9.7 Plane Curves & Parametric Equations Objectives

Size: px
Start display at page:

Download "9.7 Plane Curves & Parametric Equations Objectives"

Transcription

1 . Graph Parametric Equations 9.7 Plane Curves & Parametric Equations Objectives. Find a Rectangular Equation for a Curve Defined Parametrically. Use Time as a Parameter in Parametric Equations 4. Find Parametric Equations for Curves Defined by Rectangular Equations 4 December, 07 Kidoguchi Kenneth

2 9.7 Plane Curves & Parametric Equations Review The location of a point in space can be specified using: Rectangular Coordinates, often written (x, y) where x represents the signed horizontal distance of the point from the vertical axis and y represents the signed vertical distance of the point from the horizontal axis. Polar Coordinates, (r, q) where r represents the signed distance of the point from the pole (i.e., a position vector) and q represents the angle position of r. Parametric Equations, (x(t), y(t)) where x(t) represents the horizontal location as a function of t and y(t) represents the vertical location as a function of t. 4 December, 07 Kidoguchi Kenneth

3 y = r(q) sin(q) 9.7 Plane Curves & Parametric Equations 7.6 Polar Coordinates: Locating a Point in Polar Coordinates on the Cartesian Plane Given r(q), sin(q) = y/r y = r(q) sin(q) 4p/6 p/6 p/6 (r,q ) cos(q) = x/r x = r(q) cos(q) 5p/6 p/6 x + y = r If: (r, q) = (4, p/) ( x, y) 4 p 4cos,,, 4 p 4sin p 7p/6 q x = r(q) cos(q) 4 p/6 8p/6 0p/6 9p/6 4 December, 07 Kidoguchi Kenneth

4 9.7 Plane Curves & Parametric Equations 7.6 Polar Coordinates: Locating a Point in Polar Coordinates q = angular displacement of the point. r = linear distance of a point from pole. r < 0 means the point is located by a reflection through the pole. r = 0 means the point is at the pole. (r,q ) = (, p/6) (r,q ) = (4, p/) (r,q ) = (-4, p/) p 5p/6 7p/6 (r,q ) 4p/6 p/6 p/6 p/6 4 8p/6 0p/6 9p/6 (r,q ) (r,q ) p/6 4 December, 07 4 Kidoguchi Kenneth

5 9.7 Plane Curves & Parametric Equations Locating a Point in Polar Coordinates on the Cartesian Plane Let the angle q be a function of time t so that: 4p/6 y p/6 q(t) = wt - f t + 0 Consider a point located in -space by a polar equation 5p/6 p/6 r(t) = + cos(t), where r(t) represents the distance of the point from the pole at time t. p 0p/ 9p/ 6p/ 5p/ p/ 4p/ 8p/ 7p/ p/6 4 x Then: x(t) = r(t)cos(t) y(t) = r(t)sin(t) 7p/6 p/6 x(0p/) x(4p/) x(p/) x(p/) x(p/) x(5p/) x(6p/) x(7p/) x(8p/) x(9p/) x(0p/) = r(4p/)cos(4p/) r(0p/)cos(0p/) r(p/)cos(p/) r(p/)cos(p/) r(p/)cos(p/) r(5p/)cos(5p/) r(6p/)cos(6p/) r(7p/)cos(7p/) r(8p/)cos(8p/) r(9p/)cos(9p/) r(0p/)cos(0p/) y(0p/) y(4p/) y(p/) y(p/) y(p/) y(5p/) y(6p/) y(7p/) y(8p/) y(9p/) y(0p/) = r(4p/)sin(4p/) r(0p/)sin(0p/) r(p/)sin(p/) r(p/)sin(p/) r(p/)sin(p/) r(5p/)sin(5p/) r(6p/)sin(6p/) r(7p/)sin(7p/) r(8p/)sin(8p/) r(9p/)sin(9p/) r(0p/)sin(0p/) 8p/6 0p/6 4 December, 07 6 Kidoguchi Kenneth

6 9.7 Plane Curves & Parametric Equations Comparison of Graphs in Cartesian and Polar Coordinates Polar form: r(t) = t Parametric form: x(t) = r(t) cos(t) = t cos(t) y(t) = r(t) sin(t) = t sin(t) x(p/) x(p/) x(5p/6) = p/ p/ 5p/6 cos(p/) cos(p/) cos(5p/6) y(p/) y(p/) y(5p/6) = p/ p/ 5p/6 sin(p/) sin(p/) sin(5p/6) p 5p/6 7p/6 Archimedes Spiral 4p/6 p/6 p/6 4 p/6 0 p/6 8p/6 0p/6 9p/6 4 December, 07 7 Kidoguchi Kenneth

7 9.7 Plane Curves & Parametric Equations A System of Linear Equations Consider the system of parametric equations: x(t) = t, horizontal coordinate as a function of the parameter t. y(t) = t, vertical coordinate as a function of the parameter t. In the xy-plane (aka phase plane) we can create a "parametric plot" with the ordered pairs (x(t), y(t)). t x y 5 4 y x 4 December, 07 9 Kidoguchi Kenneth

8 x(t) or y(t) Plane Curves & Parametric Equations A System of Linear Equations Consider the system of parametric equations: x(t) = t, horizontal coordinate as a function of the parameter t. y(t) = t, vertical coordinate as a function of the parameter t. In the xy-plane (aka phase plane) we can create a "parametric plot" with the ordered pairs (x(t), y(t)). Note that in this case, the system can be decoupled so that: y = ½ x. y t December, 07 0 Kidoguchi Kenneth 5 4 t = 0 (0,0) t = (,) t = (4,) x

9 x(t) or y(t) Plane Curves & Parametric Equations An Ellipse Consider the system of parametric equations: x(t) = cos(pt) - y(t) = sin(pt) + In the xy-plane (aka phase plane) we can create a "parametric plot" with the ordered pairs (x(t), y(t)). x + y - cos( pt) sin( pt) x y cos ( pt) + sin t (-,) (-,4) (-,0) 4 December, 07 Kidoguchi Kenneth y ( pt) (0,) x

10 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Graph the motion of a particle whose position at time t is given x(t) and y(t) in the xy-plane. x(t) 4 y(t) t t 4 December, 07 Kidoguchi Kenneth

11 x(t) Plane Curves & Parametric Equations Graphs of Parametric Equations t y(t) t December, 07 Kidoguchi Kenneth x

12 x(t) 4 y Plane Curves & Parametric Equations Graphs of Parametric Equations y(t) t December, 07 4 Kidoguchi Kenneth x 0 < t < < t < < t < < t < 4 4 < t < 5 5 < t < 6 t

13 9.7 Plane Curves & Parametric Equations A Coupled System The Parametric Equations of Motion Consider Galileo s kinematic equations, x(t) = v 0 cos(a) t + x 0 y(t) = -½ gt + v 0 sin(a) t + y 0 where x(t) and y(t) are the parametric equations for the coordinates of a particle at time t and x(0) = x 0, y(0)=y 0. The particle s initial speed and initial trajectory angle are v 0 and q 0 respectively. The acceleration due to gravity g is assumed constant. y v 0 a The trajectory of a projectile is described by Galileo s kinematic equations. Present the analysis to find an expression for the vertical position of the projectile, y, as a function of its horizontal position, x. x 4 December, 07 5 Kidoguchi Kenneth

14 9.7 Plane Curves & Parametric Equations Decoupling A System of Parametric Equations Equations {} & {} are the kinematic equations with (x 0, y 0 ) = (0, 0), {} x(t) = v 0 cos(a) t {} y(t) = -½ gt + v 0 sin(a) t Show position coordinates as functions of time. The system can be decoupled as y(x), vertical position as a function of horizontal position. 4 December, 07 6 Kidoguchi Kenneth

15 The hour hand and the minute hand of a clock are cm and 4 cm long, respectively. The origin of the xy-plane is at the centre of the clock face and the positive x-axis and zero radians, goes through the three o'clock position. Let t = 0 be a time when both hands are co-terminal (e.g., both hands are coterminal at midnight). Present the analysis to find an exact value of t for the next occurrence of angular coincidence. 9.7 Plane Curves & Parametric Equations Parametric Equations of Sorts December, 07 8 Kidoguchi Kenneth

16 4 December, 07 9 Kidoguchi Kenneth

17 5 m 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations A Double Ferris Wheel has a 0 metre rotating arm attached at its centre to a 5 metre main support. At each end of the rotating arm is attached a Ferris Wheel measuring 0 metres in diameter. Each wheel rotates in the direction indicated. It takes the rotating arm 6 minutes to complete one revolution and it takes 4 minutes for each Ferris Wheel to complete a revolution about its hub. Main Support At t = 0, a reference point is at the position indicated in the figure. Present the analysis to: Reference t = 0 y (0,0) 0 m 0m x a) find x(t) and y(t), the horizontal and vertical coordinates of the reference point as functions of t, time in minutes, and b) sketch a graph of x vs y over one complete cycle. 4 December, 07 0 Kidoguchi Kenneth

18 5 m 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Step : Analyse the motion of the reference point with respect to the center of the wheel rotation, i.e., ignoring the arm rotation. Let x W (t) and y W (t) be the horizontal and vertical coordinates reference position as functions of t. x W (t) = y W (t) = Main Support Reference t = 0 y (0,0) 0 m 0m x 4 December, 07 Kidoguchi Kenneth

19 5 m 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Step : Analyse the motion of the reference point with respect to the center of the wheel rotation, i.e., ignoring the arm rotation. Let x W (t) and y W (t) be the horizontal and vertical coordinates reference position as functions of t. x W (t) = 0 cos(p/ t) y W (t) = 0 sin(p/ t) Sanity Check: x W (0) = 0 cos(p/ 0) = 0 y W (0) = 0 sin(p/ 0) = 0 x W () = 0 cos(p/ ) = 0 y W () = 0 sin(p/ ) = 0 Main Support Reference t = 0 4 December, 07 Kidoguchi Kenneth y (0,0) 0 m 0m x

20 5 m 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Step : Analyse the motion of the hub, i.e., the appropriate end point of the rotating arm. Let M x (t) and M y (t) be the horizontal and vertical coordinates of the hub as a function of t. M x (t) = Main Support Hub t = 0 y 0m M y (t) = (0,0) 0 m x 4 December, 07 Kidoguchi Kenneth

21 5 m 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Step : Analyse the motion of the hub, i.e., the appropriate end point of the rotating arm. Let M x (t) and M y (t) be the horizontal and vertical coordinates of the hub as a function of t. M x (t) = 5 cos(p/ t) M y (t) = 5 sin(p/ t) + 5 Sanity Check: M x (0) = 5 cos(p/ 0) = 5 M y (0) = 5 sin(p/ 0) + 5 = 5 M x () = 5 cos(p/ ) = -5 M y () = 5 sin(p/ ) + 5 = 5 Main Support Hub t = 0 y (0,0) 0 m 0m x 4 December, 07 4 Kidoguchi Kenneth

22 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Step : Replace the midline of the wheels equations with the hub equation to get the coordinates of the reference position as a function of time: x(t) = x W (t) + M x (t) = 0 cos(p/ t) + 5 cos(p/ t) y(t) = y W (t) + M y (t) = 0 sin(p/ t) + 5 sin(p/ t) + 5 Double Ferris Wheel Parametric Plot 4 December, 07 5 Kidoguchi Kenneth

23 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Given: x(t) = cos( p t), y(t) = sin( p t), 0 < t < a) Graph the given system of parametric equations in the xy-plane and show its orientation. b) Find the rectangular equation for the curve. 4 December, 07 6 Kidoguchi Kenneth

24 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Given: x(t) = sin( p t), y(t) = cos( p t), 0 < t < a) Graph the given system of parametric equations in the xy-plane and show its orientation. b) Find the rectangular equation for the curve. 4 December, 07 7 Kidoguchi Kenneth

25 9.7 Plane Curves & Parametric Equations Graphs of Parametric Equations Given: x(t) = pt - sin( p t), y(t) = - cos( p t), 0 < t < a) Graph the given system of parametric equations in the xy-plane and show its orientation. b) Find the rectangular equation for the curve. 4 December, 07 8 Kidoguchi Kenneth

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Lecture 34: Curves defined by Parametric equations

Lecture 34: Curves defined by Parametric equations Curves defined by Parametric equations When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.5 Polar Equations and Graphs Polar Coordinate System Graphs of Polar Equations Conversion

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

Chapter 10 Homework: Parametric Equations and Polar Coordinates

Chapter 10 Homework: Parametric Equations and Polar Coordinates Chapter 1 Homework: Parametric Equations and Polar Coordinates Name Homework 1.2 1. Consider the parametric equations x = t and y = 3 t. a. Construct a table of values for t =, 1, 2, 3, and 4 b. Plot the

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

6.7. POLAR COORDINATES

6.7. POLAR COORDINATES 6.7. POLAR COORDINATES What You Should Learn Plot points on the polar coordinate system. Convert points from rectangular to polar form and vice versa. Convert equations from rectangular to polar form and

More information

Section 10.1 Polar Coordinates

Section 10.1 Polar Coordinates Section 10.1 Polar Coordinates Up until now, we have always graphed using the rectangular coordinate system (also called the Cartesian coordinate system). In this section we will learn about another system,

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine)

Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Lesson 5.2: Transformations of Sinusoidal Functions (Sine and Cosine) Reflections Horizontal Translation (c) Vertical Translation (d) Remember: vertical stretch horizontal stretch 1 Part A: Reflections

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module: MAC 4 Module 2 Polar and Parametric Equations Learning Objectives Upon completing this module, you should be able to:. Use the polar coordinate system. 2. Graph polar equations. 3. Solve polar equations.

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 1 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t +sin() y t + cos() (a) Find the cartesian

More information

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative

Polar (BC Only) They are necessary to find the derivative of a polar curve in x- and y-coordinates. The derivative Polar (BC Only) Polar coordinates are another way of expressing points in a plane. Instead of being centered at an origin and moving horizontally or vertically, polar coordinates are centered at the pole

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations CHAPTER 10. PARAMETRIC AND POLAR 99 10.1 Curves Defined by Parametric Equations Example 1. Let x and y be given parametric equations below: x(t) =t cos(t) y(t) =t sin(t) (a) Calculate x and y for 11 values

More information

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved.

9.5 Polar Coordinates. Copyright Cengage Learning. All rights reserved. 9.5 Polar Coordinates Copyright Cengage Learning. All rights reserved. Introduction Representation of graphs of equations as collections of points (x, y), where x and y represent the directed distances

More information

Contents 10. Graphs of Trigonometric Functions

Contents 10. Graphs of Trigonometric Functions Contents 10. Graphs of Trigonometric Functions 2 10.2 Sine and Cosine Curves: Horizontal and Vertical Displacement...... 2 Example 10.15............................... 2 10.3 Composite Sine and Cosine

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

Due: Fri Sep :00 PM MDT Question

Due: Fri Sep :00 PM MDT Question Exam 1 Review (10998069) Due: Fri Sep 22 2017 03:00 PM MDT Question 12345678910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Description This is a collection of problems that

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Math 2412 Activity 4(Due with Final Exam)

Math 2412 Activity 4(Due with Final Exam) Math Activity (Due with Final Exam) Use properties of similar triangles to find the values of x and y x y 7 7 x 5 x y 7 For the angle in standard position with the point 5, on its terminal side, find the

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-12=1 There are 2 ways to describe it: x 2 + y 2 = 1 x = cos!

More information

4.1 Radian and Degree Measure

4.1 Radian and Degree Measure 4.1 Radian and Degree Measure Accelerated Pre-Calculus Mr. Niedert Accelerated Pre-Calculus 4.1 Radian and Degree Measure Mr. Niedert 1 / 27 4.1 Radian and Degree Measure 1 Angles Accelerated Pre-Calculus

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Plane Curve [Parametric Equation]

Plane Curve [Parametric Equation] Plane Curve [Parametric Equation] Bander Almutairi King Saud University December 1, 2015 Bander Almutairi (King Saud University) Plane Curve [Parametric Equation] December 1, 2015 1 / 8 1 Parametric Equation

More information

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations

Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations Math 231E, Lecture 34. Polar Coordinates and Polar Parametric Equations 1 Definition of polar coordinates Let us first recall the definition of Cartesian coordinates: to each point in the plane we can

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

Section 5.4: Modeling with Circular Functions

Section 5.4: Modeling with Circular Functions Section 5.4: Modeling with Circular Functions Circular Motion Example A ferris wheel with radius 25 feet is rotating at a rate of 3 revolutions per minute, When t = 0, a chair starts at its lowest point

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

You are not expected to transform y = tan(x) or solve problems that involve the tangent function.

You are not expected to transform y = tan(x) or solve problems that involve the tangent function. In this unit, we will develop the graphs for y = sin(x), y = cos(x), and later y = tan(x), and identify the characteristic features of each. Transformations of y = sin(x) and y = cos(x) are performed and

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

9.1 Parametric Curves

9.1 Parametric Curves Math 172 Chapter 9A notes Page 1 of 20 9.1 Parametric Curves So far we have discussed equations in the form. Sometimes and are given as functions of a parameter. Example. Projectile Motion Sketch and axes,

More information

sin30 = sin60 = cos30 = cos60 = tan30 = tan60 =

sin30 = sin60 = cos30 = cos60 = tan30 = tan60 = Precalculus Notes Trig-Day 1 x Right Triangle 5 How do we find the hypotenuse? 1 sinθ = cosθ = tanθ = Reciprocals: Hint: Every function pair has a co in it. sinθ = cscθ = sinθ = cscθ = cosθ = secθ = cosθ

More information

Precalculus 2 Section 10.6 Parametric Equations

Precalculus 2 Section 10.6 Parametric Equations Precalculus 2 Section 10.6 Parametric Equations Parametric Equations Write parametric equations. Graph parametric equations. Determine an equivalent rectangular equation for parametric equations. Determine

More information

9.1 POLAR COORDINATES

9.1 POLAR COORDINATES 9. Polar Coordinates Contemporary Calculus 9. POLAR COORDINATES The rectangular coordinate system is immensely useful, but it is not the only way to assign an address to a point in the plane and sometimes

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Complex Numbers, Polar Equations, and Parametric Equations. Copyright 2017, 2013, 2009 Pearson Education, Inc. 8 Complex Numbers, Polar Equations, and Parametric Equations Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 8.2 Trigonometric (Polar) Form of Complex Numbers The Complex Plane and Vector Representation

More information

7-5 Parametric Equations

7-5 Parametric Equations 3. Sketch the curve given by each pair of parametric equations over the given interval. Make a table of values for 6 t 6. t x y 6 19 28 5 16.5 17 4 14 8 3 11.5 1 2 9 4 1 6.5 7 0 4 8 1 1.5 7 2 1 4 3 3.5

More information

x y 2 2 CONIC SECTIONS Problem 1

x y 2 2 CONIC SECTIONS Problem 1 CONIC SECTIONS Problem For the equations below, identify each conic section If it s a parabola, specify its vertex, focus and directrix If it s an ellipse, specify its center, vertices and foci If it s

More information

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!!

Zero Launch Angle. since θ=0, then v oy =0 and v ox = v o. The time required to reach the water. independent of v o!! Zero Launch Angle y h since θ=0, then v oy =0 and v ox = v o and based on our coordinate system we have x o =0, y o =h x The time required to reach the water independent of v o!! 1 2 Combining Eliminating

More information

Math 136 Exam 1 Practice Problems

Math 136 Exam 1 Practice Problems Math Exam Practice Problems. Find the surface area of the surface of revolution generated by revolving the curve given by around the x-axis? To solve this we use the equation: In this case this translates

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve.

Parametric Equations: Motion in a Plane Notes for Section 6.3. are parametric equations for the curve. Parametric Equations: Motion in a Plane Notes for Section 6.3 In Laman s terms: Parametric equations allow us to put and into terms of a single variable known as the parameter. Time, t, is a common parameter

More information

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015

Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Pre-Calc Unit 14: Polar Assignment Sheet April 27 th to May 7 th 2015 Date Objective/ Topic Assignment Did it Monday Polar Discovery Activity pp. 4-5 April 27 th Tuesday April 28 th Converting between

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

PLANE TRIGONOMETRY Exam I September 13, 2007

PLANE TRIGONOMETRY Exam I September 13, 2007 Name Rec. Instr. Rec. Time PLANE TRIGONOMETRY Exam I September 13, 2007 Page 1 Page 2 Page 3 Page 4 TOTAL (10 pts.) (30 pts.) (30 pts.) (30 pts.) (100 pts.) Below you will find 10 problems, each worth

More information

CHAPTER 3, FORM E TRIGONOMETRY Choose the best answer. NAME DATE. Do not use a calculator for problems 1-11.

CHAPTER 3, FORM E TRIGONOMETRY Choose the best answer. NAME DATE. Do not use a calculator for problems 1-11. CHAPTER, FORM E TRIGONOMETRY Choose the best answer. NAME DATE Do not use a calculator for problems 1-11. 1. Which of the following describes the measures of 1. all angles that are coterminal with the

More information

Parametric and Polar Curves

Parametric and Polar Curves Chapter 2 Parametric and Polar Curves 2.1 Parametric Equations; Tangent Lines and Arc Length for Parametric Curves Parametric Equations So far we ve described a curve by giving an equation that the coordinates

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

Mid-Chapter Quiz: Lessons 9-1 through 9-3

Mid-Chapter Quiz: Lessons 9-1 through 9-3 Graph each point on a polar grid. 1. A( 2, 45 ) 3. Because = 45, locate the terminal side of a 45 angle with the polar axis as its initial side. Because r = 2, plot a point 2 units from the pole in the

More information

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations

Lecture 15. Lecturer: Prof. Sergei Fedotov Calculus and Vectors. Length of a Curve and Parametric Equations Lecture 15 Lecturer: Prof. Sergei Fedotov 10131 - Calculus and Vectors Length of a Curve and Parametric Equations Sergei Fedotov (University of Manchester) MATH10131 2011 1 / 5 Lecture 15 1 Length of a

More information

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17

Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations / 17 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, Parametric equations Johns Hopkins University Fall 2014 Ch. 7.4, 7.6, 7.7: Complex Numbers, Polar Coordinates, ParametricFall equations 2014 1 / 17

More information

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer.

Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. Math 109 Final Exam-Spring 016 Page 1 Part I. There are 5 problems in Part I, each worth 5 points. No partial credit will be given, so be careful. Circle the correct answer. 1) Determine an equivalent

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS

Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Spring 2007 PLOTTING LINE SEGMENTS Math 7 Elementary Linear Algebra PLOTS and ROTATIONS Example 1: Suppose you wish to use MatLab to plot a line segment connecting two points in the xy-plane. Recall that

More information

Lesson 5.6: Angles in Standard Position

Lesson 5.6: Angles in Standard Position Lesson 5.6: Angles in Standard Position IM3 - Santowski IM3 - Santowski 1 Fast Five Opening Exercises! Use your TI 84 calculator:! Evaluate sin(50 ) " illustrate with a diagram! Evaluate sin(130 ) " Q

More information

Projectile Trajectory Scenarios

Projectile Trajectory Scenarios Projectile Trajectory Scenarios Student Worksheet Name Class Note: Sections of this document are numbered to correspond to the pages in the TI-Nspire.tns document ProjectileTrajectory.tns. 1.1 Trajectories

More information

Functions and Transformations

Functions and Transformations Using Parametric Representations to Make Connections Richard Parr T 3 Regional, Stephenville, Texas November 7, 009 Rice University School Mathematics Project rparr@rice.edu If you look up parametric equations

More information

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506 AML2506 Biomechanics and Flow Simulation Day 02A Kinematic Concepts for Analyzing Human Motion Session Speaker Dr. M. D. Deshpande 1 Session Objectives At the end of this session the delegate would have

More information

MAT 271 Recitation. MAT 271 Recitation. Sections 10.1,10.2. Lindsey K. Gamard, ASU SoMSS. 22 November 2013

MAT 271 Recitation. MAT 271 Recitation. Sections 10.1,10.2. Lindsey K. Gamard, ASU SoMSS. 22 November 2013 MAT 271 Recitation Sections 10.1,10.2 Lindsey K. Gamard, ASU SoMSS 22 November 2013 Agenda Today s agenda: 1. Introduction to concepts from 10.1 and 10.2 2. Example problems 3. Groupwork Section 10.1 Introduction

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

3.0 Trigonometry Review

3.0 Trigonometry Review 3.0 Trigonometry Review In trigonometry problems, all vertices (corners or angles) of the triangle are labeled with capital letters. The right angle is usually labeled C. Sides are usually labeled with

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the

Review Exercise. 1. Determine vector and parametric equations of the plane that contains the Review Exercise 1. Determine vector and parametric equations of the plane that contains the points A11, 2, 12, B12, 1, 12, and C13, 1, 42. 2. In question 1, there are a variety of different answers possible,

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes

Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Big Ideas. What We Are Doing Today... Notes. Notes. Notes Topic 5-6: Parameterizing Surfaces and the Surface Elements ds and ds. Textbook: Section 16.6 Big Ideas A surface in R 3 is a 2-dimensional object in 3-space. Surfaces can be described using two variables.

More information

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be?

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #1 A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #2 1) Find distance (-2, 4) (6, -3) 2) Find roots y = x 4-6x 2

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Review sheet inches centimeters 40. Name: Class: Date:

Review sheet inches centimeters 40. Name: Class: Date: Name: Class: Date:.-.2 Review sheet Multiple Choice Identify the choice that best completes the statement or answers the question.. Find the complement of the following angle. Round your answer to two

More information

48. Logistic Growth (BC) Classwork

48. Logistic Growth (BC) Classwork 48. Logistic Growth (BC) Classwork Using the exponential growth model, the growth of a population is proportion to its current size. The differential equation for exponential growth is dp = kp leading

More information

MATH 1112 Trigonometry Final Exam Review

MATH 1112 Trigonometry Final Exam Review MATH 1112 Trigonometry Final Exam Review 1. Convert 105 to exact radian measure. 2. Convert 2 to radian measure to the nearest hundredth of a radian. 3. Find the length of the arc that subtends an central

More information

REPRESENTATION OF CURVES IN PARAMETRIC FORM

REPRESENTATION OF CURVES IN PARAMETRIC FORM - Representation of curves in parametric form 1 REPRESENTATION OF CURVES IN PARAMETRIC FORM.1. Parametrization of curves in the plane Given a curve in parametric form, its graphical representation in a

More information

MATH11007 NOTES 12: PARAMETRIC CURVES, ARCLENGTH ETC.

MATH11007 NOTES 12: PARAMETRIC CURVES, ARCLENGTH ETC. MATH117 NOTES 12: PARAMETRIC CURVES, ARCLENGTH ETC. 1. Parametric representation of curves The position of a particle moving in three-dimensional space is often specified by an equation of the form For

More information

θ as rectangular coordinates)

θ as rectangular coordinates) Section 11.1 Polar coordinates 11.1 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are polar coordinates. see the relation between rectangular and polar

More information

5.6 Translations and Combinations of Transformations

5.6 Translations and Combinations of Transformations 5.6 Translations and Combinations of Transformations The highest tides in the world are found in the Ba of Fund. Tides in one area of the ba cause the water level to rise to 6 m above average sea level

More information

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle?

: = Curves Defined by Parametric Equations. Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? of 8* * # 2+-121 There are 2 ways to describe it: x 2 + y 2 1 x cos! : 9

More information

Math12 Pre-Calc Review - Trig

Math12 Pre-Calc Review - Trig Math1 Pre-Calc Review - Trig Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following angles, in degrees, is coterminal with, but not equal

More information

Lesson 27: Angles in Standard Position

Lesson 27: Angles in Standard Position Lesson 27: Angles in Standard Position PreCalculus - Santowski PreCalculus - Santowski 1 QUIZ Draw the following angles in standard position 50 130 230 320 770-50 2 radians PreCalculus - Santowski 2 Fast

More information

5.2. The Sine Function and the Cosine Function. Investigate A

5.2. The Sine Function and the Cosine Function. Investigate A 5.2 The Sine Function and the Cosine Function What do an oceanographer, a stock analyst, an audio engineer, and a musician playing electronic instruments have in common? They all deal with periodic patterns.

More information

LIGHTS, CAMERA, CALCULUS

LIGHTS, CAMERA, CALCULUS LIGHTS, CAMERA, CALCULUS Robert E. Kowalczyk and Adam O. Hausknecht University of Massachusetts Dartmouth Mathematics Department, 285 Old Westport Road, N. Dartmouth, MA 02747-2300 rkowalczyk@umassd.edu

More information

Essential Mathematics for Computational Design

Essential Mathematics for Computational Design Essential Mathematics for Computational Design, Third edition, by Robert McNeel & Associates, 2013 is licensed under a Creative Commons Attribution-Share Alike 3.0 United States License. ii Preface Essential

More information

Projectile Motion. Honors Physics

Projectile Motion. Honors Physics Projectile Motion Honors Physics What is projectile? Projectile -Any object which projected by some means and continues to moe due to its own inertia (mass). Projectiles moe in TWO dimensions Since a projectile

More information

Example 1: Give the coordinates of the points on the graph.

Example 1: Give the coordinates of the points on the graph. Ordered Pairs Often, to get an idea of the behavior of an equation, we will make a picture that represents the solutions to the equation. A graph gives us that picture. The rectangular coordinate plane,

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

Honors Pre-Calculus. 6.1: Vector Word Problems

Honors Pre-Calculus. 6.1: Vector Word Problems Honors Pre-Calculus 6.1: Vector Word Problems 1. A sled on an inclined plane weighs 00 lb, and the plane makes an angle of 0 degrees with the horizontal. What force, perpendicular to the plane, is exerted

More information

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx.

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx. Chapter 7 Trigonometric Graphs Introduction We have alread looked at the graphs of various functions : The Linear function f() = The Quadratic function f() = The Hperbolic function f() = = = = We will

More information

MATH11007 NOTES 15: PARAMETRIC CURVES, ARCLENGTH ETC.

MATH11007 NOTES 15: PARAMETRIC CURVES, ARCLENGTH ETC. MATH117 NOTES 15: PARAMETRIC CURVES, ARCLENGTH ETC. 1. Parametric representation of curves The position of a particle moving in three-dimensional space is often specified by an equation of the form For

More information

Graphics and Interaction Transformation geometry and homogeneous coordinates

Graphics and Interaction Transformation geometry and homogeneous coordinates 433-324 Graphics and Interaction Transformation geometry and homogeneous coordinates Department of Computer Science and Software Engineering The Lecture outline Introduction Vectors and matrices Translation

More information

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs

CCNY Math Review Chapters 5 and 6: Trigonometric functions and graphs Ch 5. Trigonometry 6. Angles 6. Right triangles 6. Trig funs for general angles 5.: Trigonometric functions and graphs 5.5 Inverse functions CCNY Math Review Chapters 5 and 6: Trigonometric functions and

More information