sort Aalysis of Algorithms Assumptios: records Coutig sort Each record cotais keys ad data All keys are i the rage of 1 to k Space The usorted list is stored i A, the sorted list will

More information

Computational Geometry

Computational Geometry Computatioal Geometry Chapter 4 Liear programmig Duality Smallest eclosig disk O the Ageda Liear Programmig Slides courtesy of Craig Gotsma 4. 4. Liear Programmig - Example Defie: (amout amout cosumed

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13

CIS 121 Data Structures and Algorithms with Java Spring Stacks and Queues Monday, February 12 / Tuesday, February 13 CIS Data Structures ad Algorithms with Java Sprig 08 Stacks ad Queues Moday, February / Tuesday, February Learig Goals Durig this lab, you will: Review stacks ad queues. Lear amortized ruig time aalysis

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

Math Section 2.2 Polynomial Functions

Math Section 2.2 Polynomial Functions Math 1330 - Sectio. Polyomial Fuctios Our objectives i workig with polyomial fuctios will be, first, to gather iformatio about the graph of the fuctio ad, secod, to use that iformatio to geerate a reasoably

More information

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Heaps. Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 Presetatio for use with the textbook Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 201 Heaps 201 Goodrich ad Tamassia xkcd. http://xkcd.com/83/. Tree. Used with permissio uder

More information

Homework 1 Solutions MA 522 Fall 2017

Homework 1 Solutions MA 522 Fall 2017 Homework 1 Solutios MA 5 Fall 017 1. Cosider the searchig problem: Iput A sequece of umbers A = [a 1,..., a ] ad a value v. Output A idex i such that v = A[i] or the special value NIL if v does ot appear

More information

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 )

EE260: Digital Design, Spring /16/18. n Example: m 0 (=x 1 x 2 ) is adjacent to m 1 (=x 1 x 2 ) and m 2 (=x 1 x 2 ) but NOT m 3 (=x 1 x 2 ) EE26: Digital Desig, Sprig 28 3/6/8 EE 26: Itroductio to Digital Desig Combiatioal Datapath Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi at Māoa Combiatioal Logic Blocks Multiplexer Ecoders/Decoders

More information

1.2 Binomial Coefficients and Subsets

1.2 Binomial Coefficients and Subsets 1.2. BINOMIAL COEFFICIENTS AND SUBSETS 13 1.2 Biomial Coefficiets ad Subsets 1.2-1 The loop below is part of a program to determie the umber of triagles formed by poits i the plae. for i =1 to for j =

More information

Designing a learning system

Designing a learning system CS 75 Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square, x-5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please try

More information

CS475 Parallel Programming

CS475 Parallel Programming CS475 Parallel Programmig Dese Matrix Multiply Wim Bohm, Colorado State Uiversity Except as otherwise oted, the cotet of this presetatio is licesed uder the Creative Commos Attributio 2.5 licese. Block

More information

COMP Parallel Computing. PRAM (1): The PRAM model and complexity measures

COMP Parallel Computing. PRAM (1): The PRAM model and complexity measures COMP 633 - Parallel Computig Lecture 2 August 24, 2017 : The PRAM model ad complexity measures 1 First class summary This course is about parallel computig to achieve high-er performace o idividual problems

More information

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8)

CIS 121 Data Structures and Algorithms with Java Fall Big-Oh Notation Tuesday, September 5 (Make-up Friday, September 8) CIS 11 Data Structures ad Algorithms with Java Fall 017 Big-Oh Notatio Tuesday, September 5 (Make-up Friday, September 8) Learig Goals Review Big-Oh ad lear big/small omega/theta otatios Practice solvig

More information

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19

CIS 121 Data Structures and Algorithms with Java Spring Stacks, Queues, and Heaps Monday, February 18 / Tuesday, February 19 CIS Data Structures ad Algorithms with Java Sprig 09 Stacks, Queues, ad Heaps Moday, February 8 / Tuesday, February 9 Stacks ad Queues Recall the stack ad queue ADTs (abstract data types from lecture.

More information

Sorting 9/15/2009. Sorting Problem. Insertion Sort: Soundness. Insertion Sort. Insertion Sort: Running Time. Insertion Sort: Soundness

Sorting 9/15/2009. Sorting Problem. Insertion Sort: Soundness. Insertion Sort. Insertion Sort: Running Time. Insertion Sort: Soundness 9/5/009 Algorithms Sortig 3- Sortig Sortig Problem The Sortig Problem Istace: A sequece of umbers Objective: A permutatio (reorderig) such that a ' K a' a, K,a a ', K, a' of the iput sequece The umbers

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpeCourseWare http://ocw.mit.edu 6.854J / 18.415J Advaced Algorithms Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.415/6.854 Advaced Algorithms

More information

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence

9.1. Sequences and Series. Sequences. What you should learn. Why you should learn it. Definition of Sequence _9.qxd // : AM Page Chapter 9 Sequeces, Series, ad Probability 9. Sequeces ad Series What you should lear Use sequece otatio to write the terms of sequeces. Use factorial otatio. Use summatio otatio to

More information

Chapter 3 Classification of FFT Processor Algorithms

Chapter 3 Classification of FFT Processor Algorithms Chapter Classificatio of FFT Processor Algorithms The computatioal complexity of the Discrete Fourier trasform (DFT) is very high. It requires () 2 complex multiplicatios ad () complex additios [5]. As

More information

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis

n Some thoughts on software development n The idea of a calculator n Using a grammar n Expression evaluation n Program organization n Analysis Overview Chapter 6 Writig a Program Bjare Stroustrup Some thoughts o software developmet The idea of a calculator Usig a grammar Expressio evaluatio Program orgaizatio www.stroustrup.com/programmig 3 Buildig

More information

MapReduce and Hadoop. Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata. November 10, 2014

MapReduce and Hadoop. Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata. November 10, 2014 MapReduce ad Hadoop Debapriyo Majumdar Data Miig Fall 2014 Idia Statistical Istitute Kolkata November 10, 2014 Let s keep the itro short Moder data miig: process immese amout of data quickly Exploit parallelism

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity Time CSE 47: Algorithms ad Computatioal Readig assigmet Read Chapter of The ALGORITHM Desig Maual Aalysis & Sortig Autum 00 Paul Beame aalysis Problem size Worst-case complexity: max # steps algorithm

More information

Algorithm Design Techniques. Divide and conquer Problem

Algorithm Design Techniques. Divide and conquer Problem Algorithm Desig Techiques Divide ad coquer Problem Divide ad Coquer Algorithms Divide ad Coquer algorithm desig works o the priciple of dividig the give problem ito smaller sub problems which are similar

More information

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming

Lecture Notes 6 Introduction to algorithm analysis CSS 501 Data Structures and Object-Oriented Programming Lecture Notes 6 Itroductio to algorithm aalysis CSS 501 Data Structures ad Object-Orieted Programmig Readig for this lecture: Carrao, Chapter 10 To be covered i this lecture: Itroductio to algorithm aalysis

More information

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis

Analysis Metrics. Intro to Algorithm Analysis. Slides. 12. Alg Analysis. 12. Alg Analysis Itro to Algorithm Aalysis Aalysis Metrics Slides. Table of Cotets. Aalysis Metrics 3. Exact Aalysis Rules 4. Simple Summatio 5. Summatio Formulas 6. Order of Magitude 7. Big-O otatio 8. Big-O Theorems

More information

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms.

why study sorting? Sorting is a classic subject in computer science. There are three reasons for studying sorting algorithms. Chapter 5 Sortig IST311 - CIS65/506 Clevelad State Uiversity Prof. Victor Matos Adapted from: Itroductio to Java Programmig: Comprehesive Versio, Eighth Editio by Y. Daiel Liag why study sortig? Sortig

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 18 Strategies for Query Processig Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio DBMS techiques to process a query Scaer idetifies

More information

CS473-Algorithms I. Lecture 2. Asymptotic Notation. CS 473 Lecture 2 1

CS473-Algorithms I. Lecture 2. Asymptotic Notation. CS 473 Lecture 2 1 CS473-Algorithms I Lecture Asymptotic Notatio CS 473 Lecture 1 O-otatio (upper bouds) f() = O(g()) if positive costats c, 0 such that e.g., = O( 3 ) 0 f() cg(), 0 c 3 c c = 1 & 0 = or c = & 0 = 1 Asymptotic

More information

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 9. Pointers and Dynamic Arrays. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 9 Poiters ad Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 9.1 Poiters 9.2 Dyamic Arrays Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Slide 9-3

More information

LU Decomposition Method

LU Decomposition Method SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS LU Decompositio Method Jamie Traha, Autar Kaw, Kevi Marti Uiversity of South Florida Uited States of America kaw@eg.usf.edu http://umericalmethods.eg.usf.edu Itroductio

More information

Big-O Analysis. Asymptotics

Big-O Analysis. Asymptotics Big-O Aalysis 1 Defiitio: Suppose that f() ad g() are oegative fuctios of. The we say that f() is O(g()) provided that there are costats C > 0 ad N > 0 such that for all > N, f() Cg(). Big-O expresses

More information

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1

COSC 1P03. Ch 7 Recursion. Introduction to Data Structures 8.1 COSC 1P03 Ch 7 Recursio Itroductio to Data Structures 8.1 COSC 1P03 Recursio Recursio I Mathematics factorial Fiboacci umbers defie ifiite set with fiite defiitio I Computer Sciece sytax rules fiite defiitio,

More information

Math 10C Long Range Plans

Math 10C Long Range Plans Math 10C Log Rage Plas Uits: Evaluatio: Homework, projects ad assigmets 10% Uit Tests. 70% Fial Examiatio.. 20% Ay Uit Test may be rewritte for a higher mark. If the retest mark is higher, that mark will

More information

Lower Bounds for Sorting

Lower Bounds for Sorting Liear Sortig Topics Covered: Lower Bouds for Sortig Coutig Sort Radix Sort Bucket Sort Lower Bouds for Sortig Compariso vs. o-compariso sortig Decisio tree model Worst case lower boud Compariso Sortig

More information

Designing a learning system

Designing a learning system CS 75 Itro to Machie Learig Lecture Desigig a learig system Milos Hauskrecht milos@pitt.edu 539 Seott Square, -5 people.cs.pitt.edu/~milos/courses/cs75/ Admiistrivia No homework assigmet this week Please

More information

The Magma Database file formats

The Magma Database file formats The Magma Database file formats Adrew Gaylard, Bret Pikey, ad Mart-Mari Breedt Johaesburg, South Africa 15th May 2006 1 Summary Magma is a ope-source object database created by Chris Muller, of Kasas City,

More information

Alpha Individual Solutions MAΘ National Convention 2013

Alpha Individual Solutions MAΘ National Convention 2013 Alpha Idividual Solutios MAΘ Natioal Covetio 0 Aswers:. D. A. C 4. D 5. C 6. B 7. A 8. C 9. D 0. B. B. A. D 4. C 5. A 6. C 7. B 8. A 9. A 0. C. E. B. D 4. C 5. A 6. D 7. B 8. C 9. D 0. B TB. 570 TB. 5

More information

Learning to Shoot a Goal Lecture 8: Learning Models and Skills

Learning to Shoot a Goal Lecture 8: Learning Models and Skills Learig to Shoot a Goal Lecture 8: Learig Models ad Skills How do we acquire skill at shootig goals? CS 344R/393R: Robotics Bejami Kuipers Learig to Shoot a Goal The robot eeds to shoot the ball i the goal.

More information

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem

Exact Minimum Lower Bound Algorithm for Traveling Salesman Problem Exact Miimum Lower Boud Algorithm for Travelig Salesma Problem Mohamed Eleiche GeoTiba Systems mohamed.eleiche@gmail.com Abstract The miimum-travel-cost algorithm is a dyamic programmig algorithm to compute

More information

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions

Lecturers: Sanjam Garg and Prasad Raghavendra Feb 21, Midterm 1 Solutions U.C. Berkeley CS170 : Algorithms Midterm 1 Solutios Lecturers: Sajam Garg ad Prasad Raghavedra Feb 1, 017 Midterm 1 Solutios 1. (4 poits) For the directed graph below, fid all the strogly coected compoets

More information

EVALUATION OF TRIGONOMETRIC FUNCTIONS

EVALUATION OF TRIGONOMETRIC FUNCTIONS EVALUATION OF TRIGONOMETRIC FUNCTIONS Whe first exposed to trigoometric fuctios i high school studets are expected to memorize the values of the trigoometric fuctios of sie cosie taget for the special

More information

Elementary Educational Computer

Elementary Educational Computer Chapter 5 Elemetary Educatioal Computer. Geeral structure of the Elemetary Educatioal Computer (EEC) The EEC coforms to the 5 uits structure defied by vo Neuma's model (.) All uits are preseted i a simplified

More information

Pattern Recognition Systems Lab 1 Least Mean Squares

Pattern Recognition Systems Lab 1 Least Mean Squares Patter Recogitio Systems Lab 1 Least Mea Squares 1. Objectives This laboratory work itroduces the OpeCV-based framework used throughout the course. I this assigmet a lie is fitted to a set of poits usig

More information

AN OPTIMIZATION NETWORK FOR MATRIX INVERSION

AN OPTIMIZATION NETWORK FOR MATRIX INVERSION 397 AN OPTIMIZATION NETWORK FOR MATRIX INVERSION Ju-Seog Jag, S~ Youg Lee, ad Sag-Yug Shi Korea Advaced Istitute of Sciece ad Techology, P.O. Box 150, Cheogryag, Seoul, Korea ABSTRACT Iverse matrix calculatio

More information

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual)

Wavelet Transform. CSE 490 G Introduction to Data Compression Winter Wavelet Transformed Barbara (Enhanced) Wavelet Transformed Barbara (Actual) Wavelet Trasform CSE 49 G Itroductio to Data Compressio Witer 6 Wavelet Trasform Codig PACW Wavelet Trasform A family of atios that filters the data ito low resolutio data plus detail data high pass filter

More information

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS

APPLICATION NOTE PACE1750AE BUILT-IN FUNCTIONS APPLICATION NOTE PACE175AE BUILT-IN UNCTIONS About This Note This applicatio brief is iteded to explai ad demostrate the use of the special fuctios that are built ito the PACE175AE processor. These powerful

More information

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe

Copyright 2016 Ramez Elmasri and Shamkant B. Navathe Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe CHAPTER 19 Query Optimizatio Copyright 2016 Ramez Elmasri ad Shamkat B. Navathe Itroductio Query optimizatio Coducted by a query optimizer i a DBMS Goal:

More information

Priority Queues. Binary Heaps

Priority Queues. Binary Heaps Priority Queues Biary Heaps Priority Queues Priority: some property of a object that allows it to be prioritized with respect to other objects of the same type Mi Priority Queue: homogeeous collectio of

More information

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram

Lecture 2. RTL Design Methodology. Transition from Pseudocode & Interface to a Corresponding Block Diagram Lecture 2 RTL Desig Methodology Trasitio from Pseudocode & Iterface to a Correspodig Block Diagram Structure of a Typical Digital Data Iputs Datapath (Executio Uit) Data Outputs System Cotrol Sigals Status

More information

Image Segmentation EEE 508

Image Segmentation EEE 508 Image Segmetatio Objective: to determie (etract) object boudaries. It is a process of partitioig a image ito distict regios by groupig together eighborig piels based o some predefied similarity criterio.

More information

Data Structures Week #5. Trees (Ağaçlar)

Data Structures Week #5. Trees (Ağaçlar) Data Structures Week #5 Trees Ağaçlar) Trees Ağaçlar) Toros Gökarı Avrupa Gökarı October 28, 2014 Boraha Tümer, Ph.D. 2 Trees Ağaçlar) October 28, 2014 Boraha Tümer, Ph.D. 3 Outlie Trees Deiitios Implemetatio

More information

Module 8-7: Pascal s Triangle and the Binomial Theorem

Module 8-7: Pascal s Triangle and the Binomial Theorem Module 8-7: Pascal s Triagle ad the Biomial Theorem Gregory V. Bard April 5, 017 A Note about Notatio Just to recall, all of the followig mea the same thig: ( 7 7C 4 C4 7 7C4 5 4 ad they are (all proouced

More information

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today

Administrative UNSUPERVISED LEARNING. Unsupervised learning. Supervised learning 11/25/13. Final project. No office hours today Admiistrative Fial project No office hours today UNSUPERVISED LEARNING David Kauchak CS 451 Fall 2013 Supervised learig Usupervised learig label label 1 label 3 model/ predictor label 4 label 5 Supervised

More information

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design

CSC 220: Computer Organization Unit 11 Basic Computer Organization and Design College of Computer ad Iformatio Scieces Departmet of Computer Sciece CSC 220: Computer Orgaizatio Uit 11 Basic Computer Orgaizatio ad Desig 1 For the rest of the semester, we ll focus o computer architecture:

More information

Numerical Methods Lecture 6 - Curve Fitting Techniques

Numerical Methods Lecture 6 - Curve Fitting Techniques Numerical Methods Lecture 6 - Curve Fittig Techiques Topics motivatio iterpolatio liear regressio higher order polyomial form expoetial form Curve fittig - motivatio For root fidig, we used a give fuctio

More information

5.3 Recursive definitions and structural induction

5.3 Recursive definitions and structural induction /8/05 5.3 Recursive defiitios ad structural iductio CSE03 Discrete Computatioal Structures Lecture 6 A recursively defied picture Recursive defiitios e sequece of powers of is give by a = for =0,,, Ca

More information

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract

On Infinite Groups that are Isomorphic to its Proper Infinite Subgroup. Jaymar Talledo Balihon. Abstract O Ifiite Groups that are Isomorphic to its Proper Ifiite Subgroup Jaymar Talledo Baliho Abstract Two groups are isomorphic if there exists a isomorphism betwee them Lagrage Theorem states that the order

More information

GC05: Algorithmic Complexity & Computability

GC05: Algorithmic Complexity & Computability GC05: Algorithmic Complexity & Computability This part of the course deals with assessig the time-demad of algorithmic procedures with the aim, where possible, of fidig efficiet solutios to problems. We

More information

Python Programming: An Introduction to Computer Science

Python Programming: An Introduction to Computer Science Pytho Programmig: A Itroductio to Computer Sciece Chapter 1 Computers ad Programs 1 Objectives To uderstad the respective roles of hardware ad software i a computig system. To lear what computer scietists

More information

COMMUNICATION-OPTIMAL PARALLEL AND SEQUENTIAL CHOLESKY DECOMPOSITION

COMMUNICATION-OPTIMAL PARALLEL AND SEQUENTIAL CHOLESKY DECOMPOSITION SIA J. SCI. COUT. Vol. 2, No. 6, pp. 495 52 c 2010 Society for Idustrial ad Applied athematics COUNICATION-OTIAL ARALLEL AND SEQUENTIAL CHOLESKY DECOOSITION GREY BALLARD, JAES DEEL, OLGA HOLTZ, AND ODED

More information

Fast Fourier Transform (FFT) Algorithms

Fast Fourier Transform (FFT) Algorithms Fast Fourier Trasform FFT Algorithms Relatio to the z-trasform elsewhere, ozero, z x z X x [ ] 2 ~ elsewhere,, ~ e j x X x x π j e z z X X π 2 ~ The DFS X represets evely spaced samples of the z- trasform

More information

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein

Lecture 6. Lecturer: Ronitt Rubinfeld Scribes: Chen Ziv, Eliav Buchnik, Ophir Arie, Jonathan Gradstein 068.670 Subliear Time Algorithms November, 0 Lecture 6 Lecturer: Roitt Rubifeld Scribes: Che Ziv, Eliav Buchik, Ophir Arie, Joatha Gradstei Lesso overview. Usig the oracle reductio framework for approximatig

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045 Oe Brookigs Drive St. Louis, Missouri 63130-4899, USA jaegerg@cse.wustl.edu

More information

The number n of subintervals times the length h of subintervals gives length of interval (b-a).

The number n of subintervals times the length h of subintervals gives length of interval (b-a). Simulator with MadMath Kit: Riema Sums (Teacher s pages) I your kit: 1. GeoGebra file: Ready-to-use projector sized simulator: RiemaSumMM.ggb 2. RiemaSumMM.pdf (this file) ad RiemaSumMMEd.pdf (educator's

More information

1 Graph Sparsfication

1 Graph Sparsfication CME 305: Discrete Mathematics ad Algorithms 1 Graph Sparsficatio I this sectio we discuss the approximatio of a graph G(V, E) by a sparse graph H(V, F ) o the same vertex set. I particular, we cosider

More information

Reversible Realization of Quaternary Decoder, Multiplexer, and Demultiplexer Circuits

Reversible Realization of Quaternary Decoder, Multiplexer, and Demultiplexer Circuits Egieerig Letters, :, EL Reversible Realizatio of Quaterary Decoder, Multiplexer, ad Demultiplexer Circuits Mozammel H.. Kha, Member, ENG bstract quaterary reversible circuit is more compact tha the correspodig

More information

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved.

Chapter 1. Introduction to Computers and C++ Programming. Copyright 2015 Pearson Education, Ltd.. All rights reserved. Chapter 1 Itroductio to Computers ad C++ Programmig Copyright 2015 Pearso Educatio, Ltd.. All rights reserved. Overview 1.1 Computer Systems 1.2 Programmig ad Problem Solvig 1.3 Itroductio to C++ 1.4 Testig

More information

Σ P(i) ( depth T (K i ) + 1),

Σ P(i) ( depth T (K i ) + 1), EECS 3101 York Uiversity Istructor: Ady Mirzaia DYNAMIC PROGRAMMING: OPIMAL SAIC BINARY SEARCH REES his lecture ote describes a applicatio of the dyamic programmig paradigm o computig the optimal static

More information

The isoperimetric problem on the hypercube

The isoperimetric problem on the hypercube The isoperimetric problem o the hypercube Prepared by: Steve Butler November 2, 2005 1 The isoperimetric problem We will cosider the -dimesioal hypercube Q Recall that the hypercube Q is a graph whose

More information

. Written in factored form it is easy to see that the roots are 2, 2, i,

. Written in factored form it is easy to see that the roots are 2, 2, i, CMPS A Itroductio to Programmig Programmig Assigmet 4 I this assigmet you will write a java program that determies the real roots of a polyomial that lie withi a specified rage. Recall that the roots (or

More information

An Efficient Algorithm for Graph Bisection of Triangularizations

An Efficient Algorithm for Graph Bisection of Triangularizations Applied Mathematical Scieces, Vol. 1, 2007, o. 25, 1203-1215 A Efficiet Algorithm for Graph Bisectio of Triagularizatios Gerold Jäger Departmet of Computer Sciece Washigto Uiversity Campus Box 1045, Oe

More information

CS Polygon Scan Conversion. Slide 1

CS Polygon Scan Conversion. Slide 1 CS 112 - Polygo Sca Coversio Slide 1 Polygo Classificatio Covex All iterior agles are less tha 180 degrees Cocave Iterior agles ca be greater tha 180 degrees Degeerate polygos If all vertices are colliear

More information

Dimensionality Reduction PCA

Dimensionality Reduction PCA Dimesioality Reductio PCA Machie Learig CSE446 David Wadde (slides provided by Carlos Guestri) Uiversity of Washigto Feb 22, 2017 Carlos Guestri 2005-2017 1 Dimesioality reductio Iput data may have thousads

More information

BOOLEAN MATHEMATICS: GENERAL THEORY

BOOLEAN MATHEMATICS: GENERAL THEORY CHAPTER 3 BOOLEAN MATHEMATICS: GENERAL THEORY 3.1 ISOMORPHIC PROPERTIES The ame Boolea Arithmetic was chose because it was discovered that literal Boolea Algebra could have a isomorphic umerical aspect.

More information