WORHP Lab The Graphical User Interface for Optimisation and Optimal Control

Size: px
Start display at page:

Download "WORHP Lab The Graphical User Interface for Optimisation and Optimal Control"

Transcription

1 WORHP Lab The Graphical User Interface for Optimisation and Optimal Control M. Knauer, C. Büskens Zentrum für Universität Bremen 3rd European Optimisation in Space Engineering 17 th - 18 th September 2015

2 Overview WORHP Lab WORHP WORHP Zen TransWORHP Introduction to GUI Definition of problem Sensitivity derivatives Usage in WORHP TransWORHP Direct methods Grid refinement Sparsity Structures MPC

3 Sparse NLP solver >10 9 variables >10 9 constraints Official ESA NLP solver Parallel linear algebra 99.8% of AMPL CUTEr testset Funding Subpartner WORHP Development The WORHP Family We Optimize Really Huge Problems >500 users worldwide >120 international users Free for academics and testing Industrial standard ECSS-E-40 tailored TRL 6-7 (of 9) Interfaces C++ FORTRAN MATLAB/Simulink AMPL

4 Nonlinear Optimization Problem formulation Standard formulation WORHP formulation

5 WORHP Lab Simplified interface to WORHP hide initialization and reverse communication from user for common tasks (e.g. data interpolation) easy access to solution Showcase for features of WORHP Industrial workshops Education (university, school)

6 WORHP Lab Load and set function handles Optimisation variables with box constraints, parameters Objective function MinGW Visual Studio Constraints C++ source file DLL

7 Smooth surfaces Minimise difference of adjacent matrix entries where some entries are fixed

8 Smooth surfaces

9 Sparse NLP solver >10 9 variables >10 9 constraints Official ESA NLP solver Parallel linear algebra 99.8% of AMPL CUTEr testset Funding Subpartner WORHP Development The WORHP Family We Optimize Really Huge Problems WORHP Zen Parametric sensitivity analysis WORHP TransWORHP Postoptimality analysis tool Perturbations nonlinear linear in constraints natural in objective No computational cost Verification of the model Funding Development

10 WORHP Zen Impact of small perturbations on optimal solution Parametric Nonlinear Programming Sensitivity derivatives of solution Extension of sensitivity theorem of Fiacco, Robinson Eliminating NLP fractals (relaxation, regularisation) Without measurable computational cost For free: Additional sensitivity derivatives and

11 Sensitivity analysis in objective Change weighting parameters in objective Linear approximation of Pareto front

12 Sensitivity analysis in constraints Change amplitude of boundary

13 Sparse NLP solver >10 9 variables >10 9 constraints Official ESA NLP solver Parallel linear algebra 99.8% of AMPL CUTEr testset Funding Subpartner The WORHP Family We Optimize Really Huge Problems WORHP WORHP Zen TransWORHP Development Parametric sensitivity analysis WORHP TransWORHP Postoptimality analysis tool Perturbations nonlinear linear in constraints natural in objective No computational cost Sparse OCP solver >10 6 state and control variables in time Implicit methods (full discretization) Explicit methods (multiple shooting) Multiple Phases Derivatives via operator overloading Funding Development Funding Development

14 Parking Simple optimal control problem

15 Mathematical Task General problem formulation of optimal control How do I have to control the motors, so that a system is brought from an initial position to a final position as good as possible without overstressing?

16 Mathematical Task General problem formulation of optimal control

17 Optimal Control Problem Standard formulation and methods Indirect Methods (First optimize, then discretize) Reformulation to a boundary value problem using necessary conditions Direct Methods (First discretize, then optimize) Reformulation to a nonlinear optimization problem by discretization

18 Direct Methods Numerical solution by discretization of time variable Single Shooting/Multiple Shooting Free Variables Full Discretization Free Variables Recursive integration Integration scheme as constraints Small + dense Large + sparse

19 Direct Methods Numerical Solution by discretization of time variable and Euler s method, e.g. High dimensional NLP problem

20 Euler s Method Methods of Higher Order Implicit methods for free Precision of solution Trapezoidal rule Hermite-Simpson: additional point

21 Parking Dynamic system States: Position x, y Orientation of car Steering angle Velocity v Controls Rate of steering angle Acceleration u Constants Gear ratio b

22 Parking Optimal control problem Objective: Free process time and energy consumption Boundary conditions: Halt at initial and terminal point Path constraints: Avoid (x,y) = (5,0)

23 Parking Solution Estimated error on grid Full discretization: Euler, Trapezoidal, Hermite Simpson Adaptive grid points Multiple shooting

24 Matrix Structures Automatic sparsity detection other value structural zero Structure due to integration method Structure due to sparse ode system sparse path constraints

25 Sensitivity Analysis for Parking Result from WORHP Zen Sensitivity of gear ratio

26 Sensitivity Analysis for Parking Result from WORHP Zen Sensitivity of initial position x

27 Real-Time Optimal Control Using sensitivity differentials of ode 1. Update control and state for 2. Measure deviations 3. While a. Update control and state b. Update deviation,

28 Real-Time Optimal Control

29 Tracking Problems Industrial Application Simulation environments real-time reaction to user input robot-based flight simulations Assistance systems controller to simplify handling Hexapod-Robot control=acceleration 15 state functions 7 control functions Predicted Pseudo-Tracking Optimization cycle <200 ms Task unknown in advance Task too complex for feedback controllers Crane System Tracking of user input

30 MPC with TransWORHP Nonlinear Model Predictive Control Finite prediction horizon Accept only first part of iterative solution

31 Objective: Reach target Stable final position No boundary conditions Chasing with a car MPC Prediction time: 2 seconds Accepted time: 0.5 seconds Target moves on Lissajous figure

32 Conclusions WORHP Family WORHP - TransWORHP - WORHP Zen - WORHP Lab Online and real-time solutions of OCP WORHP/TransWORHP < 1000 ms MPC for tracking < 100 ms Real-time correction < 1 ms Current Work. Representative examples Automatic derivatives using operator overloading 3d visualization Support of various user input devices (Joystick, Kinect) Transfer. e.g. Automotive, Logistics, Aerospace, Energy

Understanding Concepts of Optimization and Optimal Control with WORHP Lab

Understanding Concepts of Optimization and Optimal Control with WORHP Lab Understanding Concepts of Optimization and Optimal Control with WORHP Lab M. Knauer, C. Büskens Zentrum für Universität Bremen 6th International Conference on Astrodynamics Tools and Techniques 14 th -

More information

Parametric Sensitivity Analysis of NLP Problems and its Applications to Real-Time Controller Design

Parametric Sensitivity Analysis of NLP Problems and its Applications to Real-Time Controller Design SADCO - Sensitivity Analysis for Deterministic Controller Design Parametric Sensitivity Analysis of NLP Problems and its Applications to Real-Time Controller Design Part 1: Nonlinear Real-Time Optimization

More information

From Theory to Application (Optimization and Optimal Control in Space Applications)

From Theory to Application (Optimization and Optimal Control in Space Applications) From Theory to Application (Optimization and Optimal Control in Space Applications) Christof Büskens Optimierung & Optimale Steuerung 02.02.2012 The paradox of mathematics If mathematics refer to reality,

More information

Design optimisation of industrial robots using the Modelica multi-physics modeling language

Design optimisation of industrial robots using the Modelica multi-physics modeling language Design optimisation of industrial robots using the Modelica multi-physics modeling language A. Kazi, G. Merk, M. Otter, H. Fan, (ArifKazi, GuentherMerk)@kuka-roboter.de (Martin.Otter, Hui.Fan)@dlr.de KUKA

More information

Robotics: Science and Systems

Robotics: Science and Systems Robotics: Science and Systems Model Predictive Control (MPC) Zhibin Li School of Informatics University of Edinburgh Content Concepts of MPC MPC formulation Objective function and constraints Solving the

More information

ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION

ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION ACADO Toolkit - Automatic Control and Dynamic Optimization p. 1/24 ACADO TOOLKIT - AUTOMATIC CONTROL AND DYNAMIC OPTIMIZATION Moritz Diehl, Boris Houska, Hans Joachim Ferreau Optimization in Engineering

More information

Optimal Control Techniques for Dynamic Walking

Optimal Control Techniques for Dynamic Walking Optimal Control Techniques for Dynamic Walking Optimization in Robotics & Biomechanics IWR, University of Heidelberg Presentation partly based on slides by Sebastian Sager, Moritz Diehl and Peter Riede

More information

Video 11.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 11.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 11.1 Vijay Kumar 1 Smooth three dimensional trajectories START INT. POSITION INT. POSITION GOAL Applications Trajectory generation in robotics Planning trajectories for quad rotors 2 Motion Planning

More information

Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications

Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications Real-Time Optimization for Fast Nonlinear MPC: Algorithms, Theory, and Applications Moritz Diehl Optimization in Engineering Center OPTEC & ESAT, K.U. Leuven Joint work with H. J. Ferreau*, B. Houska*,

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Best Practices Workshop: Overset Meshing

Best Practices Workshop: Overset Meshing Best Practices Workshop: Overset Meshing Overview Introduction to Overset Meshes Range of Application Workflow Demonstrations and Best Practices What are Overset Meshes? Overset meshes are also known as

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution

Multigrid Pattern. I. Problem. II. Driving Forces. III. Solution Multigrid Pattern I. Problem Problem domain is decomposed into a set of geometric grids, where each element participates in a local computation followed by data exchanges with adjacent neighbors. The grids

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics

CFD-1. Introduction: What is CFD? T. J. Craft. Msc CFD-1. CFD: Computational Fluid Dynamics School of Mechanical Aerospace and Civil Engineering CFD-1 T. J. Craft George Begg Building, C41 Msc CFD-1 Reading: J. Ferziger, M. Peric, Computational Methods for Fluid Dynamics H.K. Versteeg, W. Malalasekara,

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Panagiotis Tsiotras Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology ICRAT 12 Tutotial on Methods for Optimal Trajectory Design

More information

Solving Optimal Control Problems with ACADO Toolkit

Solving Optimal Control Problems with ACADO Toolkit Solving Optimal Control Problems with ACADO Toolkit Boris Houska, Hans Joachim Ferreau, Moritz Diehl Electrical Engineering Department K.U. Leuven OPTEC Seminar, 2/9/2009 Electrical Engineering Department

More information

Recent developments in simulation, optimization and control of flexible multibody systems

Recent developments in simulation, optimization and control of flexible multibody systems Recent developments in simulation, optimization and control of flexible multibody systems Olivier Brüls Department of Aerospace and Mechanical Engineering University of Liège o.bruls@ulg.ac.be Katholieke

More information

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems 2D & 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems Choon Ki Ahn, Jung Hun Park, and Wook Hyun Kwon 1 Abstract CEMTool is a command style design and analyzing package for scientific

More information

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings Scientific Papers, University of Latvia, 2010. Vol. 756 Computer Science and Information Technologies 207 220 P. A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Approximate nonlinear explicit MPC based on reachability analysis

Approximate nonlinear explicit MPC based on reachability analysis Approximate nonlinear explicit MPC based on reachability analysis D.M. Raimondo 1, M. Schulze Darup 2, M. Mönnigmann 2 Università degli studi di Pavia Ruhr-Universität Bochum The system Introduction: Nonlinear

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

Explicit MPC in Mechatronics Industry:

Explicit MPC in Mechatronics Industry: European Control Conference, July 8 th, 23 Zurich, CH MITSUBISHI ELECTRIC RESEARCH LABORATORIES Cambridge, Massachusetts Explicit MPC in Mechatronics Industry: Technology Transfer Potential and Limitations

More information

Data mining with sparse grids

Data mining with sparse grids Data mining with sparse grids Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Data mining with sparse grids p.1/40 Overview What is Data mining? Regularization networks

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information

Using efficient numerical methods in large-scale air pollution modelling

Using efficient numerical methods in large-scale air pollution modelling Using efficient numerical methods in large-scale air pollution modelling ZAHARI ZLATEV National Environmental Research Institute, Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, DENMARK Abstract:

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur

Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Curve Representation ME761A Instructor in Charge Prof. J. Ramkumar Department of Mechanical Engineering, IIT Kanpur Email: jrkumar@iitk.ac.in Curve representation 1. Wireframe models There are three types

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

ACADO Code Generation tool

ACADO Code Generation tool ACADO Code Generation tool Rien Quirynen July 31, 2015 Introduction Automatic Code Generation Real-Time Iterations Application examples ACADO demo Outline Introduction Automatic Code Generation Real-Time

More information

Flight Systems are Cyber-Physical Systems

Flight Systems are Cyber-Physical Systems Flight Systems are Cyber-Physical Systems Dr. Christopher Landauer Software Systems Analysis Department The Aerospace Corporation Computer Science Division / Software Engineering Subdivision 08 November

More information

Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University

Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University Can we quantify the hardness of learning manipulation? Kris Hauser Department of Electrical and Computer Engineering Duke University Robot Learning! Robot Learning! Google used 14 identical robots 800,000

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Data mining with sparse grids using simplicial basis functions

Data mining with sparse grids using simplicial basis functions Data mining with sparse grids using simplicial basis functions Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Part of the work was supported within the project 03GRM6BN

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Discontinuous Galerkin Sparse Grid method for Maxwell s equations

Discontinuous Galerkin Sparse Grid method for Maxwell s equations Discontinuous Galerkin Sparse Grid method for Maxwell s equations Student: Tianyang Wang Mentor: Dr. Lin Mu, Dr. David L.Green, Dr. Ed D Azevedo, Dr. Kwai Wong Motivation u We consider the Maxwell s equations,

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

D036 Accelerating Reservoir Simulation with GPUs

D036 Accelerating Reservoir Simulation with GPUs D036 Accelerating Reservoir Simulation with GPUs K.P. Esler* (Stone Ridge Technology), S. Atan (Marathon Oil Corp.), B. Ramirez (Marathon Oil Corp.) & V. Natoli (Stone Ridge Technology) SUMMARY Over the

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI François Thirifay and Philippe Geuzaine CENAERO, Avenue Jean Mermoz 30, B-6041 Gosselies, Belgium Abstract. This paper reports

More information

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 -

More information

Outline. Robust MPC and multiparametric convex programming. A. Bemporad C. Filippi. Motivation: Robust MPC. Multiparametric convex programming

Outline. Robust MPC and multiparametric convex programming. A. Bemporad C. Filippi. Motivation: Robust MPC. Multiparametric convex programming Robust MPC and multiparametric convex programming A. Bemporad C. Filippi D. Muñoz de la Peña CC Meeting Siena /4 September 003 Outline Motivation: Robust MPC Multiparametric convex programming Kothares

More information

HPC Algorithms and Applications

HPC Algorithms and Applications HPC Algorithms and Applications Dwarf #5 Structured Grids Michael Bader Winter 2012/2013 Dwarf #5 Structured Grids, Winter 2012/2013 1 Dwarf #5 Structured Grids 1. dense linear algebra 2. sparse linear

More information

Dynamic Optimization in JModelica.org

Dynamic Optimization in JModelica.org Dynamic Optimization in JModelica.org Magnusson, Fredrik; Åkesson, Johan Published in: Processes DOI: 10.3390/pr3020471 2015 Document Version: Publisher's PDF, also known as Version of record Link to publication

More information

Overview. 1. Ordinary Differential Equations, Algebraic Equations. 2. Block Diagrams

Overview. 1. Ordinary Differential Equations, Algebraic Equations. 2. Block Diagrams Overview 1. Ordinary Differential Equations, Algebraic Equations 2. Block Diagrams 3. Causal Block Diagrams denotational semantics (modelling) operational semantics (simulation) 4. Virtual Experimentation

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

GEOMETRY MODELING & GRID GENERATION

GEOMETRY MODELING & GRID GENERATION GEOMETRY MODELING & GRID GENERATION Dr.D.Prakash Senior Assistant Professor School of Mechanical Engineering SASTRA University, Thanjavur OBJECTIVE The objectives of this discussion are to relate experiences

More information

arxiv: v1 [math.na] 20 Sep 2016

arxiv: v1 [math.na] 20 Sep 2016 arxiv:1609.06236v1 [math.na] 20 Sep 2016 A Local Mesh Modification Strategy for Interface Problems with Application to Shape and Topology Optimization P. Gangl 1,2 and U. Langer 3 1 Doctoral Program Comp.

More information

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016

ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 ACCELERATING CFD AND RESERVOIR SIMULATIONS WITH ALGEBRAIC MULTI GRID Chris Gottbrath, Nov 2016 Challenges What is Algebraic Multi-Grid (AMG)? AGENDA Why use AMG? When to use AMG? NVIDIA AmgX Results 2

More information

The Use of Python Scripts in TAU. Thomas Gerhold. Folie 1 > TAU -Python scripting capability. 22/23t September 20055

The Use of Python Scripts in TAU. Thomas Gerhold. Folie 1 > TAU -Python scripting capability. 22/23t September 20055 The Use of Python Scripts in TAU Thomas Gerhold Folie 1 > TAU -Python scripting capability 22/23t September 20055 Overview Background Idea Perspectives Usage of python scripts Scripting examples & capabilities

More information

MODA. Modelling data documenting one simulation. ALLIANCE, Design and Optimization

MODA. Modelling data documenting one simulation. ALLIANCE, Design and Optimization MODA Modelling data documenting one simulation ALLIANCE, Design and Optimization Metadata for these elements are to be elaborated over time Purpose of this document: Definition of a data organisation that

More information

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications Per-Olof Persson (persson@mit.edu) Department of Mathematics Massachusetts Institute of Technology http://www.mit.edu/

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

Structure and Synthesis of Robot Motion

Structure and Synthesis of Robot Motion Structure and Synthesis of Robot Motion Dynamics: Constraints, Continua, etc. Subramanian Ramamoorthy School of Informatics 5 February, 2009 Recap Last time, we discussed two major approaches to describing

More information

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES

ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE ASSESSMENT BY MIXED MESHES VI International Conference on Adaptive Modeling and Simulation ADMOS 2013 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) ABOUT THE GENERATION OF UNSTRUCTURED MESH FAMILIES FOR GRID CONVERGENCE

More information

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data Data-Driven Modeling & Scientific Computation Methods for Complex Systems & Big Data J. NATHAN KUTZ Department ofapplied Mathematics University of Washington OXPORD UNIVERSITY PRESS Contents Prolegomenon

More information

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No

This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No This project has received funding from the European Union s Horizon 2020 research and innovation programme under grant agreement No 643921. TOOLS INTEGRATION UnCoVerCPS toolchain Goran Frehse, UGA Xavier

More information

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm

An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm An Optimization Method Based On B-spline Shape Functions & the Knot Insertion Algorithm P.A. Sherar, C.P. Thompson, B. Xu, B. Zhong Abstract A new method is presented to deal with shape optimization problems.

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem

Indian Institute of Technology Kanpur. Visuomotor Learning Using Image Manifolds: ST-GK Problem Indian Institute of Technology Kanpur Introduction to Cognitive Science SE367A Visuomotor Learning Using Image Manifolds: ST-GK Problem Author: Anurag Misra Department of Computer Science and Engineering

More information

Dipartimento di Ingegneria Aerospaziale Politecnico di Milano

Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Trajectory optimization and real-time simulation for robotics applications Michele Attolico Pierangelo Masarati Paolo Mantegazza Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Multibody

More information

Journal of Computational Physics

Journal of Computational Physics Journal of Computational Physics 3 () 56 577 Contents lists available at SciVerse ScienceDirect Journal of Computational Physics journal homepage: www.elsevier.com/locate/jcp A robust and efficient method

More information

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS

Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Efficient Shape Optimisation of an Aircraft Landing Gear Door Locking Mechanism by Coupling Abaqus to GENESIS Mark Arnold and Martin Gambling Penso Consulting Ltd GRM Consulting Ltd Abstract: The objective

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA

Computational Acceleration of Image Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Computational Acceleration of Inpainting Alternating-Direction Implicit (ADI) Method Using GPU CUDA Mutaqin Akbar mutaqin.akbar@gmail.com Pranowo pran@mail.uajy.ac.id Suyoto suyoto@mail.uajy.ac.id Abstract

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract

C. A. D. Fraga Filho 1,2, D. F. Pezzin 1 & J. T. A. Chacaltana 1. Abstract Advanced Computational Methods and Experiments in Heat Transfer XIII 15 A numerical study of heat diffusion using the Lagrangian particle SPH method and the Eulerian Finite-Volume method: analysis of convergence,

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 5:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 5: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture5/5_1.htm 1 of 1 6/20/2012 12:22 PM The Lecture deals with: Explicit and Implicit Methods file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture5/5_2.htm

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

CasADi tutorial Introduction

CasADi tutorial Introduction Lund, 6 December 2011 CasADi tutorial Introduction Joel Andersson Department of Electrical Engineering (ESAT-SCD) & Optimization in Engineering Center (OPTEC) Katholieke Universiteit Leuven OPTEC (ESAT

More information

System Identification Algorithms and Techniques for Systems Biology

System Identification Algorithms and Techniques for Systems Biology System Identification Algorithms and Techniques for Systems Biology by c Choujun Zhan A Thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the degree of Doctor

More information

Realistic Animation of Fluids

Realistic Animation of Fluids 1 Realistic Animation of Fluids Nick Foster and Dimitris Metaxas Presented by Alex Liberman April 19, 2005 2 Previous Work Used non physics-based methods (mostly in 2D) Hard to simulate effects that rely

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Montana Instructional Alignment HPS Critical Competencies Mathematics Honors Pre-Calculus

Montana Instructional Alignment HPS Critical Competencies Mathematics Honors Pre-Calculus Content Standards Content Standard 1 - Number Sense and Operations Content Standard 2 - Data Analysis A student, applying reasoning and problem solving, will use number sense and operations to represent

More information

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver

Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver www.dlr.de Folie 1 > HONOM 2013 > Marcel Wallraff, Tobias Leicht 21. 03. 2013 Higher Order Multigrid Algorithms for a 2D and 3D RANS-kω DG-Solver Marcel Wallraff, Tobias Leicht DLR Braunschweig (AS - C

More information

Numerical schemes for Hamilton-Jacobi equations, control problems and games

Numerical schemes for Hamilton-Jacobi equations, control problems and games Numerical schemes for Hamilton-Jacobi equations, control problems and games M. Falcone H. Zidani SADCO Spring School Applied and Numerical Optimal Control April 23-27, 2012, Paris Lecture 2/3 M. Falcone

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Geometric Modeling Assignment 3: Discrete Differential Quantities

Geometric Modeling Assignment 3: Discrete Differential Quantities Geometric Modeling Assignment : Discrete Differential Quantities Acknowledgements: Julian Panetta, Olga Diamanti Assignment (Optional) Topic: Discrete Differential Quantities with libigl Vertex Normals,

More information

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons

Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Validation of an Unstructured Overset Mesh Method for CFD Analysis of Store Separation D. Snyder presented by R. Fitzsimmons Stores Separation Introduction Flight Test Expensive, high-risk, sometimes catastrophic

More information

On efficient Hessian computation using Edge Pushing algorithm in Julia

On efficient Hessian computation using Edge Pushing algorithm in Julia On efficient Hessian computation using Edge Pushing algorithm in Julia Feng Qiang Argonne National Laboratory Joint work with Cosmin G. Petra (LLNL), Joey Huchette (MIT), Miles Lubin (MIT), Mihai Anitescu

More information

Information Coding / Computer Graphics, ISY, LiTH. Splines

Information Coding / Computer Graphics, ISY, LiTH. Splines 28(69) Splines Originally a drafting tool to create a smooth curve In computer graphics: a curve built from sections, each described by a 2nd or 3rd degree polynomial. Very common in non-real-time graphics,

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Sensitivity computation based on CasADi for dynamic optimization problems

Sensitivity computation based on CasADi for dynamic optimization problems Sensitivity computation based on CasADi for dynamic optimization problems 16 th European Workshop on Automatic Differentiation 8 9 December 2014, Jena, Germany Evgeny Lazutkin, Abebe Geletu, Siegbert Hopfgarten,

More information

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology.

Algorithmic Semi-algebraic Geometry and its applications. Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 1 Algorithmic Semi-algebraic Geometry and its applications Saugata Basu School of Mathematics & College of Computing Georgia Institute of Technology. 2 Introduction: Three problems 1. Plan the motion of

More information

Clothoid Based Spline-RRT with Bézier Approximation

Clothoid Based Spline-RRT with Bézier Approximation Clothoid Based Spline-RRT with Bézier Approximation CHEN YONG - School of Mechanical & Aerospace Engineering - Institute for Media Innovation Supervisors: Assoc Prof. Cai Yiyu - School of Mechanical &

More information

Arizona Academic Standards

Arizona Academic Standards Arizona Academic Standards This chart correlates the Grade 8 performance objectives from the mathematics standard of the Arizona Academic Standards to the lessons in Review, Practice, and Mastery. Lesson

More information

An Overview of Computational Fluid Dynamics

An Overview of Computational Fluid Dynamics An Overview of Computational Fluid Dynamics Dr. Nor Azwadi bin Che Sidik Faculty of Mechanical Engineering Universiti Teknologi Malaysia INSPIRING CREATIVE AND INNOVATIVE MINDS 1 What is CFD? C computational

More information

Olivier Brüls. Department of Aerospace and Mechanical Engineering University of Liège

Olivier Brüls. Department of Aerospace and Mechanical Engineering University of Liège Fully coupled simulation of mechatronic and flexible multibody systems: An extended finite element approach Olivier Brüls Department of Aerospace and Mechanical Engineering University of Liège o.bruls@ulg.ac.be

More information

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction

FOR P3: A monolithic multigrid FEM solver for fluid structure interaction FOR 493 - P3: A monolithic multigrid FEM solver for fluid structure interaction Stefan Turek 1 Jaroslav Hron 1,2 Hilmar Wobker 1 Mudassar Razzaq 1 1 Institute of Applied Mathematics, TU Dortmund, Germany

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Enabling model based decision making by sharing consistent equation oriented dynamic models. optimization environments. Ajay Lakshmanan Manager, R&D

Enabling model based decision making by sharing consistent equation oriented dynamic models. optimization environments. Ajay Lakshmanan Manager, R&D Enabling model based decision i making by sharing consistent equation oriented dynamic models between multiple simulation and optimization environments Ajay Lakshmanan Manager, R&D Overview Why do we need

More information

3-D Wind Field Simulation over Complex Terrain

3-D Wind Field Simulation over Complex Terrain 3-D Wind Field Simulation over Complex Terrain University Institute for Intelligent Systems and Numerical Applications in Engineering Congreso de la RSME 2015 Soluciones Matemáticas e Innovación en la

More information

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC

Algorithms, System and Data Centre Optimisation for Energy Efficient HPC 2015-09-14 Algorithms, System and Data Centre Optimisation for Energy Efficient HPC Vincent Heuveline URZ Computing Centre of Heidelberg University EMCL Engineering Mathematics and Computing Lab 1 Energy

More information

AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION

AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION AUTONOMOUS PLANETARY ROVER CONTROL USING INVERSE SIMULATION Kevin Worrall (1), Douglas Thomson (1), Euan McGookin (1), Thaleia Flessa (1) (1)University of Glasgow, Glasgow, G12 8QQ, UK, Email: kevin.worrall@glasgow.ac.uk

More information