Suitability of the parametric model RPV to assess canopy structure and heterogeneity from multi-angular CHRIS-PROBA data

Size: px
Start display at page:

Download "Suitability of the parametric model RPV to assess canopy structure and heterogeneity from multi-angular CHRIS-PROBA data"

Transcription

1 Suitability of the parametric model RPV to assess canopy structure and heterogeneity from multi-angular CHRIS-PROBA data B. Koetz a*, J.-L. Widlowski b, F. Morsdorf a,, J. Verrelst c, M. Schaepman c and M. Kneubühler a

2 Outline of the talk Motivation & Background RPV model Site description LIDAR derived 3D canopy structure CHRIS acquisitions Geometric & Atmospheric Pre-Processing Quantification of the HDRF Anisotropy inversion of the RPV model Assessment of Canopy Structure & Heterogeneity Results & Interpretation Important Factors affecting the RPV inversion Conclusion and Outlook

3 Motivation & Background CHRIS/Proba observes the vegetation surface in the spectral & directional information dimension spectral dimension: optical properties (biophysical parameters, Species) directional dimension: canopy structure, heterogeneity Anisotropy of surface reflectance diagnostic for canopy structure RPV model describes degree of anisotropy prerequisite: high contrast between (bright) background & canopy Minnaert function parameter k can be related to canopy structure and/or within pixel heterogeneity

4 Anisotropy to assess Heterogeneity I. Homogeneous Bowl-shape IPA k=0.65 BRF=0.78 II. Heterogeneous 3-D k=1.18 BRF=0.26 Bell-shape Pinty et al. 2002

5 The RPV parametric model Rahman, Pinty & Verstraete, 1993: RPV model: ρ0: controls amplitude k (Minnaert function): controls bowl/bell shape Θ : controls forward/backward scattering ρc: controls hot spot peak k>1.0 = bell shape BRF = f ( Sun( Z, A),View(Z,A),ρ 0,k,θ,ρ ) c k<1.0 = bowl shape Rahman et al., 1993

6 Site description Test Site is located in the Swiss National Park boreal vegetation type dominated by mountain pine trees species: pinus montana spec., Larix height range of MSL

7 Small Footprint LIDAR data set First Pulse Last Pulse Field Data Site Area Height [a.s.l.] Point Density Grid Spacing Height Res. 14 km2 850 m ~ 10/m2 1m 0.1 m 0.6 km2 500 m ~ 20/m2 0.5 m 0.1m

8 LIDAR Description of the Canopy Heterogeneity Small footprint LIDAR data can provide canopy structure information in a spatial context Position [x,y], Tree height, Crown geometry (Morsdorf et al. 2004) higher level parameter: fcover, LAI (Morsdorf et al. 2006) Description of 3D-canopy structure: Stem density, effective scene height segmented LIDAR data Geometric representation

9 CHRIS acquisitions multi- temporal Data takes: Swiss National Park 11 data takes (5 in winter, 6 in summer) December January 2006 Mode 3: spatial resolution: 18 m,18 Bands, nm, 5 view angels Winter Observation geometry: 17th February, 2004 (SZA: 59.7 ) # &&# &#,-.!/*(0)! 1 $+0$&!!!/2**1 )0&!!/2&%1!%0*(!!!/#1 &0*+!!/!&%1 &## %# )#!!#!!$#!!%# (# $# '# '# '*# '+#

10 Parameteric Orthorectification and Atmospheric Correction CHRIS (+55 ) CHRIS (+36 ) CHRIS (0 ) CHRIS (-36 ) CHRIS (-55 ) Geocorrection: PCI/ OrthoEngine Orbit and Sensor Parameterization Digital Elevation Model Illumination geometry Atmospheric correction: ATCOR III CHRIS- HDRF Kneubühler et al. 2005

11 Quantification of the HDRF Anisotropy: RPV Inversion RPV inversion (Gobron & Lajas, 2002): fitting of RPV model BRF simulation to CHRIS HDRF 4 view angles, red band (631 nm) measured HDRF assumed to be comparable to simulated BRF Inversion solution: RPV parameter set of best fit considering uncertainty of retrieval performance '# * $' $&! $& $#! ()*+,- %$% %$! % =3)0 '!& %!!9% 89:( $# $%! $% $! $<! $< $;! *01-2*/!%!$! #!./ !#!!! $;! #!!#!./ !!!#!!!#!$!%!& ' '# ()*+,-).*/

12 Interpretation of the Minnaert Parameter k Minnaert parameter k related to 3D canopy structure horizontal/vertical proxies derived from LIDAR observations bowl shape: sparse and very dense/closed canopies bell shape: medium density canopies Widlowski et al., 2004! Minnaert parameter k derived from CHRIS HDRF $ * ) %@& ;-61/-<<-8,3=-/28-1-/>-3?>,/9.: ( ' & # $ %!@&! +,-./0-123,4/5/1-67-2,/,7--/032,618-/92,-.5.$:

13 Assessment of Canopy Structure & Heterogeneity Map of k-parameter: spatial distribution of anisotropy Differentiation of two surface types: snow and forest k<1.0 in forest caused by: closed canopies adjacent (brighter) targets Pixels are excluded if: slope > 10 inversion uncertainty > 10% ()*+,- =3)0 $' %$% $&! %$! $& % 89:( $#! $# $<! $%! $< $% $;! $!! #!!#!./ !! $;! #!!#!./ !! Minnaert parameter k

14 Important Factors affecting the anisotropy interpretation In current data set the expected pattern of the k-parameter cannot be clearly distinguished Identification of key parameters affecting the RPV inversion acquisition of the ideal data set : complete, symmetric view angles in the orthogonal plane, low SZA, snow cover, over flat terrain ideal case flat terrain optimal illumination (SZA<60 ) symmetric view angles perfect geolocation perfect atmospheric correction balanced horizontal radiation fluxes Reality 3D topography changing (high) sun zenith changing/incomplete view angles geolocation errors between view angles (different targets in FOV) Difference between BRF and HDRF optimal pixel size >30 m for heterogeneous canopies

15 Towards a ideal data set CHRIS observations over a boreal forest with SZA<60 and snow cover timing of observation important: days in spring 80 Annual variation of sun zenith angle Sun zenith angle [ ] SNP BOREAS DOY Snow coverage

16 Towards a ideal data set CHRIS observations over a boreal forest with SZA<60 and snow cover timing of observation important: days in spring 80 Annual variation of sun zenith angle $# 73).5)8-0,70-.* SZA: 24 $# 936:;/;.-0,70-.* 70 $' <,.= >?!,.= $' <,.= >?!,.= 60 3*40*56-.5* $& $% 3*40*56-.5* $& $% Sun zenith angle [ ] 50 $! $! 40!!!# #! ()*+,-./0*,1 2!!!# #! ()*+,-./0*, SNP BOREAS DOY Snow coverage

17 Towards a ideal data set CHRIS observations over a boreal forest with SZA<60 and snow cover timing of observation important: days in spring 80 Annual variation of sun zenith angle $# 73).5)8-0,70-.* SZA:71 $'# 936:;/;.-0,70-.* 70 $' <,.= >?!,.= $' $&# <,.= >?!,.= 60 3*40*56-.5* $& $% $! 3*40*56-.5* $& $%# $% $!# $! $# Sun zenith angle [ ] 50 40!!!# #! ()*+,-./0*,1 2!!!# #! ()*+,-./0*, SNP BOREAS DOY Snow coverage

18 Towards a ideal data set CHRIS observations over a boreal forest with SZA<60 and snow cover timing of observation important: days in spring 80 Annual variation of sun zenith angle 1(2.(34+,3( $% $!# $! $# <1',3'=+.*<.+,(* 1(2.(34+,3( $% $!# $! $# >14?@-@,+.*<.+,(* 567* *#9 567*:!9 567*:#9 567*;!9 Sun zenith angle [ ] !!!# #! &'()*+,-.(*/ 0!!!# #! &'()*+,-.(*/ 0 30 SNP BOREAS DOY Snow coverage

19 Conclusions Proposed approach for canopy structure assessment principally possible over boreal forests separation of homogenous / heterogeneous surface types bell shape anisotropy generally observed for forest canopies Several factors have to be considered: timing to ensure illumination and background contrast (snow) Terrain correction if necessary complete & symmetric view angles Outlook: further analysis of the k-parameter against simpler proxies: fcover Further study of uncertainties of RPV inversion to identify error sources (new inversion algorithm available)

20 Additional Studies CHRIS observations for Forest Fire Risk monitoring New Category 1 proposal Assessing the Angular Variability of Broadband and Narrowband Vegetation Indices Using CHRIS/PROBA Data Jochem Verrelst Co-workers: B. Koetz M. Kneubühler M. Schaepman European Integrated Project for Forest Fire Management NASA research project for 3D canopy assessment: Model Inversion of The Laboratory for Multiple-Sensor Data for Forest Biophysical Parameters Retrieval, PI: Terrestrial Physics Gouqing Sun, Co-I: Jon Ranson, Dan Kimes, Benjamin Koetz 2002 Annual Report

CHRIS / PROBA Data Analysis at the Swiss Midlands Testsite

CHRIS / PROBA Data Analysis at the Swiss Midlands Testsite CHRIS / PROBA Data Analysis at the Swiss Midlands Testsite 4th CHRIS / PROBA Workshop Frascati 19-21 September 2006 Mathias Kneubühler, RSL, Univ. Zürich, CH Benjamin Koetz, Silvia Huber, Juerg Schopfer,

More information

Estimating forest parameters from top-of-atmosphere radiance data

Estimating forest parameters from top-of-atmosphere radiance data Estimating forest parameters from top-of-atmosphere radiance data V. Laurent*, W. Verhoef, J. Clevers, M. Schaepman *Contact: valerie.laurent@wur.nl Guest lecture, RS course, 8 th Decembre, 2010 Contents

More information

Forest Structure Estimation in the Canadian Boreal forest

Forest Structure Estimation in the Canadian Boreal forest Forest Structure Estimation in the Canadian Boreal forest Michael L. Benson Leland E.Pierce Kathleen M. Bergen Kamal Sarabandi Kailai Zhang Caitlin E. Ryan The University of Michigan, Radiation Lab & School

More information

Fundamentals of remote sensing and direct modelling. Michel M. Verstraete Ispra, 31 July 2006

Fundamentals of remote sensing and direct modelling. Michel M. Verstraete Ispra, 31 July 2006 Fundamentals of remote sensing and direct modelling Michel M. Verstraete spra, 31 July 2006 General outline Lecture 1: Fundamentals of remote sensing and direct modelling Basic principles Anisotropy and

More information

The influence of DEM characteristics on preprocessing of DAIS/ROSIS data in high altitude alpine terrain

The influence of DEM characteristics on preprocessing of DAIS/ROSIS data in high altitude alpine terrain The influence of DEM characteristics on preprocessing of DAIS/ROSIS data in high altitude alpine terrain Daniel Schläpfer, Benjamin Koetz, Stephan Gruber, Felix Morsdorf Remote Sensing Laboratories (RSL),

More information

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR)

Airborne LiDAR Data Acquisition for Forestry Applications. Mischa Hey WSI (Corvallis, OR) Airborne LiDAR Data Acquisition for Forestry Applications Mischa Hey WSI (Corvallis, OR) WSI Services Corvallis, OR Airborne Mapping: Light Detection and Ranging (LiDAR) Thermal Infrared Imagery 4-Band

More information

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval

Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Optical Theory Basics - 2 Atmospheric corrections and parameter retrieval Jose Moreno 3 September 2007, Lecture D1Lb2 OPTICAL THEORY-FUNDAMENTALS (2) Radiation laws: definitions and nomenclature Sources

More information

Linking sun-induced fluorescence and photosynthesis in a forest ecosystem

Linking sun-induced fluorescence and photosynthesis in a forest ecosystem Linking sun-induced fluorescence and photosynthesis in a forest ecosystem COST ES1309 Tagliabue G, Panigada C, Dechant B, Celesti M, Cogliati S, Colombo R, Julitta T, Meroni M, Schickling A, Schuettemeyer

More information

Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies

Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 39, NO. 9, SEPTEMBER 2001 1943 Modeling Lidar Waveforms in Heterogeneous and Discrete Canopies Wenge Ni-Meister, David L. B. Jupp, and Ralph Dubayah

More information

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS

CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS CLASSIFICATION OF NONPHOTOGRAPHIC REMOTE SENSORS PASSIVE ACTIVE DIGITAL CAMERA THERMAL (e.g. TIMS) VIDEO CAMERA MULTI- SPECTRAL SCANNERS VISIBLE & NIR MICROWAVE HYPERSPECTRAL (e.g. AVIRIS) SLAR Real Aperture

More information

INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA

INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA INTEGRATION OF TREE DATABASE DERIVED FROM SATELLITE IMAGERY AND LIDAR POINT CLOUD DATA S. C. Liew 1, X. Huang 1, E. S. Lin 2, C. Shi 1, A. T. K. Yee 2, A. Tandon 2 1 Centre for Remote Imaging, Sensing

More information

Airborne Laser Scanning: Remote Sensing with LiDAR

Airborne Laser Scanning: Remote Sensing with LiDAR Airborne Laser Scanning: Remote Sensing with LiDAR ALS / LIDAR OUTLINE Laser remote sensing background Basic components of an ALS/LIDAR system Two distinct families of ALS systems Waveform Discrete Return

More information

CONCEPT FOR FOREST PARAMETER ESTIMATION BASED ON COMBINED IMAGING SPECTROMETER AND LIDAR DATA

CONCEPT FOR FOREST PARAMETER ESTIMATION BASED ON COMBINED IMAGING SPECTROMETER AND LIDAR DATA EARSeL 4th Workshop on Imaging Spectroscopy 1 CONCEPT FOR FOREST PARAMETER ESTIMATION BASED ON COMBINED IMAGING SPECTROMETER AND LIDAR DATA Benjamin Koetz 1, Felix Morsdorf 1 Mathias Kneubühler 1, Klaus

More information

THREE-DIMENSIONAL FOREST CANOPY STRUCTURE FROM TERRESTRIAL LASER SCANNING

THREE-DIMENSIONAL FOREST CANOPY STRUCTURE FROM TERRESTRIAL LASER SCANNING Workshop on 3D Remote Sensing in Forestry, 14 th -15 th Feb. 2006, Vienna Session 2b 50 THREE-DIMENSIONAL FOREST CANOPY STRUCTURE FROM TERRESTRIAL LASER SCANNING F. Mark Danson 1, David Hetherington 1,

More information

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering

Class 11 Introduction to Surface BRDF and Atmospheric Scattering. Class 12/13 - Measurements of Surface BRDF and Atmospheric Scattering University of Maryland Baltimore County - UMBC Phys650 - Special Topics in Experimental Atmospheric Physics (Spring 2009) J. V. Martins and M. H. Tabacniks http://userpages.umbc.edu/~martins/phys650/ Class

More information

ANGULAR UNMIXING OF PHOTOSYNTHETIC AND NON-PHOTOSYNTHETIC VEGETATION WITHIN A CONIFEROUS FOREST USING CHRIS-PROBA

ANGULAR UNMIXING OF PHOTOSYNTHETIC AND NON-PHOTOSYNTHETIC VEGETATION WITHIN A CONIFEROUS FOREST USING CHRIS-PROBA ANGULAR UNMIXING OF PHOTOSYNTHETIC AND NON-PHOTOSYNTHETIC VEGETATION WITHIN A CONIFEROUS FOREST USING CHRIS-PROBA J. Verrelst a, *, R. Zurita-Milla a, B. Koetz b, J.G.P.W. Clevers a, M.E. Schaepman a a

More information

TOPOGRAPHIC NORMALIZATION INTRODUCTION

TOPOGRAPHIC NORMALIZATION INTRODUCTION TOPOGRAPHIC NORMALIZATION INTRODUCTION Use of remotely sensed data from mountainous regions generally requires additional preprocessing, including corrections for relief displacement and solar illumination

More information

Remote Sensing Introduction to the course

Remote Sensing Introduction to the course Remote Sensing Introduction to the course Remote Sensing (Prof. L. Biagi) Exploitation of remotely assessed data for information retrieval Data: Digital images of the Earth, obtained by sensors recording

More information

Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004

Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 Analysis of BRDF and Albedo Properties of Pure and Mixed Surface Types From Terra MISR Using Landsat High-Resolution Land Cover and Angular Unmixing Technique K.Khlopenkov and A.P. Trishchenko, Canada

More information

Forest canopy gap fraction from terrestrial laser scanning

Forest canopy gap fraction from terrestrial laser scanning Forest canopy gap fraction from terrestrial laser scanning Danson, FM, Hetherington, D, Morsdorf, F and et, al http://dx.doi.org/10.1109/lgrs.2006.887064 Title Authors Type URL Forest canopy gap fraction

More information

Optical/Thermal: Principles & Applications

Optical/Thermal: Principles & Applications Optical/Thermal: Principles & Applications Jose F. Moreno University of Valencia, Spain Jose.Moreno@uv.es Lecture D1T2 1 July 2013 23/07/2013 1 OPTICAL PRINCIPLES AND APPLICATIONS Information content of

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax

Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD (301) (301) fax Dr. Larry J. Paxton Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 (301) 953-6871 (301) 953-6670 fax Understand the instrument. Be able to convert measured counts/pixel on-orbit into

More information

DUAL FIELD-OF-VIEW GONIOMETER SYSTEM FIGOS

DUAL FIELD-OF-VIEW GONIOMETER SYSTEM FIGOS DUAL FIELD-OF-VIEW GONIOMETER SYSTEM FIGOS J.T. Schopfer*, S. Dangel, M. Kneubühler, K.I. Itten Remote Sensing Laboratories (RSL), Departement of Geography, University of Zurich, Winterthurerstrasse 190,

More information

An Introduction to Lidar & Forestry May 2013

An Introduction to Lidar & Forestry May 2013 An Introduction to Lidar & Forestry May 2013 Introduction to Lidar & Forestry Lidar technology Derivatives from point clouds Applied to forestry Publish & Share Futures Lidar Light Detection And Ranging

More information

SENSITIVITY ANALYSIS OF COMPOSITING STRATEGIES : MODELLING AND EXPERIMENTAL INVESTIGATIONS

SENSITIVITY ANALYSIS OF COMPOSITING STRATEGIES : MODELLING AND EXPERIMENTAL INVESTIGATIONS Université Catholique de Louvain Department of Environmental Sciences Louvain-la-Neuve, BELGIUM Vlaamse Instelling voor Technologisch Onderzoek Centre for Teledetection and Atmospheric Processes Mol, BELGIUM

More information

TOWARDS A COMPARISON OF SPACEBORNE AND GROUND-BASED SPECTRODIRECTIONAL REFLECTANCE DATA

TOWARDS A COMPARISON OF SPACEBORNE AND GROUND-BASED SPECTRODIRECTIONAL REFLECTANCE DATA TOWARDS A COMPARISON OF SPACEBORNE AND GROUND-BASED SPECTRODIRECTIONAL REFLECTANCE DATA J. Schopfer (1), S. Huber (1), D. Odermatt (1), T. Schneider (2), W. Dorigo (3), N. Oppelt (4), B. Koetz (1), M.

More information

Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management

Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management Integration of airborne LiDAR and hyperspectral remote sensing data to support the Vegetation Resources Inventory and sustainable forest management Executive Summary This project has addressed a number

More information

DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces

DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces 2 DART: A 3D Model for Remote Sensing Images and Radiative Budget of Earth Surfaces J.P. Gastellu-Etchegorry, E. Grau and N. Lauret CESBIO - CNES, CNRS (UMR 5126), IRD, Université de Toulouse, Toulouse,

More information

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle

The Gain setting for Landsat 7 (High or Low Gain) depends on: Sensor Calibration - Application. the surface cover types of the earth and the sun angle Sensor Calibration - Application Station Identifier ASN Scene Center atitude 34.840 (34 3'0.64"N) Day Night DAY Scene Center ongitude 33.03270 (33 0'7.72"E) WRS Path WRS Row 76 036 Corner Upper eft atitude

More information

CHRIS Proba Workshop 2005 II

CHRIS Proba Workshop 2005 II CHRIS Proba Workshop 25 Analyses of hyperspectral and directional data for agricultural monitoring using the canopy reflectance model SLC Progress in the Upper Rhine Valley and Baasdorf test-sites Dr.

More information

Characterising Vegetation Structure Using MODIS Multi- Angular Data

Characterising Vegetation Structure Using MODIS Multi- Angular Data Characterising Vegetation Structure Using MODIS Multi- Angular Data The impact of variations in the size of pixels ground IFOV on MODIS BRDF modelling A thesis submitted in fulfilment of the requirements

More information

SPEEDING UP THE SIMULATION OF VEGETATION FLUORESCENCE THROUGH EMULATION: PRACTICAL APPLICATIONS FOR FLEX DATA PROCESSING

SPEEDING UP THE SIMULATION OF VEGETATION FLUORESCENCE THROUGH EMULATION: PRACTICAL APPLICATIONS FOR FLEX DATA PROCESSING SPEEDING UP THE SIMULATION OF VEGETATION FLUORESCENCE THROUGH EMULATION: PRACTICAL APPLICATIONS FOR FLEX DATA PROCESSING Jochem Verrelst, Juan Pablo Rivera & Jose Moreno Image Processing Laboratory, Univ.

More information

An Analytical Hybrid GORT Model for Bidirectional Reflectance Over Discontinuous Plant Canopies

An Analytical Hybrid GORT Model for Bidirectional Reflectance Over Discontinuous Plant Canopies IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL 37, NO 2, MARCH 1999 987 An Analytical Hybrid GORT Model for Bidirectional Reflectance Over Discontinuous Plant Canopies Wenge Ni, Member, IEEE,

More information

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene

Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Geometric Accuracy Evaluation, DEM Generation and Validation for SPOT-5 Level 1B Stereo Scene Buyuksalih, G.*, Oruc, M.*, Topan, H.*,.*, Jacobsen, K.** * Karaelmas University Zonguldak, Turkey **University

More information

MERIS solar diffuser BRDF modelling. Gerhard Meister and Ewa Kwiatkowska

MERIS solar diffuser BRDF modelling. Gerhard Meister and Ewa Kwiatkowska MERIS solar diffuser BRDF modelling Gerhard Meister and Ewa Kwiatkowska MERIS QWG-27 meeting, 12-14 June, 2013 Motivation for the solar diffuser model reanalysis MERIS radiometric gains display a seasonal

More information

Optimizing LUT-based RTM inversion for retrieval of biophysical parameters

Optimizing LUT-based RTM inversion for retrieval of biophysical parameters Optimizing LUT-based RTM inversion for retrieval of biophysical parameters Jochem Verrelst 1, Juan Pablo Rivera 1, Anna Leoneko 2, Luis Alonso 1, Jose Moreno 1 1 : University of Valencia, Spain 2 : Swansea

More information

Overview of MOLI data product (MOLI: Multi-footprint Observation Lidar and Imager)

Overview of MOLI data product (MOLI: Multi-footprint Observation Lidar and Imager) Overview of MOLI data product (MOLI: Multi-footprint Observation Lidar and Imager) Jan 7, 2016 JAXA Jumpei Murooka 1 Contents 1. Mission instruments: MOLI 2. Standard products of MOLI 3. Lidar product

More information

Small-footprint full-waveform airborne LiDAR for habitat assessment in the ChangeHabitats2 project

Small-footprint full-waveform airborne LiDAR for habitat assessment in the ChangeHabitats2 project Small-footprint full-waveform airborne LiDAR for habitat assessment in the ChangeHabitats2 project Werner Mücke, András Zlinszky, Sharif Hasan, Martin Pfennigbauer, Hermann Heilmeier and Norbert Pfeifer

More information

Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes

Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes Remote Sensing of Environment 107 (2007) 362 375 www.elsevier.com/locate/rse Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes Thomas Lavergne a, Thomas

More information

The portable Finnish Geodetic Institute Field Goniospectrometer. Maria Gritsevich, Jouni Peltoniemi, Teemu Hakala and Juha Suomalainen

The portable Finnish Geodetic Institute Field Goniospectrometer. Maria Gritsevich, Jouni Peltoniemi, Teemu Hakala and Juha Suomalainen The portable Finnish Geodetic Institute Field Goniospectrometer Maria Gritsevich, Jouni Peltoniemi, Teemu Hakala and Juha Suomalainen Finnish Geodetic Institute Governmental research institute scientific

More information

A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture

A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture 1316 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 35, NO. 5, SEPTEMBER 1997 A Four-Scale Bidirectional Reflectance Model Based on Canopy Architecture Jing M. Chen and Sylvain G. Leblanc Abstract

More information

Quality assessment of RS data. Remote Sensing (GRS-20306)

Quality assessment of RS data. Remote Sensing (GRS-20306) Quality assessment of RS data Remote Sensing (GRS-20306) Quality assessment General definition for quality assessment (Wikipedia) includes evaluation, grading and measurement process to assess design,

More information

THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS

THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS THE USE OF AIRBORNE HYPERSPECTRAL REFLECTANCE DATA TO CHARACTERIZE FOREST SPECIES DISTRIBUTION PATTERNS Weihs, P., Huber K. Institute of Meteorology, Department of Water, Atmosphere and Environment, BOKU

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford

Lidar and GIS: Applications and Examples. Dan Hedges Clayton Crawford Lidar and GIS: Applications and Examples Dan Hedges Clayton Crawford Outline Data structures, tools, and workflows Assessing lidar point coverage and sample density Creating raster DEMs and DSMs Data area

More information

Remote Sensing of Snow

Remote Sensing of Snow Remote Sensing of Snow Remote Sensing Basics A definition: The inference of an area s or object s physical characteristics by distant detection of the range of electromagnetic radiation it reflects and/or

More information

AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS J. Tao *, G. Palubinskas, P. Reinartz German Aerospace Center DLR, 82234 Oberpfaffenhofen,

More information

Navigation for Future Space Exploration Missions Based on Imaging LiDAR Technologies. Alexandre Pollini Amsterdam,

Navigation for Future Space Exploration Missions Based on Imaging LiDAR Technologies. Alexandre Pollini Amsterdam, Navigation for Future Space Exploration Missions Based on Imaging LiDAR Technologies Alexandre Pollini Amsterdam, 12.11.2013 Presentation outline The needs: missions scenario Current benchmark in space

More information

Coherence Based Polarimetric SAR Tomography

Coherence Based Polarimetric SAR Tomography I J C T A, 9(3), 2016, pp. 133-141 International Science Press Coherence Based Polarimetric SAR Tomography P. Saranya*, and K. Vani** Abstract: Synthetic Aperture Radar (SAR) three dimensional image provides

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Charles Werner Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents Aim is to obtain a deeper understanding of what

More information

GEOG 4110/5100 Advanced Remote Sensing Lecture 4

GEOG 4110/5100 Advanced Remote Sensing Lecture 4 GEOG 4110/5100 Advanced Remote Sensing Lecture 4 Geometric Distortion Relevant Reading: Richards, Sections 2.11-2.17 Review What factors influence radiometric distortion? What is striping in an image?

More information

DIGITAL HEIGHT MODELS BY CARTOSAT-1

DIGITAL HEIGHT MODELS BY CARTOSAT-1 DIGITAL HEIGHT MODELS BY CARTOSAT-1 K. Jacobsen Institute of Photogrammetry and Geoinformation Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de KEY WORDS: high resolution space image,

More information

Ground-based estimates of foliage cover and LAI: lessons learned, results and implications

Ground-based estimates of foliage cover and LAI: lessons learned, results and implications 17 th June, 2014 Ground-based estimates of foliage cover and LAI: lessons learned, results and implications William Woodgate william.woodgate@rmit.edu.au Contents Background Part 1 Fieldwork (Completed

More information

Radiometric Correction. Lecture 4 February 5, 2008

Radiometric Correction. Lecture 4 February 5, 2008 Radiometric Correction Lecture 4 February 5, 2008 Procedures of image processing Preprocessing Radiometric correction is concerned with improving the accuracy of surface spectral reflectance, emittance,

More information

Hyperspectral CHRIS Proba imagery over the area of Frascati and Tor Vergata: recent advances on radiometric correction and atmospheric calibration

Hyperspectral CHRIS Proba imagery over the area of Frascati and Tor Vergata: recent advances on radiometric correction and atmospheric calibration 4th CHRIS Proba workshop, 19 Semptember 2006 Tor Vergata University, Rome Hyperspectral CHRIS Proba imagery over the area of Frascati and Tor Vergata: recent advances on radiometric correction and atmospheric

More information

THE POTENTIAL OF SPECTRODIRECTIONAL CHRIS/PROBA DATA FOR BIOCHEMISTRY ESTIMATION

THE POTENTIAL OF SPECTRODIRECTIONAL CHRIS/PROBA DATA FOR BIOCHEMISTRY ESTIMATION THE POTENTIAL OF SPECTRODIRECTIONAL CHRIS/PROBA DATA FOR BIOCHEMISTRY ESTIMATION S. Huber (1), M. Kneubuehler (1), B. Koetz (1), J.T. Schopfer (1), N.E. Zimmermann (2) and K.I. Itten (1) (1) RSL, Dept.

More information

Improvements to the SHDOM Radiative Transfer Modeling Package

Improvements to the SHDOM Radiative Transfer Modeling Package Improvements to the SHDOM Radiative Transfer Modeling Package K. F. Evans University of Colorado Boulder, Colorado W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center

More information

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM

DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM DEVELOPMENT OF CLOUD AND SHADOW FREE COMPOSITING TECHNIQUE WITH MODIS QKM Wataru Takeuchi Yoshifumi Yasuoka Institute of Industrial Science, University of Tokyo, Japan 6-1, Komaba 4-chome, Meguro, Tokyo,

More information

Terrain categorization using LIDAR and multi-spectral data

Terrain categorization using LIDAR and multi-spectral data Terrain categorization using LIDAR and multi-spectral data Angela M. Puetz, R. C. Olsen, Michael A. Helt U.S. Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943 ampuetz@nps.edu, olsen@nps.edu

More information

Mediterranean School on Nano-Physics held in Marrakech - MOROCCO

Mediterranean School on Nano-Physics held in Marrakech - MOROCCO 2218-3 Mediterranean School on Nano-Physics held in Marrakech - MOROCCO 2-11 December 2010 Comparison of Topographic Correction Methods Presented by: STANKEVICH Sergey (RICHTER R., Kellenberger T and Kaufmann

More information

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005

Fifteenth ARM Science Team Meeting Proceedings, Daytona Beach, Florida, March 14-18, 2005 Assessing the Impact of the Plane-Parallel Cloud Assumption used in Computing Shortwave Heating Rate Profiles for the Broadband Heating Rate Profile Project W. O Hirok Institute for Computational Earth

More information

VALERI 2003 : Concepcion site (Mixed Forest) GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS

VALERI 2003 : Concepcion site (Mixed Forest) GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS VALERI 2003 : Concepcion site (Mixed Forest) GROUND DATA PROCESSING & PRODUCTION OF THE LEVEL 1 HIGH RESOLUTION MAPS Marie Weiss 1 Introduction This report describes the production of the high resolution,

More information

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014

Sentinel-1 Toolbox. TOPS Interferometry Tutorial Issued May 2014 Sentinel-1 Toolbox TOPS Interferometry Tutorial Issued May 2014 Copyright 2015 Array Systems Computing Inc. http://www.array.ca/ https://sentinel.esa.int/web/sentinel/toolboxes Interferometry Tutorial

More information

Demo: Inverse Modelling/Assimilation

Demo: Inverse Modelling/Assimilation Demo: Inverse Modelling/Assimilation Thomas Kaminski (http://.com) Thanks to: Simon Blessing (), Ralf Giering (), Nadine Gobron (JRC), Wolfgang Knorr (QUEST), Thomas Lavergne (Met.No), Bernard Pinty (JRC),

More information

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens

Terrain correction. Backward geocoding. Terrain correction and ortho-rectification. Why geometric terrain correction? Rüdiger Gens Terrain correction and ortho-rectification Terrain correction Rüdiger Gens Why geometric terrain correction? Backward geocoding remove effects of side looking geometry of SAR images necessary step to allow

More information

Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets

Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets Validation of spectral continuity between PROBA-V and SPOT-VEGETATION global daily datasets W. Dierckx a, *, E. Swinnen a, P. Kempeneers a a Flemish Institute for Technological Research (VITO), Remote

More information

Tree height measurements and tree growth estimation in a mire environment using digital surface models

Tree height measurements and tree growth estimation in a mire environment using digital surface models Tree height measurements and tree growth estimation in a mire environment using digital surface models E. Baltsavias 1, A. Gruen 1, M. Küchler 2, P.Thee 2, L.T. Waser 2, L. Zhang 1 1 Institute of Geodesy

More information

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY

DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY DIGITAL SURFACE MODELS OF CITY AREAS BY VERY HIGH RESOLUTION SPACE IMAGERY Jacobsen, K. University of Hannover, Institute of Photogrammetry and Geoinformation, Nienburger Str.1, D30167 Hannover phone +49

More information

EVOLUTION OF POINT CLOUD

EVOLUTION OF POINT CLOUD Figure 1: Left and right images of a stereo pair and the disparity map (right) showing the differences of each pixel in the right and left image. (source: https://stackoverflow.com/questions/17607312/difference-between-disparity-map-and-disparity-image-in-stereo-matching)

More information

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager) Tadashi IMAI, Daisuke SAKAIZAWA, Jumpei MUROOKA, Rei Mitsuhashi and Toshiyoshi KIMURA JAXA 0 Outline of This Presentation

More information

DIGITAL SURFACE MODELS IN BUILD UP AREAS BASED ON VERY HIGH RESOLUTION SPACE IMAGES

DIGITAL SURFACE MODELS IN BUILD UP AREAS BASED ON VERY HIGH RESOLUTION SPACE IMAGES DIGITAL SURFACE MODELS IN BUILD UP AREAS BASED ON VERY HIGH RESOLUTION SPACE IMAGES Gurcan Buyuksalih*, Karsten Jacobsen** *BIMTAS, Tophanelioglu Cad. ISKI Hizmet Binasi No:62 K.3-4 34460 Altunizade-Istanbul,

More information

Within polygon grid based sampling for height estimation with LIDAR data

Within polygon grid based sampling for height estimation with LIDAR data Within polygon grid based sampling for height estimation with LIDAR data Mike Wulder 1, David Seemann 1, and Alain Bouchard 2 1 Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre,

More information

MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS

MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS MODULE 3 LECTURE NOTES 3 ATMOSPHERIC CORRECTIONS 1. Introduction The energy registered by the sensor will not be exactly equal to that emitted or reflected from the terrain surface due to radiometric and

More information

Using Lidar and ArcGIS to Predict Forest Inventory Variables

Using Lidar and ArcGIS to Predict Forest Inventory Variables Using Lidar and ArcGIS to Predict Forest Inventory Variables Dr. Kevin S. Lim kevin@limgeomatics.com P.O. Box 45089, 680 Eagleson Road Ottawa, Ontario, K2M 2G0, Canada Tel.: 613-686-5735 Fax: 613-822-5145

More information

Aardobservatie en Data-analyse Image processing

Aardobservatie en Data-analyse Image processing Aardobservatie en Data-analyse Image processing 1 Image processing: Processing of digital images aiming at: - image correction (geometry, dropped lines, etc) - image calibration: DN into radiance or into

More information

Lecture 7. Spectral Unmixing. Summary. Mixtures in Remote Sensing

Lecture 7. Spectral Unmixing. Summary. Mixtures in Remote Sensing Lecture 7 Spectral Unmixing Summary This lecture will introduce you to the concepts of linear spectral mixing. This methods is sometimes also called: Spectral Mixture Analysis (SMA: Wessman et al 1997)

More information

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results

Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Cadastre - Preliminary Results Automated Extraction of Buildings from Aerial LiDAR Point Cloud and Digital Imaging Datasets for 3D Pankaj Kumar 1*, Alias Abdul Rahman 1 and Gurcan Buyuksalih 2 ¹Department of Geoinformation Universiti

More information

PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS

PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS PROBLEMS AND LIMITATIONS OF SATELLITE IMAGE ORIENTATION FOR DETERMINATION OF HEIGHT MODELS K. Jacobsen Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany jacobsen@ipi.uni-hannover.de

More information

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course

Do It Yourself 8. Polarization Coherence Tomography (P.C.T) Training Course Do It Yourself 8 Polarization Coherence Tomography (P.C.T) Training Course 1 Objectives To provide a self taught introduction to Polarization Coherence Tomography (PCT) processing techniques to enable

More information

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN

NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN NATIONWIDE POINT CLOUDS AND 3D GEO- INFORMATION: CREATION AND MAINTENANCE GEORGE VOSSELMAN OVERVIEW National point clouds Airborne laser scanning in the Netherlands Quality control Developments in lidar

More information

Revision History. Applicable Documents

Revision History. Applicable Documents Revision History Version Date Revision History Remarks 1.0 2011.11-1.1 2013.1 Update of the processing algorithm of CAI Level 3 NDVI, which yields the NDVI product Ver. 01.00. The major updates of this

More information

MTG-FCI: ATBD for Clear Sky Reflectance Map Product

MTG-FCI: ATBD for Clear Sky Reflectance Map Product MTG-FCI: ATBD for Clear Sky Reflectance Map Product Doc.No. Issue : : v2 EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 14 January 2013 http://www.eumetsat.int

More information

Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis!

Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis! Scattering Properties of Electromagnetic Waves in Stratified air/vegetation/soil and air/snow/ice media : Modeling and Sensitivity Analysis! M. Dechambre et al., LATMOS/IPSL, Université de Versailles 1

More information

LIDAR an Introduction and Overview

LIDAR an Introduction and Overview LIDAR an Introduction and Overview Rooster Rock State Park & Crown Point. Oregon DOGAMI Lidar Project Presented by Keith Marcoe GEOG581, Fall 2007. Portland State University. Light Detection And Ranging

More information

UTILIZATION OF TANDEM-X DEM FOR TOPOGRAPHIC CORRECTION OF SENTINEL-2 SATELLITE IMAGE 1. INTRODUCTION

UTILIZATION OF TANDEM-X DEM FOR TOPOGRAPHIC CORRECTION OF SENTINEL-2 SATELLITE IMAGE 1. INTRODUCTION UTILIZATION OF TANDEM-X DEM FOR TOPOGRAPHIC CORRECTION OF SENTINEL-2 SATELLITE IMAGE Sharad Kumar Gupta, PhD Scholar Dericks P. Shukla, Assistant Professor School of Engineering, Indian Institute of Technology,

More information

Study on LAI Sampling Strategy and Product Validation over Non-uniform Surface. Lingling Ma, Xiaohua Zhu, Yongguang Zhao

Study on LAI Sampling Strategy and Product Validation over Non-uniform Surface. Lingling Ma, Xiaohua Zhu, Yongguang Zhao of Opto Electronics Chinese of Sciences Study on LAI Sampling Strategy and Product Validation over Non-uniform Surface Lingling Ma, Xiaohua Zhu, Yongguang Zhao of (AOE) Chinese of Sciences (CAS) 2014-1-28

More information

Operational use of the Orfeo Tool Box for the Venµs Mission

Operational use of the Orfeo Tool Box for the Venµs Mission Operational use of the Orfeo Tool Box for the Venµs Mission Thomas Feuvrier http://uk.c-s.fr/ Free and Open Source Software for Geospatial Conference, FOSS4G 2010, Barcelona Outline Introduction of the

More information

LiDAR data pre-processing for Ghanaian forests biomass estimation. Arbonaut, REDD+ Unit, Joensuu, Finland

LiDAR data pre-processing for Ghanaian forests biomass estimation. Arbonaut, REDD+ Unit, Joensuu, Finland LiDAR data pre-processing for Ghanaian forests biomass estimation Arbonaut, REDD+ Unit, Joensuu, Finland Airborne Laser Scanning principle Objectives of the research Prepare the laser scanning data for

More information

Data Mining Support for Aerosol Retrieval and Analysis:

Data Mining Support for Aerosol Retrieval and Analysis: Data Mining Support for Aerosol Retrieval and Analysis: Our Approach and Preliminary Results Zoran Obradovic 1 joint work with Amy Braverman 2, Bo Han 1, Zhanqing Li 3, Yong Li 1, Kang Peng 1, Yilian Qin

More information

VIIRS Radiance Cluster Analysis under CrIS Field of Views

VIIRS Radiance Cluster Analysis under CrIS Field of Views VIIRS Radiance Cluster Analysis under CrIS Field of Views Likun Wang, Yong Chen, Denis Tremblay, Yong Han ESSIC/Univ. of Maryland, College Park, MD; wlikun@umd.edu Acknowledgment CrIS SDR Team 2016 CICS

More information

IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA

IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA IMPROVED TARGET DETECTION IN URBAN AREA USING COMBINED LIDAR AND APEX DATA Michal Shimoni 1 and Koen Meuleman 2 1 Signal and Image Centre, Dept. of Electrical Engineering (SIC-RMA), Belgium; 2 Flemish

More information

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart

MERIS US Workshop. Vicarious Calibration Methods and Results. Steven Delwart MERIS US Workshop Vicarious Calibration Methods and Results Steven Delwart Presentation Overview Recent results 1. CNES methods Deserts, Sun Glint, Rayleigh Scattering 2. Inter-sensor Uyuni 3. MOBY-AAOT

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems

Lidar Sensors, Today & Tomorrow. Christian Sevcik RIEGL Laser Measurement Systems Lidar Sensors, Today & Tomorrow Christian Sevcik RIEGL Laser Measurement Systems o o o o Online Waveform technology Stand alone operation no field computer required Remote control through wireless network

More information

A Windows Graphic User Interface (GUI) for the Five-Scale model for fast BRDF simulations.

A Windows Graphic User Interface (GUI) for the Five-Scale model for fast BRDF simulations. Preprint/Prétirage A Windows Graphic User Interface (GUI) for the Five-Scale model for fast BRDF simulations. Sylvain G. Leblanc and Jing M. Chen Canada Centre for Remote Sensing 588 Booth Street, 4 th

More information

Estimating land surface albedo from polar orbiting and geostationary satellites

Estimating land surface albedo from polar orbiting and geostationary satellites Estimating land surface albedo from polar orbiting and geostationary satellites Dongdong Wang Shunlin Liang Tao He Yuan Zhou Department of Geographical Sciences University of Maryland, College Park Nov

More information

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning

ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning 1 ENY-C2005 Geoinformation in Environmental Modeling Lecture 4b: Laser scanning Petri Rönnholm Aalto University 2 Learning objectives To recognize applications of laser scanning To understand principles

More information

2010 LiDAR Project. GIS User Group Meeting June 30, 2010

2010 LiDAR Project. GIS User Group Meeting June 30, 2010 2010 LiDAR Project GIS User Group Meeting June 30, 2010 LiDAR = Light Detection and Ranging Technology that utilizes lasers to determine the distance to an object or surface Measures the time delay between

More information

Plane Wave Imaging Using Phased Array Arno Volker 1

Plane Wave Imaging Using Phased Array Arno Volker 1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16409 Plane Wave Imaging Using Phased Array

More information