Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Robust Methods. CS4243 Robust Methods 1

Size: px
Start display at page:

Download "Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Robust Methods. CS4243 Robust Methods 1"

Transcription

1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Robust Methods CS4243 Robust Methods 1

2 Consider this data set Fitting a line to blue points give blue line. Outliers cause fitting error (red line). 25 y outliers x CS4243 Robust Methods 2

3 Consider this data set Fitting a line to blue points give blue line. Single outlier can cause serious error! Need robust methods! y x outlier CS4243 Robust Methods 3

4 Robust Methods Two basic approaches: Make error functions immune to outliers. Detect and discard outliers. CS4243 Robust Methods 4

5 Exercise Consider this set of number: 1, 2, 3, 4, 5, 6, 7 What is the mean? What is the median? Now, insert an outlier 1, 2, 3, 4, 5, 6, 7,14 What is the mean, error of mean? What is the median, error of median? Which one robust, mean or median? CS4243 Robust Methods 5

6 Robust Statistics Mean square error is not robust E = 1 N ( f ( x ) ) 2 Median square error is robust i i y i E = median x i ( f ( ) y ) 2 i i Can potentially tolerate up to N / 2 outliers! CS4243 Robust Methods 6

7 Robust Error Functions Not adversely affected by outliers. Consider least square fitting Want to find parameters a that minimise E. Error is also called residue. Error function can be rewritten as Square of r increases very fast with r. Not robust. CS4243 Robust Methods 7

8 Robust functions ρ(r) increase slowly with r. Properties of ρ(r): Global minimum: ρ(r) = 0 when r = 0 Positive: ρ(r) 0 Symmetric: ρ(r) = ρ( r) Monotonically increasing: ρ(r) ρ(s) iff r s CS4243 Robust Methods 8

9 Robust Error Functions Beaton and Tukey fixed for large r Cauchy increases slowly with r CS4243 Robust Methods 9

10 Robust Error Functions Huber Forsyth increases linearly with r almost fixed for large r CS4243 Robust Methods 10

11 Robust Error Functions CS4243 Robust Methods 11

12 Random Sample Consensus RANSAC: Random Sample Consensus Robust approach for solving many problems. Try to identify outliers. Basic ideas RANSAC wraps over target algorithm. Start with small random subset of data points. Run target algorithm on subset. Iteratively add consistent data points to subset. CS4243 Robust Methods 12

13 Target algorithm has two things Model M: function parameters a, etc. Error measure E: need not be robust Example: least square fit model error Example: affine transformation error model CS4243 Robust Methods 13

14 RANSAC Given N data points. Initialise best model M*, error E(M*). Repeat for k iterations: 1. Randomly select subset S of m < N data points. 2. Run target algorithm on S to determine M. 3. For each data point x not in S If error of M on x < tolerance τ, add x to S. 4. If S > threshold Γ Use S to determine new M. If E(M) < E(M*), update M* M, S* S. consistent set CS4243 Robust Methods 14

15 RANSAC has 3 parameters Error tolerance τ Dependent on the expected error of fitting inliers. Size threshold Γ Dependent on the model. Should be large enough to have enough inliers. Number of iterations k Should be large enough to get good model. Can result in large execution time. CS4243 Robust Methods 15

16 Minimum Subset Random Sampling Use robust error function and random sampling. Basic algorithm 1. Initialise best model M*, error E(M*). 2. Randomly select k subsets of m data points. 3. For each subset S of m data points Determine model M that best fits data points. Compute error E of applying M on all N data points. If E(M) < E(M*), update M* M, S* S. Algo complexity: O(kN) must be immune to outliers CS4243 Robust Methods 16

17 How to be immune to outliers? Use robust statistics Median (r 1,, r N ) Use error function with fixed value for larger r Beaton and Tukey fixed for large r CS4243 Robust Methods 17

18 Use truncated error function ρ( r) = e( r) if r < a e( a) otherwise e(r) is any error function ρ(r) is fixed for large r CS4243 Robust Methods 18

19 Selection of k Max value of k is very large: N C M In practice, smaller value of k is possible. Analysis ε = prob. randomly selected data point is inlier ε = fraction of inliers in data set ε m = prob. all m data points in subset are inliers s = prob. at least 1 subset has only inliers Then, CS4243 Robust Methods 19

20 s = 0.5 s = 0.95 ε = 0.75 k1 k2 ε = 0.5 k3 k4 small k CS4243 Robust Methods 20

21 Example Fit ellipse to data points [RL93] CS4243 Robust Methods 21

22 Summary Outliers can adversely affect algorithm s error. Robust error functions are immune to outliers. RANSAC Robust method for finding consistent set of inliers. Minimum subset random sampling Use robust error function and random sampling to speed out random sampling. CS4243 Robust Methods 22

23 Further Reading Robust parameter estimation [Ste99], [MMRK91] RANSAC [FB81], [FP03] Section 15.5, Minimal Subset Random Sampling [RL93] CS4243 Robust Methods 23

24 References M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with apphcatlons to image analysis and automated cartography. Communications of ACM, 24(6): , D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Pearson Education, P. Meer, D. Mintz, A. Rosenfeld, and D. Kim. Robust regression methods in computer vision: A review. Int. Journal of Computer Vision, 6(1):59 70, G. Roth and M. D. Levine. Extracting geometric primitives. CVGIP: Image Understanding, 58(1):1 22, C. V. Stewart. Robust parameter estimation in computer vision. SIAM Review, 41(3): , CS4243 Robust Methods 24

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fitting, RANSAC Jana Kosecka Fitting: Overview If we know which points belong to the line, how do we find the optimal line parameters? Least squares What if there are outliers? Robust fitting, RANSAC

More information

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC Fitting We ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according

More information

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem 10/03/11 Model Fitting Computer Vision CS 143, Brown James Hays Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem Fitting: find the parameters of a model that best fit the data Alignment:

More information

Hough Transform and RANSAC

Hough Transform and RANSAC CS4501: Introduction to Computer Vision Hough Transform and RANSAC Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC),

More information

RANSAC RANdom SAmple Consensus

RANSAC RANdom SAmple Consensus Talk Outline importance for computer vision principle line fitting epipolar geometry estimation RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

Nonparametric estimation of multiple structures with outliers

Nonparametric estimation of multiple structures with outliers Nonparametric estimation of multiple structures with outliers Wei Zhang and Jana Kosecka George Mason University, 44 University Dr. Fairfax, VA 223 USA Abstract. Common problem encountered in the analysis

More information

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher CS 664 Image Matching and Robust Fitting Daniel Huttenlocher Matching and Fitting Recognition and matching are closely related to fitting problems Parametric fitting can serve as more restricted domain

More information

Nonparametric estimation of multiple structures with outliers

Nonparametric estimation of multiple structures with outliers Nonparametric estimation of multiple structures with outliers Wei Zhang and Jana Kosecka Department of Computer Science, George Mason University, 44 University Dr. Fairfax, VA 223 USA {wzhang2,kosecka}@cs.gmu.edu

More information

RANSAC and some HOUGH transform

RANSAC and some HOUGH transform RANSAC and some HOUGH transform Thank you for the slides. They come mostly from the following source Dan Huttenlocher Cornell U Matching and Fitting Recognition and matching are closely related to fitting

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

Unsupervised Camera Motion Estimation and Moving Object Detection in Videos

Unsupervised Camera Motion Estimation and Moving Object Detection in Videos Proceedings of the Irish Machine Vision and Image Processing conference, pp. 102-109, 2006 Unsupervised Camera Motion Estimation and Moving Object Detection in Videos Rozenn Dahyot School of Computer Science

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

Multiple View Geometry. Frank Dellaert

Multiple View Geometry. Frank Dellaert Multiple View Geometry Frank Dellaert Outline Intro Camera Review Stereo triangulation Geometry of 2 views Essential Matrix Fundamental Matrix Estimating E/F from point-matches Why Consider Multiple Views?

More information

Prof. Noah Snavely CS Administrivia. A4 due on Friday (please sign up for demo slots)

Prof. Noah Snavely CS Administrivia. A4 due on Friday (please sign up for demo slots) Robust fitting Prof. Noah Snavely CS111 http://www.cs.cornell.edu/courses/cs111 Administrivia A due on Friday (please sign up for demo slots) A5 will be out soon Prelim is coming up, Tuesday, / Roadmap

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Two Efficient Algorithms for Outlier Removal in Multi-view Geometry Using L Norm

Two Efficient Algorithms for Outlier Removal in Multi-view Geometry Using L Norm Two Efficient Algorithms for Outlier Removal in Multi-view Geometry Using L Norm Yuchao Dai 1, Mingyi He 1 Hongdong Li 3, 1 School of Electronics and Information, Northwestern Polytechnical University

More information

EECS 442 Computer vision. Fitting methods

EECS 442 Computer vision. Fitting methods EECS 442 Computer vision Fitting methods - Problem formulation - Least square methods - RANSAC - Hough transforms - Multi-model fitting - Fitting helps matching! Reading: [HZ] Chapters: 4, 11 [FP] Chapters:

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Manhattan-World Assumption for As-built Modeling Industrial Plant

Manhattan-World Assumption for As-built Modeling Industrial Plant Manhattan-World Assumption for As-built Modeling Industrial Plant Tomohiro Mizoguchi 1, Tomokazu Kuma 2, Yoshikazu Kobayashi 3 and Kenji Shirai 4 Department of Computer Science, College of Engineering,

More information

INFO0948 Fitting and Shape Matching

INFO0948 Fitting and Shape Matching INFO0948 Fitting and Shape Matching Renaud Detry University of Liège, Belgium Updated March 31, 2015 1 / 33 These slides are based on the following book: D. Forsyth and J. Ponce. Computer vision: a modern

More information

RANSAC: RANdom Sampling And Consensus

RANSAC: RANdom Sampling And Consensus CS231-M RANSAC: RANdom Sampling And Consensus Roland Angst rangst@stanford.edu www.stanford.edu/~rangst CS231-M 2014-04-30 1 The Need for RANSAC Why do I need RANSAC? I know robust statistics! Robust Statistics

More information

Generalized RANSAC framework for relaxed correspondence problems

Generalized RANSAC framework for relaxed correspondence problems Generalized RANSAC framework for relaxed correspondence problems Wei Zhang and Jana Košecká Department of Computer Science George Mason University Fairfax, VA 22030 {wzhang2,kosecka}@cs.gmu.edu Abstract

More information

Estimate Geometric Transformation

Estimate Geometric Transformation 1 of 9 15/12/2009 11:05 Estimate Geometric Transformation Estimate geometric transformation from matching point pairs Library Geometric Transformations Description Use the Estimate Geometric Transformation

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Observations. Basic iteration Line estimated from 2 inliers

Observations. Basic iteration Line estimated from 2 inliers Line estimated from 2 inliers 3 Observations We need (in this case!) a minimum of 2 points to determine a line Given such a line l, we can determine how well any other point y fits the line l For example:

More information

Automatic estimation of the inlier threshold in robust multiple structures fitting.

Automatic estimation of the inlier threshold in robust multiple structures fitting. Automatic estimation of the inlier threshold in robust multiple structures fitting. Roberto Toldo and Andrea Fusiello Dipartimento di Informatica, Università di Verona Strada Le Grazie, 3734 Verona, Italy

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW

ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW ROBUST LINE-BASED CALIBRATION OF LENS DISTORTION FROM A SINGLE VIEW Thorsten Thormählen, Hellward Broszio, Ingolf Wassermann thormae@tnt.uni-hannover.de University of Hannover, Information Technology Laboratory,

More information

Evaluating Error Functions for Robust Active Appearance Models

Evaluating Error Functions for Robust Active Appearance Models Evaluating Error Functions for Robust Active Appearance Models Barry-John Theobald School of Computing Sciences, University of East Anglia, Norwich, UK, NR4 7TJ bjt@cmp.uea.ac.uk Iain Matthews and Simon

More information

Lecture 9 Fitting and Matching

Lecture 9 Fitting and Matching Lecture 9 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi- model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision! Fitting EECS 598-08 Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these

More information

CS664 Lecture #16: Image registration, robust statistics, motion

CS664 Lecture #16: Image registration, robust statistics, motion CS664 Lecture #16: Image registration, robust statistics, motion Some material taken from: Alyosha Efros, CMU http://www.cs.cmu.edu/~efros Xenios Papademetris http://noodle.med.yale.edu/~papad/various/papademetris_image_registration.p

More information

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson

Robust Regression. Robust Data Mining Techniques By Boonyakorn Jantaranuson Robust Regression Robust Data Mining Techniques By Boonyakorn Jantaranuson Outline Introduction OLS and important terminology Least Median of Squares (LMedS) M-estimator Penalized least squares What is

More information

Clustering in Registration of 3D Point Clouds

Clustering in Registration of 3D Point Clouds Sergey Arkhangelskiy 1 Ilya Muchnik 2 1 Google Moscow 2 Rutgers University, New Jersey, USA International Workshop Clusters, orders, trees: Methods and applications in honor of Professor Boris Mirkin December

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11 Model Fitting CSE 152 Lecture 11 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 10: Grouping and Model Fitting What to do with edges? Segment linked edge chains into curve features (e.g.,

More information

the distinguished features causes the predicted position to be in error. As the error grows, the testing step becomes more likely to fail. To deal wit

the distinguished features causes the predicted position to be in error. As the error grows, the testing step becomes more likely to fail. To deal wit A General Method for Feature Matching and Model Extraction Clark F. Olson Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Mail Stop 125-209, Pasadena, CA 91109-8099

More information

Lecture 8 Fitting and Matching

Lecture 8 Fitting and Matching Lecture 8 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi-model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Computer Vision and Image Understanding 78, 1 7 (2000) doi: /cviu , available online at on INTRODUCTION

Computer Vision and Image Understanding 78, 1 7 (2000) doi: /cviu , available online at  on INTRODUCTION Computer Vision and Image Understanding 78, 1 7 (2000) doi:10.1006/cviu.1999.0833, available online at http://www.idealibrary.com on INTRODUCTION Robust Computer Vision: An Interdisciplinary Challenge

More information

Automatic Image Alignment (feature-based)

Automatic Image Alignment (feature-based) Automatic Image Alignment (feature-based) Mike Nese with a lot of slides stolen from Steve Seitz and Rick Szeliski 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Today s lecture Feature

More information

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION

A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM INTRODUCTION A NEW FEATURE BASED IMAGE REGISTRATION ALGORITHM Karthik Krish Stuart Heinrich Wesley E. Snyder Halil Cakir Siamak Khorram North Carolina State University Raleigh, 27695 kkrish@ncsu.edu sbheinri@ncsu.edu

More information

A Performance Comparison of Piecewise Linear Estimation Methods

A Performance Comparison of Piecewise Linear Estimation Methods A Performance Comparison of Piecewise Linear Estimation Methods Manjula A. Iyer, Morgan M. Harris, and Layne T. Watson Departments of Computer Science and Mathematics Virginia Polytechnic Institute and

More information

Object Reconstruction

Object Reconstruction B. Scholz Object Reconstruction 1 / 39 MIN-Fakultät Fachbereich Informatik Object Reconstruction Benjamin Scholz Universität Hamburg Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich

More information

Lecture: RANSAC and feature detectors

Lecture: RANSAC and feature detectors Lecture: RANSAC and feature detectors Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 What we will learn today? A model fitting method for edge detection RANSAC Local invariant

More information

An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration

An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration Tina Memo No. 2000-009 Presented at BMVC 2000 An Evaluation of the Performance of RANSAC Algorithms for Stereo Camera Calibration A. J. Lacey, N. Pinitkarn and N. A. Thacker Last updated 21 / 02 / 2002

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Lecture 9: inverting the imaging process calibration, recovery of world position, mosaicing

Lecture 9: inverting the imaging process calibration, recovery of world position, mosaicing Lecture 9: inverting the imaging process calibration, recovery of world position, mosaicing Dr. Richard E. Turner (ret26@cam.ac.uk) November 7, 2013 House keeping examples sheet solutions will be put on

More information

Random Sample Consensus (RANSAC) Algorithm, A Generic Implementation Release 1.0

Random Sample Consensus (RANSAC) Algorithm, A Generic Implementation Release 1.0 Random Sample Consensus (RANSAC) Algorithm, A Generic Implementation Release 1.0 Ziv Yaniv October 21, 2010 Imaging Science and Information Systems (ISIS) Center, Dept. of Radiology, Georgetown University

More information

Robust Adaptive Segmentation of Range Images

Robust Adaptive Segmentation of Range Images 00 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 0, NO., FEBRUARY 1998 Robust Adaptive Segmentation of Range Images Kil-Moo Lee, Member, IEEE, Peter Meer, Senior Member, IEEE, and

More information

A Summary of Projective Geometry

A Summary of Projective Geometry A Summary of Projective Geometry Copyright 22 Acuity Technologies Inc. In the last years a unified approach to creating D models from multiple images has been developed by Beardsley[],Hartley[4,5,9],Torr[,6]

More information

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE

DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE DEVELOPMENT OF A ROBUST IMAGE MOSAICKING METHOD FOR SMALL UNMANNED AERIAL VEHICLE J. Kim and T. Kim* Dept. of Geoinformatic Engineering, Inha University, Incheon, Korea- jikim3124@inha.edu, tezid@inha.ac.kr

More information

Computer Vision Grouping and Segmentation. Grouping and Segmentation

Computer Vision Grouping and Segmentation. Grouping and Segmentation Computer Vision Grouping and Segmentation Professor Hager http://www.cs.jhu.edu/~hager Grouping and Segmentation G&S appear to be one of the early processes in human vision They are a way of *organizing*

More information

Recursive RANSAC: Multiple Signal Estimation with Outliers

Recursive RANSAC: Multiple Signal Estimation with Outliers 9th IFAC Symposium on Nonlinear Control Systems Toulouse, France, September 4-6, 213 ThSPS2.1 Recursive RANSAC: Multiple Signal Estimation with Outliers Peter C. Niedfeldt, Randal W. Beard Brigham Young

More information

MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation

MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation International Journal of Computer Vision 59(2), 139 166, 24 c 24 Kluwer Academic Publishers. Manufactured in The Netherlands. MDPE: A Very Robust Estimator for Model Fitting and Range Image Segmentation

More information

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16 Announcements Stereo III CSE252A Lecture 16 HW1 being returned HW3 assigned and due date extended until 11/27/12 No office hours today No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in

More information

Projection Based M-Estimators

Projection Based M-Estimators 1 Projection Based M-Estimators Raghav Subbarao, Peter Meer, Senior Member, IEEE Electrical and Computer Engineering Department Rutgers University, 94 Brett Road, Piscataway, NJ, 08854-8058 rsubbara, meer@caip.rutgers.edu

More information

3D Motion from Image Derivatives Using the Least Trimmed Square Regression

3D Motion from Image Derivatives Using the Least Trimmed Square Regression 3D Motion from Image Derivatives Using the Least Trimmed Square Regression Fadi Dornaika and Angel D. Sappa Computer Vision Center Edifici O, Campus UAB 08193 Bellaterra, Barcelona, Spain {dornaika, sappa}@cvc.uab.es

More information

An Improved Evolutionary Algorithm for Fundamental Matrix Estimation

An Improved Evolutionary Algorithm for Fundamental Matrix Estimation 03 0th IEEE International Conference on Advanced Video and Signal Based Surveillance An Improved Evolutionary Algorithm for Fundamental Matrix Estimation Yi Li, Senem Velipasalar and M. Cenk Gursoy Department

More information

Using symmetry in robust model fitting

Using symmetry in robust model fitting Pattern Recognition Letters 24 (23) 293 2966 www.elsevier.com/locate/patrec Using symmetry in robust model fitting Hanzi Wang *, David Suter Department of Electrical and Computer Systems Engineering, Monash

More information

UPEM Master 2 Informatique SIS. Digital Geometry. Topic 3: Discrete straight lines: definition and recognition. Yukiko Kenmochi.

UPEM Master 2 Informatique SIS. Digital Geometry. Topic 3: Discrete straight lines: definition and recognition. Yukiko Kenmochi. UPEM Master 2 Informatique SIS Digital Geometry Topic 3: Discrete straight lines: definition and recognition Yukiko Kenmochi October 12, 2016 Digital Geometry : Topic 3 1/30 Straight lines and their discretizations

More information

MAC-RANSAC: a robust algorithm for the recognition of multiple objects

MAC-RANSAC: a robust algorithm for the recognition of multiple objects MAC-RANSAC: a robust algorithm for the recognition of multiple objects Julien Rabin and Julie Delon and Yann Gousseau Télécom Paristech, LTCI CNRS 46 rue Barrault, 75013 Paris France {rabin,delon,gousseau}@telecom-paristech.fr

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS H. R. Chen a *, Y. H. Tseng b a Dept. of Geomatics, National Cheng Kung University, 701 Tainan, Taiwan P66024146@mail.ncku.edu.tw

More information

NIH Public Access Author Manuscript IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2010 April 21.

NIH Public Access Author Manuscript IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2010 April 21. NIH Public Access Author Manuscript Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2010 January ; 32(1): 178 184. doi:10.1109/tpami.2009.148. A Generalized Kernel Consensus-Based

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Textured Mesh Surface Reconstruction of Large Buildings with Multi-View Stereo

Textured Mesh Surface Reconstruction of Large Buildings with Multi-View Stereo The Visual Computer manuscript No. (will be inserted by the editor) Textured Mesh Surface Reconstruction of Large Buildings with Multi-View Stereo Chen Zhu Wee Kheng Leow Received: date / Accepted: date

More information

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm

Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm 6.801/6.866 Machine Vision Final Exam Assigned: 11/21/02 Due: 12/05/02 at 2:30pm Problem 1 Line Fitting through Segmentation (Matlab) a) Write a Matlab function to generate noisy line segment data with

More information

A General Method for Geometric Feature Matching and Model Extraction

A General Method for Geometric Feature Matching and Model Extraction International Journal of Computer Vision 45(1), 39 54, 2001 c 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. A General Method for Geometric Feature Matching and Model Extraction CLARK

More information

Geometric Consistency Checking for Local-Descriptor Based Document Retrieval

Geometric Consistency Checking for Local-Descriptor Based Document Retrieval Geometric Consistency Checking for Local-Descriptor Based Document Retrieval Eduardo Valle, David Picard, Matthieu Cord To cite this version: Eduardo Valle, David Picard, Matthieu Cord. Geometric Consistency

More information

CSE 252B: Computer Vision II

CSE 252B: Computer Vision II CSE 252B: Computer Vision II Lecturer: Serge Belongie Scribes: Jeremy Pollock and Neil Alldrin LECTURE 14 Robust Feature Matching 14.1. Introduction Last lecture we learned how to find interest points

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

OUTLIERS DETECTION BY RANSAC ALGORITHM IN THE TRANSFORMATION OF 2D COORDINATE FRAMES

OUTLIERS DETECTION BY RANSAC ALGORITHM IN THE TRANSFORMATION OF 2D COORDINATE FRAMES BCG - Boletim de Ciências Geodésicas - On-Line version, ISSN 1982-2170 http://dx.doi.org/10.1590/s1982-21702014000300035 OUTLIERS DETECTION BY RANSAC ALGORITHM IN THE TRANSFORMATION OF 2D COORDINATE FRAMES

More information

Face Alignment Robust to Occlusion

Face Alignment Robust to Occlusion Face Alignment Robust to Occlusion Anonymous Abstract In this paper we present a new approach to robustly align facial features to a face image even when the face is partially occluded Previous methods

More information

3D Environment Reconstruction

3D Environment Reconstruction 3D Environment Reconstruction Using Modified Color ICP Algorithm by Fusion of a Camera and a 3D Laser Range Finder The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems October 11-15,

More information

Performance Evaluation of RANSAC Family

Performance Evaluation of RANSAC Family CHOI, KIM, YU: PERFORMANCE EVALUATION OF RANSAC FAMILY 1 Performance Evaluation of RANSAC Family Sunglok Choi 1 sunglok@etri.re.kr Taemin Kim 2 taemin.kim@nasa.gov Wonpil Yu 1 ywp@etri.re.kr 1 Robot Research

More information

Object recognition of Glagolitic characters using Sift and Ransac

Object recognition of Glagolitic characters using Sift and Ransac Object recognition of Glagolitic characters using Sift and Ransac Images in database: Glagolitic alphabet characters. Algorithm 1) Prepare a database of images. Images characteristics : 1. Scale changed

More information

Ransac Based Out-of-Core Point-Cloud Shape Detection for City-Modeling

Ransac Based Out-of-Core Point-Cloud Shape Detection for City-Modeling Ransac Based Out-of-Core Point-Cloud Shape Detection for City-Modeling Ruwen Schnabel, Roland Wahl, Reinhard Klein Institut für Informatik II, Universität Bonn Römerstr. 117 53117 Bonn {schnabel,wahl,rk}@cs.uni-bonn.de

More information

Robust Moving Least-squares Fitting with Sharp Features

Robust Moving Least-squares Fitting with Sharp Features Survey of Methods in Computer Graphics: Robust Moving Least-squares Fitting with Sharp Features S. Fleishman, D. Cohen-Or, C. T. Silva SIGGRAPH 2005. Method Pipeline Input: Point to project on the surface.

More information

A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points

A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points A Method of Annotation Extraction from Paper Documents Using Alignment Based on Local Arrangements of Feature Points Tomohiro Nakai, Koichi Kise, Masakazu Iwamura Graduate School of Engineering, Osaka

More information

Package robustreg. R topics documented: April 27, Version Date Title Robust Regression Functions

Package robustreg. R topics documented: April 27, Version Date Title Robust Regression Functions Version 0.1-10 Date 2017-04-25 Title Robust Regression Functions Package robustreg April 27, 2017 Author Ian M. Johnson Maintainer Ian M. Johnson Depends

More information

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on a line by looking only at each

More information

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION

DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS INTRODUCTION DETECTION AND ROBUST ESTIMATION OF CYLINDER FEATURES IN POINT CLOUDS Yun-Ting Su James Bethel Geomatics Engineering School of Civil Engineering Purdue University 550 Stadium Mall Drive, West Lafayette,

More information

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming

Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Visual Odometry for Non-Overlapping Views Using Second-Order Cone Programming Jae-Hak Kim 1, Richard Hartley 1, Jan-Michael Frahm 2 and Marc Pollefeys 2 1 Research School of Information Sciences and Engineering

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

Smooth Simultaneous Structural Graph Matching and Point-Set Registration

Smooth Simultaneous Structural Graph Matching and Point-Set Registration 8th IAPR - TC-15 Workshop on Graph-based Representations in Pattern Recognition Smooth Simultaneous Structural Graph Matching and Point-Set Registration Gerard Sanromà¹, René Alquézar² and Francesc Serratosa¹

More information

CS 231A Computer Vision (Winter 2018) Problem Set 3

CS 231A Computer Vision (Winter 2018) Problem Set 3 CS 231A Computer Vision (Winter 2018) Problem Set 3 Due: Feb 28, 2018 (11:59pm) 1 Space Carving (25 points) Dense 3D reconstruction is a difficult problem, as tackling it from the Structure from Motion

More information

arxiv: v1 [cs.cv] 28 Sep 2018

arxiv: v1 [cs.cv] 28 Sep 2018 Camera Pose Estimation from Sequence of Calibrated Images arxiv:1809.11066v1 [cs.cv] 28 Sep 2018 Jacek Komorowski 1 and Przemyslaw Rokita 2 1 Maria Curie-Sklodowska University, Institute of Computer Science,

More information

Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry

Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry Purposive Sample Consensus: A Paradigm for Model Fitting with Application to Visual Odometry Jianguo Wang and Xiang Luo Abstract RANSAC (random sample consensus) is a robust algorithm for model fitting

More information

Optimal Relative Pose with Unknown Correspondences

Optimal Relative Pose with Unknown Correspondences Optimal Relative Pose with Unknown Correspondences Johan Fredriksson 1,Viktor Larsson 1, Carl Olsson 1 and Fredrik Kahl 1,2 1 Lund University, Sweden 2 Chalmers University of Technology, Sweden {johanf,

More information

3D Computer Vision. Structure from Motion. Prof. Didier Stricker

3D Computer Vision. Structure from Motion. Prof. Didier Stricker 3D Computer Vision Structure from Motion Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Structure

More information

CS 231A Computer Vision (Winter 2014) Problem Set 3

CS 231A Computer Vision (Winter 2014) Problem Set 3 CS 231A Computer Vision (Winter 2014) Problem Set 3 Due: Feb. 18 th, 2015 (11:59pm) 1 Single Object Recognition Via SIFT (45 points) In his 2004 SIFT paper, David Lowe demonstrates impressive object recognition

More information

Homography estimation

Homography estimation RANSAC continued Homography estimation x w? ~x img H~x w Homography estimation? x img ~x w = H 1 ~x img Homography estimation (0,0) (1,0) (6.4,2.8) (8.0,2.9) (5.6, 4.0) (7.8, 4.2) (0,1) (1,1) Ah =0s.tkhk

More information

AUTOMATIC MATCHING AND GEO-REFERENCING OF HISTORICAL AERIAL IMAGES

AUTOMATIC MATCHING AND GEO-REFERENCING OF HISTORICAL AERIAL IMAGES AUTOMATIC MATCHING AND GEO-REFERENCING OF HISTORICAL AERIAL IMAGES I-Wen Chen 1, Hou-Ren Chen 2, Yi-Hsing Tseng b Department of Geomatics, National Cheng Kung University, No.1, University Rd., Tainan City

More information