Consumer graphics cards for fast image processing based on the Pixel Shader 3.0 standard

Size: px
Start display at page:

Download "Consumer graphics cards for fast image processing based on the Pixel Shader 3.0 standard"

Transcription

1 Consumer graphics cards for fast image processing based on the Pixel Shader 3.0 standard G. Monti, C. Lindner, F. Puente León, A. W. Koch Technische Universität München, Institute for Measurement Systems and Sensor Technology, Theresienstraße 90 / N5, Munich, Germany gianni.monti@tum.de Summary Optical inspection and metrology for industrial applications often require fast image processing. Today this is mostly reached by special developed hardware, which represents a relevant cost factor in image processing systems. Furthermore, such special solutions often cannot be easily adapted to new requirements. Otherwise, CPU based systems feature a good programmability but often not enough processing power for real time purposes. The required computational performance and flexibility can be provided by the latest issue of consumer graphics cards for personal computers equipped with a fourth generation Graphics Processing Unit (GPU) supporting the Pixel Shader 3.0 standard. The GPU contains freely programmable units for geometrical and mathematical processing of textured objects by shader programs. The objective of this paper is to show that the 3.0 standard shaders are now ready to be integrated in industrial environments for real time imaging applications. To this end, we focus on common image processing algorithms, such as linear and nonlinear filters. A benchmark has been implemented to compare the speed of GPU shader algorithms to those running on CPU systems. Keywords: image processing, pixel shader, benchmark, real time 1 Introduction Due to the persistent growing requisites of PC games, such as realistic scenes or fast animations, graphics cards for personal computers have developed from simple output devices to powerful parallel graphics computers. The core part is the GPU, whose present generation belongs with 220 million transistors to the most complex processors on the market. Its superscalar architecture allows fast processing of broad data streams with an instruction set of middle complexity in SIMD (Single Instruction Multiple Data) style. For this purpose the GPU can be connected through a 256 bit wide data bus to high performance GDDR3 RAMs (with sizes of up to 256 MB), in order to perform data rates of 35 Gbyte/s. The evolution of GPUs through different generations shows that the former functionalities given by hardwired components has been discarded for most parts in favor of a freely programmable rendering pipeline. Figure. 1 describes the typical structure of a modern rendering pipeline.

2 Figure 1: Programmable rendering pipeline. A defined number of incoming vertices will be connected to a polygon surface and positioned in a coordinate system. After a rasterization, the surface can be colored by interpolating the color values of the vertices. In the next step each single raster cell is filled with the corresponding result value of a processed input image or by a predefined value. The processing algorithms destinated to the programmable vertex and pixel system are implemented by shaders, which are specific programs that runs on GPU. Two classes of Shaders will be distinguished: vertex shaders and pixel (or fragment) shaders. While vertex shaders provide geometrical transformations, pixel shaders perform a pixel color manipulation of the textured target object. A simplified implementation of both shader types can be achieved by the standardized high level languages: Cg, HLSL and GLSL. In comparison to the last shader standard 2.0, new features permit the implementation of an extensive range of image processing algorithms. The shader standard 3.0 enables the processing of 32 bpp floating point images with a maximum of four channels and a precision of 128 bpp. Thus, high dynamic range input data (featuring more than 8 bpp) from modern capture devices can now be processed. With a Multiple Render Target extension, real and complex data can be rendered in one step, which increases the speed of complex data algorithms. While pixel manipulation of former standards was accomplished in a predifined way for all image pixels, the new Dynamic Branching method permits a dynamic handling of each pixel. Flow control of image and parametric data as well as initialization, compiling, rendering and general hardware control will be achieved by a common Application Processing Interface (API) like OpenGL or DirectX. All shader development languages and APIs are freely available. 2 Integration of graphics cards in imaging systems Utilization of consumer graphics cards for industrial image processing purposes demands an efficient system integration. In considering that graphics cards are subsystems of CPU based personal computers, the following integration methods are reasonable: Direct Operation, Parallel Mode, Combined Mode.

3 Figure 2: Direct operation of a graphics card. Figure 3: Mode. System integration in Parallel In a Direct Operation solution, the I/O image data streams flow directly through the device interfaces of the graphics card; see Fig. 2. The unidirectional incoming control dataflow over the PC interface is quiet small, so that the CPU side components must not achieve a high performance if, required interface standards are given. Video input interfaces can exclusively be connected with S-Video compatible analog capture devices. Image processing results are dumped through a DVI interface. Due to the low maximal resolution and frame rate, as far as the presence of video inputs is limited to graphics cards models of medium performance, the described integration is an inexpensive solution for simple imaging tasks. If a fast image acquisition from high resolution cameras is required, the graphics card should be integrated in the Parallel Mode; see Fig. 3. Any camera interface standard that may be connected to the personal computer with a DMA access to the computer s RAM will be supported. Examples are IEEE 1394, USB, and Camera Link. In Parallel Mode, the graphics card operates like a parallel processing subsystem. After image and parametric data are transferred from RAM to GRAM, a CPU indipendent data processing will be performed. After rendering, data results will be transferred back to RAM. The data transfer rate of the PC bus is decisive for the execution of real time applications. In comparison with the AGP8x port, the data rates have been doubled since the recent introduction of the PCI-Express bus (PCI-E), which confirms the Parallel Mode concept. Additionally, the PCI-E based nvidia SLI technology makes GPU power scalable. The adoption of the first generation SLI Motherboards have shown that GPU processing Power can be increased by a factor of 1.84 simply by insertion of two coupled PCI-E graphics cards. Because Parallel Mode integration graphics cards support a wide range of capture devices, and the adoption of high speed PC interfaces assure fast processing tasks, this is the adequate solution for GPU based real time image processing. The Combined Mode is similar to the Parallel

4 Mode, except that the that the rendering result is output by the DVI interface and not transferred to the PC RAM. This is particularly interesting for real time visual inspection systems for medical prevention and diagnostics, materials examination and similar purposes. Whereas a Direct Operation of graphics cards has already investigated within previous projects at our Institute [4], this paper focuses on a Parallel Mode integration. 3 The image processing framework Our framework is based on the nvidia GeForce 6800 chip set series, wich is part of high end consumer graphics cards with 3.0 shader support. These are integrated in personal computers with Intel and AMD central processing units. Due to the Parallel Mode concept, image processing tasks will be entirely performed inside the graphics card, which means that no CPU processing power is required during the computation on the GPU side. The CPU is mostly disposable and can be used for machine control or human-machine communication tasks. The framework structure is characterized by three interdependent programming layers (Fig. 4). A C++ program running on the CPU constitutes the first layer which represents the basic structure of the framework. Beside of the graphics card hardware initialization, image and parametric data settings and flow control, also initiation of the rendering process is accomplished here. Image processing algorithms are implemented through Cg shaders in the third layer. Cg (C for graphics) [6] is a multiple API (DirectX and OpenGL) high level language for shader programming. Its instruction set is adapted dynamically to the hardware, and deliver a good basis for implementation of scientific algorithms. In our framework, shaders will be compiled at runtime, which facilitates a rapid modification. The programming code of the second layer connects the first with the third layer through OpenGL API commands, which encapsulate the functionality of the graphics card hardware. Contrary to the Windows based DirectX, the platform independent OpenGL enables our framework to run on different operating systems: Windows, Linux and MacOS. Figure 4: Multilayer framework. Appropriate OpenGL extensions enable a fast image processing with the graphics card. The GLUT library is used to obtain platform independent handles to the graphics card. To avoid the limitations of a conventional to Frame Buffer rendering, we use an off-line rendering technique [5] with multiple pixel buffers, which are special areas of the GRAM used as render target. In this manner, Frame Buffer resources can be used by the operating system for user interactions, and the performance of rendering tasks is indipendent of the OS-Interrupts. For implementation of modular algorithms Multiple Rendering Passes and Render to Texture [7] assure fast operation. Since the transfer

5 Filter Ram GPU GRam CPU Type to GRam Processing to RAM Processing 7 7 Edge Detection Moving Average Table 1: Convolution benchmark results in milliseconds. and mapping of textures is more convenient than arrays or matrices, large parametric data will be stored as images. 4 Benchmarks and results In this section, the suitability of our GPU based image processing for real time purposes will be compared to equivalent CPU algorithms implemented by utilization of the last Intel Performance Primitives (IPP) library running on a 3 GHz Intel Itanium processor. The results of the shader framework were obtained by using a graphics card with the nvidia GeForce 6800 Ultra chip-set and a PCI-E 16x interface. All benchmark results were obtained by averaging of 50 values. Shader processing times are subdivided in image upload (to GRAM), rendering and image download (to RAM). For capability determination of the afore described shader system we have realized benchmarks for the following filter classes: convolution filters, morphological filters. 4.1 Convolution benchmark The wide application range of Convolution filters is mostly used for image enhancement, edge detection and many other processing tasks. Convolution filtering of an input image g(i, j) is given by: r(i, j) = g(i, j) h(i, j) := L 1 2 l= L 1 2 M 1 2 m= M 1 2 g(l, m) h(i l, j m), (1) where h(i, j) denotes the filter kernel function with odd dimensions L and M. To compare processing times between GPU and CPU driven Convolution tasks we have processed a RGB image of 1600x1200 pixels with a dynamic range of 12 bit through two rendering passes. At each rendering step the image is processed by an onedimensional Kernel, in direction of i and j respectively. The processing time comparison of Tab. 1 is obtained by applying a 31x31 kernel for moving average and a 7x7 kernel for edge detection.

6 Size of RAM to GPU Processing GRAM CPU Processing s(i, j) GRAM to RAM Binary Gray scale RGB Table 2: Morphological benchmark results ( : erosion; : dilation; : opening; : closing) in milliseconds. 4.2 Morphological benchmark Morphological filters [1,2] are nonlinear filters which typically used for edge detection, noise removal, image enhancement, image segmentation and binary image analysis. The variety of different morphological filters is based on the combination of two basic operations: dilation D{ } and erosion E{ } which are related to set theory. They can be described respectively by the following equations: D{g(i, j)} = g(i, j) s(i, j) = E{g(i, j)} = g(i, j) s(i, j) = max {g(i l, j m) + s(l, m)}, (2) (l,m) D s min (l,m) D s {g(i + l, j + m) s(l, m)}, (3) where g(i, j) represents the input image, s(i, j) the structuring element, and D s := supp{s(i, j)} the support set of s(i, j). In our benchmark, s(i, j) is set to zero. Table 2 compares the processing times for dilation, erosion, opening (Eq. 4) and closing (Eq. 5) with a 3 3 and a 9 9 square structuring element applied to a 8 bit binary, a gray valued and an RGB image of pixels. g(i, j) s(i, j) = (g(i, j) s(i, j)) s(i, j) (4) g(i, j) s(i, j) = (g(i, j) s(i, j)) s(i, j) (5) 4.3 Discussion In consideration of the predominant data transfer times through the PC bus, the analysis of the applied benchmarks shows that image computing with graphics cards has advantages for processing intensive algorithms. Contrary to the image size dependent data transfer times, the GPU rendering times remain approximately constant which means that the required processing power of the used algorithms is much less than the GPU can achieve. Another important fact is that RGB images are processed faster

7 than gray value images. In order to triplicate the computation speed of gray value image streams, they can be assembled to virtual RGB images. Overall, Graphics Processing Units can be used for an efficient processing of large sized images with complex algorithms. 5 Conclusions The paper has shown that real time industrial image processing with Graphics Processing Units of modern consumer graphics cards can be a cost efficient alternative to dedicated image processing hardware. For continually changing exigencies of a growing image processing market, the shader based implementation of image processing algorithms represents a flexible and efficient instrument. Future improvement, enhancement and availability of Graphics Processing Units is guaranteed by the persistent increasing demands of the PC games industries. With different projects, our Institute will continue to investigate and develop applications for industrial inspection and measurement tasks with such devices. References [1] J. Serra, Imaging Analysis and Mathematical Morphology, Vol. II: Theoretical Advances, Academic Press, London, [2] R.M. Haralick, S.R. Sternberg, R.M. Zhuang, Imaging Analysis and Mathematical Morphology, IEEE Trans. Pattern Analysis Mach. Int. 9(4), , [3] R.C. Gonzalez, R.E. Woods, Digital Image Processing, Prentice Hall, [4] A. Purde, A. Meixner, H. Schweizer, T. Zeh, A. Koch, Pixel shader based real-time image processing for surface metrology, IEEE Instrum. and Meas. Techn. Conference, [5] C. Wynn, Using P-Buffers for Off-Screen Rendering, Game Developer Conference, [6] W.R. Mark, R.S. Glanville, K. Akeley, M.J. Kilgard, Cg: A system for programming graphics hardware in a C-like language, nvidia Corporation, [7] C. Wynn, OpenGL Render-to-Texture, [8] M. Segal, K. Akeley, The OpenGL Graphics System: A Specification (Version1.5),

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Graphics pipeline. Michal Červeňanský Juraj Starinský Real - Time Rendering Graphics pipeline Michal Červeňanský Juraj Starinský Overview History of Graphics HW Rendering pipeline Shaders Debugging 2 History of Graphics HW First generation Second generation

More information

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1

X. GPU Programming. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter X 1 X. GPU Programming 320491: Advanced Graphics - Chapter X 1 X.1 GPU Architecture 320491: Advanced Graphics - Chapter X 2 GPU Graphics Processing Unit Parallelized SIMD Architecture 112 processing cores

More information

Shaders. Slide credit to Prof. Zwicker

Shaders. Slide credit to Prof. Zwicker Shaders Slide credit to Prof. Zwicker 2 Today Shader programming 3 Complete model Blinn model with several light sources i diffuse specular ambient How is this implemented on the graphics processor (GPU)?

More information

Graphics Hardware. Instructor Stephen J. Guy

Graphics Hardware. Instructor Stephen J. Guy Instructor Stephen J. Guy Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability! Programming Examples Overview What is a GPU Evolution of GPU GPU Design Modern Features Programmability!

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

2.11 Particle Systems

2.11 Particle Systems 2.11 Particle Systems 320491: Advanced Graphics - Chapter 2 152 Particle Systems Lagrangian method not mesh-based set of particles to model time-dependent phenomena such as snow fire smoke 320491: Advanced

More information

Introduction to Shaders.

Introduction to Shaders. Introduction to Shaders Marco Benvegnù hiforce@gmx.it www.benve.org Summer 2005 Overview Rendering pipeline Shaders concepts Shading Languages Shading Tools Effects showcase Setup of a Shader in OpenGL

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology

CS8803SC Software and Hardware Cooperative Computing GPGPU. Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology CS8803SC Software and Hardware Cooperative Computing GPGPU Prof. Hyesoon Kim School of Computer Science Georgia Institute of Technology Why GPU? A quiet revolution and potential build-up Calculation: 367

More information

Evolution of GPUs Chris Seitz

Evolution of GPUs Chris Seitz Evolution of GPUs Chris Seitz Overview Concepts: Real-time rendering Hardware graphics pipeline Evolution of the PC hardware graphics pipeline: 1995-1998: Texture mapping and z-buffer 1998: Multitexturing

More information

Programming Graphics Hardware

Programming Graphics Hardware Tutorial 5 Programming Graphics Hardware Randy Fernando, Mark Harris, Matthias Wloka, Cyril Zeller Overview of the Tutorial: Morning 8:30 9:30 10:15 10:45 Introduction to the Hardware Graphics Pipeline

More information

ACCELERATION OF IMAGE RESTORATION ALGORITHMS FOR DYNAMIC MEASUREMENTS IN COORDINATE METROLOGY BY USING OPENCV GPU FRAMEWORK

ACCELERATION OF IMAGE RESTORATION ALGORITHMS FOR DYNAMIC MEASUREMENTS IN COORDINATE METROLOGY BY USING OPENCV GPU FRAMEWORK URN (Paper): urn:nbn:de:gbv:ilm1-2014iwk-140:6 58 th ILMENAU SCIENTIFIC COLLOQUIUM Technische Universität Ilmenau, 08 12 September 2014 URN: urn:nbn:de:gbv:ilm1-2014iwk:3 ACCELERATION OF IMAGE RESTORATION

More information

A Bandwidth Effective Rendering Scheme for 3D Texture-based Volume Visualization on GPU

A Bandwidth Effective Rendering Scheme for 3D Texture-based Volume Visualization on GPU for 3D Texture-based Volume Visualization on GPU Won-Jong Lee, Tack-Don Han Media System Laboratory (http://msl.yonsei.ac.k) Dept. of Computer Science, Yonsei University, Seoul, Korea Contents Background

More information

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University

Motivation Hardware Overview Programming model. GPU computing. Part 1: General introduction. Ch. Hoelbling. Wuppertal University Part 1: General introduction Ch. Hoelbling Wuppertal University Lattice Practices 2011 Outline 1 Motivation 2 Hardware Overview History Present Capabilities 3 Programming model Past: OpenGL Present: CUDA

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 20

ECE 571 Advanced Microprocessor-Based Design Lecture 20 ECE 571 Advanced Microprocessor-Based Design Lecture 20 Vince Weaver http://www.eece.maine.edu/~vweaver vincent.weaver@maine.edu 12 April 2016 Project/HW Reminder Homework #9 was posted 1 Raspberry Pi

More information

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University

CSE 591/392: GPU Programming. Introduction. Klaus Mueller. Computer Science Department Stony Brook University CSE 591/392: GPU Programming Introduction Klaus Mueller Computer Science Department Stony Brook University First: A Big Word of Thanks! to the millions of computer game enthusiasts worldwide Who demand

More information

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics

Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Computer Graphics (CS 543) Lecture 1 (Part 1): Introduction to Computer Graphics Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) What is Computer Graphics (CG)? Computer

More information

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics

Graphics Hardware. Graphics Processing Unit (GPU) is a Subsidiary hardware. With massively multi-threaded many-core. Dedicated to 2D and 3D graphics Why GPU? Chapter 1 Graphics Hardware Graphics Processing Unit (GPU) is a Subsidiary hardware With massively multi-threaded many-core Dedicated to 2D and 3D graphics Special purpose low functionality, high

More information

CS 428: Fall Introduction to. OpenGL primer. Andrew Nealen, Rutgers, /13/2010 1

CS 428: Fall Introduction to. OpenGL primer. Andrew Nealen, Rutgers, /13/2010 1 CS 428: Fall 2010 Introduction to Computer Graphics OpenGL primer Andrew Nealen, Rutgers, 2010 9/13/2010 1 Graphics hardware Programmable {vertex, geometry, pixel} shaders Powerful GeForce 285 GTX GeForce480

More information

NVIDIA nfinitefx Engine: Programmable Pixel Shaders

NVIDIA nfinitefx Engine: Programmable Pixel Shaders NVIDIA nfinitefx Engine: Programmable Pixel Shaders The NVIDIA nfinitefx Engine: The NVIDIA nfinitefx TM engine gives developers the ability to program a virtually infinite number of special effects and

More information

Fast Image Segmentation and Smoothing Using Commodity Graphics Hardware

Fast Image Segmentation and Smoothing Using Commodity Graphics Hardware Fast Image Segmentation and Smoothing Using Commodity Graphics Hardware Ruigang Yang and Greg Welch Department of Computer Science University of North Carolina at Chapel Hill Chapel Hill, North Carolina

More information

CS427 Multicore Architecture and Parallel Computing

CS427 Multicore Architecture and Parallel Computing CS427 Multicore Architecture and Parallel Computing Lecture 6 GPU Architecture Li Jiang 2014/10/9 1 GPU Scaling A quiet revolution and potential build-up Calculation: 936 GFLOPS vs. 102 GFLOPS Memory Bandwidth:

More information

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS

GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS GPGPU, 1st Meeting Mordechai Butrashvily, CEO GASS Agenda Forming a GPGPU WG 1 st meeting Future meetings Activities Forming a GPGPU WG To raise needs and enhance information sharing A platform for knowledge

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Chapter 1 Introduction

Chapter 1 Introduction Graphics & Visualization Chapter 1 Introduction Graphics & Visualization: Principles & Algorithms Brief History Milestones in the history of computer graphics: 2 Brief History (2) CPU Vs GPU 3 Applications

More information

Direct Rendering of Trimmed NURBS Surfaces

Direct Rendering of Trimmed NURBS Surfaces Direct Rendering of Trimmed NURBS Surfaces Hardware Graphics Pipeline 2/ 81 Hardware Graphics Pipeline GPU Video Memory CPU Vertex Processor Raster Unit Fragment Processor Render Target Screen Extended

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

Cg 2.0. Mark Kilgard

Cg 2.0. Mark Kilgard Cg 2.0 Mark Kilgard What is Cg? Cg is a GPU shading language C/C++ like language Write vertex-, geometry-, and fragmentprocessing kernels that execute on massively parallel GPUs Productivity through a

More information

Lecture 2. Shaders, GLSL and GPGPU

Lecture 2. Shaders, GLSL and GPGPU Lecture 2 Shaders, GLSL and GPGPU Is it interesting to do GPU computing with graphics APIs today? Lecture overview Why care about shaders for computing? Shaders for graphics GLSL Computing with shaders

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

1.2.3 The Graphics Hardware Pipeline

1.2.3 The Graphics Hardware Pipeline Figure 1-3. The Graphics Hardware Pipeline 1.2.3 The Graphics Hardware Pipeline A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage receives its input from the prior

More information

CSE4030 Introduction to Computer Graphics

CSE4030 Introduction to Computer Graphics CSE4030 Introduction to Computer Graphics Dongguk University Jeong-Mo Hong Timetable 00:00~00:10 Introduction (English) 00:10~00:50 Topic 1 (English) 00:50~00:60 Q&A (English, Korean) 01:00~01:40 Topic

More information

ECE 571 Advanced Microprocessor-Based Design Lecture 18

ECE 571 Advanced Microprocessor-Based Design Lecture 18 ECE 571 Advanced Microprocessor-Based Design Lecture 18 Vince Weaver http://www.eece.maine.edu/ vweaver vincent.weaver@maine.edu 11 November 2014 Homework #4 comments Project/HW Reminder 1 Stuff from Last

More information

The Rasterization Pipeline

The Rasterization Pipeline Lecture 5: The Rasterization Pipeline (and its implementation on GPUs) Computer Graphics CMU 15-462/15-662, Fall 2015 What you know how to do (at this point in the course) y y z x (w, h) z x Position objects

More information

GPGPU introduction and network applications. PacketShaders, SSLShader

GPGPU introduction and network applications. PacketShaders, SSLShader GPGPU introduction and network applications PacketShaders, SSLShader Agenda GPGPU Introduction Computer graphics background GPGPUs past, present and future PacketShader A GPU-Accelerated Software Router

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Cg: A system for programming graphics hardware in a C-like language

Cg: A system for programming graphics hardware in a C-like language Cg: A system for programming graphics hardware in a C-like language William R. Mark University of Texas at Austin R. Steven Glanville NVIDIA Kurt Akeley NVIDIA and Stanford University Mark Kilgard NVIDIA

More information

Current Trends in Computer Graphics Hardware

Current Trends in Computer Graphics Hardware Current Trends in Computer Graphics Hardware Dirk Reiners University of Louisiana Lafayette, LA Quick Introduction Assistant Professor in Computer Science at University of Louisiana, Lafayette (since 2006)

More information

Rendering Subdivision Surfaces Efficiently on the GPU

Rendering Subdivision Surfaces Efficiently on the GPU Rendering Subdivision Surfaces Efficiently on the GPU Gy. Antal, L. Szirmay-Kalos and L. A. Jeni Department of Algorithms and their Applications, Faculty of Informatics, Eötvös Loránd Science University,

More information

ASYNCHRONOUS SHADERS WHITE PAPER 0

ASYNCHRONOUS SHADERS WHITE PAPER 0 ASYNCHRONOUS SHADERS WHITE PAPER 0 INTRODUCTION GPU technology is constantly evolving to deliver more performance with lower cost and lower power consumption. Transistor scaling and Moore s Law have helped

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Benchmarking is critical to make a design decision and measuring performance Performance evaluations: Design decisions Earlier time : analytical based evaluations From 90

More information

The Application Stage. The Game Loop, Resource Management and Renderer Design

The Application Stage. The Game Loop, Resource Management and Renderer Design 1 The Application Stage The Game Loop, Resource Management and Renderer Design Application Stage Responsibilities 2 Set up the rendering pipeline Resource Management 3D meshes Textures etc. Prepare data

More information

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany

Computing on GPUs. Prof. Dr. Uli Göhner. DYNAmore GmbH. Stuttgart, Germany Computing on GPUs Prof. Dr. Uli Göhner DYNAmore GmbH Stuttgart, Germany Summary: The increasing power of GPUs has led to the intent to transfer computing load from CPUs to GPUs. A first example has been

More information

Mattan Erez. The University of Texas at Austin

Mattan Erez. The University of Texas at Austin EE382V: Principles in Computer Architecture Parallelism and Locality Fall 2008 Lecture 10 The Graphics Processing Unit Mattan Erez The University of Texas at Austin Outline What is a GPU? Why should we

More information

Advanced Computer Graphics (CS & SE ) Lecture 7

Advanced Computer Graphics (CS & SE ) Lecture 7 Advanced Computer Graphics (CS & SE 233.420) Lecture 7 CREDITS Bill Mark, NVIDIA Programmable Graphics Technology, SIGGRAPH 2002 Course. David Kirk, GPUs and CPUs:The Uneasy Alliance, Panel Presentation,

More information

User Guide. NVIDIA Quadro FX 4700 X2 BY PNY Technologies Part No. VCQFX4700X2-PCIE-PB

User Guide. NVIDIA Quadro FX 4700 X2 BY PNY Technologies Part No. VCQFX4700X2-PCIE-PB NVIDIA Quadro FX 4700 X2 BY PNY Technologies Part No. VCQFX4700X2-PCIE-PB User Guide PNY Technologies, Inc. 299 Webro Rd. Parsippany, NJ 07054-0218 Tel: 408.567.5500 Fax: 408.855.0680 Features and specifications

More information

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS

REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS BeBeC-2014-08 REDUCING BEAMFORMING CALCULATION TIME WITH GPU ACCELERATED ALGORITHMS Steffen Schmidt GFaI ev Volmerstraße 3, 12489, Berlin, Germany ABSTRACT Beamforming algorithms make high demands on the

More information

Multimedia in Mobile Phones. Architectures and Trends Lund

Multimedia in Mobile Phones. Architectures and Trends Lund Multimedia in Mobile Phones Architectures and Trends Lund 091124 Presentation Henrik Ohlsson Contact: henrik.h.ohlsson@stericsson.com Working with multimedia hardware (graphics and displays) at ST- Ericsson

More information

Hardware-Assisted Relief Texture Mapping

Hardware-Assisted Relief Texture Mapping EUROGRAPHICS 0x / N.N. and N.N. Short Presentations Hardware-Assisted Relief Texture Mapping Masahiro Fujita and Takashi Kanai Keio University Shonan-Fujisawa Campus, Fujisawa, Kanagawa, Japan Abstract

More information

Rendering Grass with Instancing in DirectX* 10

Rendering Grass with Instancing in DirectX* 10 Rendering Grass with Instancing in DirectX* 10 By Anu Kalra Because of the geometric complexity, rendering realistic grass in real-time is difficult, especially on consumer graphics hardware. This article

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 12 PROGRAMMABLE SHADERS Announcement Programming Assignment #2 deadline next week: Session #7 Review of project proposals 2 Lecture Overview GPU programming 3 GPU Pipeline

More information

GPGPU. Peter Laurens 1st-year PhD Student, NSC

GPGPU. Peter Laurens 1st-year PhD Student, NSC GPGPU Peter Laurens 1st-year PhD Student, NSC Presentation Overview 1. What is it? 2. What can it do for me? 3. How can I get it to do that? 4. What s the catch? 5. What s the future? What is it? Introducing

More information

GPU Architecture and Function. Michael Foster and Ian Frasch

GPU Architecture and Function. Michael Foster and Ian Frasch GPU Architecture and Function Michael Foster and Ian Frasch Overview What is a GPU? How is a GPU different from a CPU? The graphics pipeline History of the GPU GPU architecture Optimizations GPU performance

More information

Programmable Graphics Processing Units for Urban Landscape Visualization

Programmable Graphics Processing Units for Urban Landscape Visualization Programmable Graphics Processing Units for Urban Landscape Visualization M. Kada, T. Balz, N. Haala, D. Fritsch Institute for Photogrammetry, Universität Stuttgart, Germany ABSTRACT: The availability of

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming 2 Common Uses for Computer Graphics Applications for real-time 3D graphics range from interactive games

More information

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University

Graphics Programming. Computer Graphics, VT 2016 Lecture 2, Chapter 2. Fredrik Nysjö Centre for Image analysis Uppsala University Graphics Programming Computer Graphics, VT 2016 Lecture 2, Chapter 2 Fredrik Nysjö Centre for Image analysis Uppsala University Graphics programming Typically deals with How to define a 3D scene with a

More information

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 7: Shading and Compute APIs 1 Markus Hadwiger, KAUST Reading Assignment #4 (until Feb. 23) Read (required): Programming Massively Parallel Processors book, Chapter

More information

Shaders (some slides taken from David M. course)

Shaders (some slides taken from David M. course) Shaders (some slides taken from David M. course) Doron Nussbaum Doron Nussbaum COMP 3501 - Shaders 1 Traditional Rendering Pipeline Traditional pipeline (older graphics cards) restricts developer to texture

More information

Models and Architectures

Models and Architectures Models and Architectures Objectives Learn the basic design of a graphics system Introduce graphics pipeline architecture Examine software components for an interactive graphics system 1 Image Formation

More information

CONSOLE ARCHITECTURE

CONSOLE ARCHITECTURE CONSOLE ARCHITECTURE Introduction Part 1 What is a console? Console components Differences between consoles and PCs Benefits of console development The development environment Console game design What

More information

NVIDIA FX Composer. Developer Presentation June 2004

NVIDIA FX Composer. Developer Presentation June 2004 NVIDIA FX Composer Developer Presentation June 2004 1 NVIDIA FX Composer FX Composer empowers developers to create high performance shaders in an integrated development environment with real-time preview

More information

VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION

VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION VTU QUESTION PAPER SOLUTION UNIT -1 INTRODUCTION 1. Briefly explain any two applications of computer graphics. (June 2012) 4M Ans: Applications of computer graphics are: Display Of Information Design Simulation

More information

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL

CS4621/5621 Fall Computer Graphics Practicum Intro to OpenGL/GLSL CS4621/5621 Fall 2015 Computer Graphics Practicum Intro to OpenGL/GLSL Professor: Kavita Bala Instructor: Nicolas Savva with slides from Balazs Kovacs, Eston Schweickart, Daniel Schroeder, Jiang Huang

More information

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York

API Background. Prof. George Wolberg Dept. of Computer Science City College of New York API Background Prof. George Wolberg Dept. of Computer Science City College of New York Objectives Graphics API history OpenGL API OpenGL function format Immediate Mode vs Retained Mode Examples The Programmer

More information

Siggraph Agenda. Usability & Productivity. FX Composer 2.5. Usability & Productivity 9/12/2008 9:16 AM

Siggraph Agenda. Usability & Productivity. FX Composer 2.5. Usability & Productivity 9/12/2008 9:16 AM Agenda Shader Debugger Performance Tools A New Generation of Performance Analysis and Shader Authoring Tools Chris Maughan & Jeffrey Kiel Usability & Productivity Increase productivity Refine usability

More information

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI.

CSCI 402: Computer Architectures. Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI. CSCI 402: Computer Architectures Parallel Processors (2) Fengguang Song Department of Computer & Information Science IUPUI 6.6 - End Today s Contents GPU Cluster and its network topology The Roofline performance

More information

Neural Network Implementation using CUDA and OpenMP

Neural Network Implementation using CUDA and OpenMP Neural Network Implementation using CUDA and OpenMP Honghoon Jang, Anjin Park, Keechul Jung Department of Digital Media, College of Information Science, Soongsil University {rollco82,anjin,kcjung}@ssu.ac.kr

More information

Comparing Reyes and OpenGL on a Stream Architecture

Comparing Reyes and OpenGL on a Stream Architecture Comparing Reyes and OpenGL on a Stream Architecture John D. Owens Brucek Khailany Brian Towles William J. Dally Computer Systems Laboratory Stanford University Motivation Frame from Quake III Arena id

More information

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes

Programmable GPUS. Last Time? Reading for Today. Homework 4. Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Last Time? Programmable GPUS Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes frame buffer depth buffer stencil buffer Stencil Buffer Homework 4 Reading for Create some geometry "Rendering

More information

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13

Lecture 1. Computer Graphics and Systems. Tuesday, January 15, 13 Lecture 1 Computer Graphics and Systems What is Computer Graphics? Image Formation Sun Object Figure from Ed Angel,D.Shreiner: Interactive Computer Graphics, 6 th Ed., 2012 Addison Wesley Computer Graphics

More information

Lecture 25: Board Notes: Threads and GPUs

Lecture 25: Board Notes: Threads and GPUs Lecture 25: Board Notes: Threads and GPUs Announcements: - Reminder: HW 7 due today - Reminder: Submit project idea via (plain text) email by 11/24 Recap: - Slide 4: Lecture 23: Introduction to Parallel

More information

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST

CS GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1. Markus Hadwiger, KAUST CS 380 - GPU and GPGPU Programming Lecture 2: Introduction; GPU Architecture 1 Markus Hadwiger, KAUST Reading Assignment #2 (until Feb. 17) Read (required): GLSL book, chapter 4 (The OpenGL Programmable

More information

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI

Tutorial on GPU Programming #2. Joong-Youn Lee Supercomputing Center, KISTI Tutorial on GPU Programming #2 Joong-Youn Lee Supercomputing Center, KISTI Contents Graphics Pipeline Vertex Programming Fragment Programming Introduction to Cg Language Graphics Pipeline The process to

More information

GPU Implementation of a Multiobjective Search Algorithm

GPU Implementation of a Multiobjective Search Algorithm Department Informatik Technical Reports / ISSN 29-58 Steffen Limmer, Dietmar Fey, Johannes Jahn GPU Implementation of a Multiobjective Search Algorithm Technical Report CS-2-3 April 2 Please cite as: Steffen

More information

Chapter 7 - Light, Materials, Appearance

Chapter 7 - Light, Materials, Appearance Chapter 7 - Light, Materials, Appearance Types of light in nature and in CG Shadows Using lights in CG Illumination models Textures and maps Procedural surface descriptions Literature: E. Angel/D. Shreiner,

More information

GPUs and GPGPUs. Greg Blanton John T. Lubia

GPUs and GPGPUs. Greg Blanton John T. Lubia GPUs and GPGPUs Greg Blanton John T. Lubia PROCESSOR ARCHITECTURAL ROADMAP Design CPU Optimized for sequential performance ILP increasingly difficult to extract from instruction stream Control hardware

More information

Windowing System on a 3D Pipeline. February 2005

Windowing System on a 3D Pipeline. February 2005 Windowing System on a 3D Pipeline February 2005 Agenda 1.Overview of the 3D pipeline 2.NVIDIA software overview 3.Strengths and challenges with using the 3D pipeline GeForce 6800 220M Transistors April

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 GPGPU History Current GPU Architecture OpenCL Framework Example Optimizing Previous Example Alternative Architectures 2 1996: 3Dfx Voodoo 1 First graphical (3D) accelerator for desktop

More information

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics. Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Tamar Shinar Computer Science & Engineering UC Riverside Raster Devices and Images Raster Devices Hearn, Baker, Carithers Raster Display Transmissive vs. Emissive Display anode

More information

WaveView. System Requirement V6. Reference: WST Page 1. WaveView System Requirements V6 WST

WaveView. System Requirement V6. Reference: WST Page 1. WaveView System Requirements V6 WST WaveView System Requirement V6 Reference: WST-0125-01 www.wavestore.com Page 1 WaveView System Requirements V6 Copyright notice While every care has been taken to ensure the information contained within

More information

Could you make the XNA functions yourself?

Could you make the XNA functions yourself? 1 Could you make the XNA functions yourself? For the second and especially the third assignment, you need to globally understand what s going on inside the graphics hardware. You will write shaders, which

More information

Developer Tools. Robert Strzodka. caesar research center Bonn, Germany

Developer Tools. Robert Strzodka. caesar research center Bonn, Germany Developer Tools Bonn, Germany Choices in GPU Programming Application e.g. in C/C++, Java, Fortran, Perl Window manager e.g. GLUT, Qt, Win32, Motif Operating Graphics system hardware e.g. e.g. Windows,

More information

What s New with GPGPU?

What s New with GPGPU? What s New with GPGPU? John Owens Assistant Professor, Electrical and Computer Engineering Institute for Data Analysis and Visualization University of California, Davis Microprocessor Scaling is Slowing

More information

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary

Cornell University CS 569: Interactive Computer Graphics. Introduction. Lecture 1. [John C. Stone, UIUC] NASA. University of Calgary Cornell University CS 569: Interactive Computer Graphics Introduction Lecture 1 [John C. Stone, UIUC] 2008 Steve Marschner 1 2008 Steve Marschner 2 NASA University of Calgary 2008 Steve Marschner 3 2008

More information

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation

Lecture 5 Vertex and Fragment Shaders-1. CITS3003 Graphics & Animation Lecture 5 Vertex and Fragment Shaders-1 CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives The rendering pipeline and the shaders Data

More information

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT

2: Introducing image synthesis. Some orientation how did we get here? Graphics system architecture Overview of OpenGL / GLU / GLUT COMP27112 Computer Graphics and Image Processing 2: Introducing image synthesis Toby.Howard@manchester.ac.uk 1 Introduction In these notes we ll cover: Some orientation how did we get here? Graphics system

More information

1. Introduction 2. Methods for I/O Operations 3. Buses 4. Liquid Crystal Displays 5. Other Types of Displays 6. Graphics Adapters 7.

1. Introduction 2. Methods for I/O Operations 3. Buses 4. Liquid Crystal Displays 5. Other Types of Displays 6. Graphics Adapters 7. 1. Introduction 2. Methods for I/O Operations 3. Buses 4. Liquid Crystal Displays 5. Other Types of Displays 6. Graphics Adapters 7. Optical Discs 1 Structure of a Graphics Adapter Video Memory Graphics

More information

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express

Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Shader Series Primer: Fundamentals of the Programmable Pipeline in XNA Game Studio Express Level: Intermediate Area: Graphics Programming Summary This document is an introduction to the series of samples,

More information

Programmable Graphics Hardware

Programmable Graphics Hardware Programmable Graphics Hardware Outline 2/ 49 A brief Introduction into Programmable Graphics Hardware Hardware Graphics Pipeline Shading Languages Tools GPGPU Resources Hardware Graphics Pipeline 3/ 49

More information

From Brook to CUDA. GPU Technology Conference

From Brook to CUDA. GPU Technology Conference From Brook to CUDA GPU Technology Conference A 50 Second Tutorial on GPU Programming by Ian Buck Adding two vectors in C is pretty easy for (i=0; i

More information

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1

Programmable GPUs. Real Time Graphics 11/13/2013. Nalu 2004 (NVIDIA Corporation) GeForce 6. Virtua Fighter 1995 (SEGA Corporation) NV1 Programmable GPUs Real Time Graphics Virtua Fighter 1995 (SEGA Corporation) NV1 Dead or Alive 3 2001 (Tecmo Corporation) Xbox (NV2A) Nalu 2004 (NVIDIA Corporation) GeForce 6 Human Head 2006 (NVIDIA Corporation)

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives

Early History of APIs. PHIGS and X. SGI and GL. Programming with OpenGL Part 1: Background. Objectives Programming with OpenGL Part 1: Background Early History of APIs Objectives Development of the OpenGL API OpenGL Architecture - OpenGL as a state machine Functions - Types -Formats Simple program IFIPS

More information

Scanline Rendering 2 1/42

Scanline Rendering 2 1/42 Scanline Rendering 2 1/42 Review 1. Set up a Camera the viewing frustum has near and far clipping planes 2. Create some Geometry made out of triangles 3. Place the geometry in the scene using Transforms

More information

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012

CS450/550. Pipeline Architecture. Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 CS450/550 Pipeline Architecture Adapted From: Angel and Shreiner: Interactive Computer Graphics6E Addison-Wesley 2012 0 Objectives Learn the basic components of a graphics system Introduce the OpenGL pipeline

More information

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico

Programming with OpenGL Part 3: Shaders. Ed Angel Professor of Emeritus of Computer Science University of New Mexico Programming with OpenGL Part 3: Shaders Ed Angel Professor of Emeritus of Computer Science University of New Mexico 1 Objectives Simple Shaders - Vertex shader - Fragment shaders Programming shaders with

More information