Perspectives on Automatic Image Segmentation for Radiotherapy. Greg Sharp Oct 25, 2013

Size: px
Start display at page:

Download "Perspectives on Automatic Image Segmentation for Radiotherapy. Greg Sharp Oct 25, 2013"

Transcription

1 Perspectives on Automatic Image Segmentation for Radiotherapy Greg Sharp Oct 25, 2013 Karl Fritscher, UMIT Vladamir Pekar, Philips Marta Peroni, PSI Nadya Shusharina, MGH Harini Veeraraghavan, MSKCC Jinzhong Yang, MDACC

2 Outline Overview of segmentation algorithms Evaluation metrics Performance limits Outlook

3 Commercial products Company Product Method TPS integration Accuray MultiPlan Autosegmentation Atlas-based / model-based BrainLab iplan Atlas-based Yes Dosisoft IMAgo Atlas-based Yes Elekta ABAS Atlas-based / model-based MIM MIM Maestro Atlas-based No Mirada RTx Atlas-based No Philips SPICE Atlas-based / model-based RaySearch RayStation Atlas-based / model-based Varian Smart Segmentation Atlas-based Yes Velocity VelocityAI Atlas-based No Yes No Yes Yes ** WIP. Please notify Greg of corrections.

4 Atlas-based segmentation Atlas DIR Subject Warped contours

5 Multi-atlas segmentation... Atlas 1 Atlas 2 Atlas n DIR DIR DIR Subject Warped contours Label Final fusion segmentation Warped contours Warped contours

6 Atlas selection ** Rohlfing, 2005

7 Subject... Pre- selection DIR DIR

8 Subject... Pre- selection DIR DIR Post- selection

9 Atlas selection Image similarity Mutual information, SSD, etc. Registration Rotation, skew, deformation, etc.

10 Label fusion Voting Majority voting, weighted voting, etc. STAPLE Spatial regularization, MAP-STAPLE, etc.

11 STAPLE Segmentations by different raters p = 0.5 q = 0.5 p = 0.7 q = 0.9 p = 0.8 q = 0.6 Raters' sensitivity & specificity True segmentation

12 STAPLE Segmentations by different raters p = 0.5 q = 0.5 p = 0.7 q = 0.9 p = 0.8 q = 0.6 Raters' sensitivity & specificity E-Step For each voxel, estimate likelihood the voxel belongs to true segmentation

13 STAPLE Segmentations by different raters Estimate of true segmentation M-Step p = 0.5 q = 0.5 p = 0.7 q = 0.9 p = 0.8 q = 0.6 Re-estimate rater sensitivity & specificity

14 Limitations of atlases Imprecision of registration "Averaging" effect Sometimes visually unappealing

15 Model-based segmentation Active shape model ** Cootes, 1995

16 Model-based segmentation Active shape model P Position of point P varies with a known statistical distribution over a population These statistics are used to control the range of allowed shapes ** Cootes, 1995

17 Model-based segmentation Active appearance models Model of intensities Statistical deformation models Model of deformation vectors InShape models Joint model of intensity and deformation vectors

18 Model-based segmentation Brainstem ** Fritscher, 2013 Left Parotid Physician Atlas Atlas + InShape contour model

19 Dice's coefficient Invented in 1940's for botany applications Dice(A, B)= 2 A B A + B

20 Dice's coefficient Invented in 1940's for botany applications Dice(A, B)= 2 A B A + B

21 Dice's coefficient What is the Dice coefficient when matching a parotid gland with a sphere?

22 Dice's coefficient What is the Dice coefficient when matching a parotid gland with a sphere?

23 Dice's coefficient What is the Dice coefficient when matching a parotid gland with a sphere?

24 Dice's coefficient What is the Dice coefficient when matching a parotid gland with a sphere? Dice coefficient = /- 0.05

25 Hausdorff distance Image credit:

26 WARNING Professional Driver. Closed course. Photo credit:

27 Hausdorff distance One-sided Hausdorff distance Hausdorff 1 (A, B)=max a A min a b b B Average Hausdorff (take one) Hausdorff Ave ( A, B) = 1 2 Hausdorff 1( A, B) Hausdorff 1(B, A)

28 Hausdorff distance One-sided Average distance Hausdorff 1, Ave ( A, B)= 1 A a A Average Hausdorff (take two) min a b b B Hausdorff Ave ( A, B)=max( Hausdorff 1, Ave( A, B) Hausdorff 1, Ave ( B, A)) Or is it the average of the two instead of max??

29 Hausdorff distance One-sided fractional (95%) Hausdorff Hausdorff 1,95 (A, B)=P 95 a A( min b B a b )

30 Hausdorff distance One-sided fractional (95%) Hausdorff Hausdorff 1,95 (A, B)=P 95 a A( min b B a b ) Fractional (95%) Hausdorff Hausdorff 95 (A, B)=max( Hausdorff 1,95 ( A, B) Hausdorff 1,95 (B, A))

31 Hausdorff distance One-sided fractional (95%) Hausdorff Hausdorff 1,95 (A, B)=P 95 a A( min b B a b ) Fractional (95%) Hausdorff Hausdorff 95 (A, B)=max( Hausdorff 1,95 ( A, B) Hausdorff 1,95 (B, A)) Or is it the average? Or should I combine the points, then take 95%?

32 Here be dragons Photo credit: Public Domain

33 Boundary Hausdorff Hausdorff distance may be computed on the set or the set boundary

34 Boundary Hausdorff The max distance is to a point on the boundary So no difference, right?

35 Boundary Hausdorff The max distance is to a point on the boundary So no difference, right? Average distance will change Hausdorff Ave ( A, B)= 95% distance will change Hausdorff 95 ( A, B)=

36 Boundary Hausdorff "max" Hausdorff changes too Hausdorff ( A, B) Hausdorff ( A, B)

37 Boundary Hausdorff "max" Hausdorff changes too Hausdorff ( A, B) Hausdorff ( A, B) Hausdorff ( A, B) Hausdorff ( A, B)

38 Don't try this at home! Photo credit:

39 Average Dice How should I get a single score for a segmentation of many structures? Should I average Dice over all structures? S structures Dice (S, Ŝ )

40 Average Dice

41 Dice vs Hausdorff Dice and Hausdorff measure different things. Should I average them too?

42 Dice vs Hausdorff Dice and Hausdorff measure different things. Should I average them too?

43 Inter-observer variability Structure Inter-observer variability Parotid gland 0.66 ± 0.1 [1] 0.76 ± 0.08 [2] 0.85 [3] Automatic segmentation accuracy 0.74 [4] [0.73,0.79] [5] 0.85 ± 0.03 [6] ** All scores are Dice [1] Sims, 2009 [2] Nelms, 2012 [3] Faggiano, 2011 [4] Mattiuchi, 2013 [5] La Maccia, 2012 [6] Pekar, 2010

44 RTOG 0522

45 RTOG 0522

46 Inter-observer variability GCS / KDF / GCS / RTOG / 0.09 KDF / RTOG / 0.12 ** GCS & KDF used protocol described in van de Water et al., 2009

47

48

49

50

51 Outlook Short term RTOG delineation guidelines become common Open databases / open-source implementations Increased use of shape models Medium term Move from atlas-based to machine learning-based Increased need for multi-modal segmentation Segmentation of treatment target volumes

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011

Auto-Segmentation Using Deformable Image Registration. Disclosure. Objectives 8/4/2011 Auto-Segmentation Using Deformable Image Registration Lei Dong, Ph.D. Dept. of Radiation Physics University of Texas MD Anderson Cancer Center, Houston, Texas AAPM Therapy Educational Course Aug. 4th 2011

More information

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1

Use of Deformable Image Registration in Radiation Therapy. Colin Sims, M.Sc. Accuray Incorporated 1 Use of Deformable Image Registration in Radiation Therapy Colin Sims, M.Sc. Accuray Incorporated 1 Overview of Deformable Image Registration (DIR) Algorithms that can deform one dataset to another have

More information

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases

Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Automatic Segmentation of Parotids from CT Scans Using Multiple Atlases Jinzhong Yang, Yongbin Zhang, Lifei Zhang, and Lei Dong Department of Radiation Physics, University of Texas MD Anderson Cancer Center

More information

Virtual Phantoms for IGRT QA

Virtual Phantoms for IGRT QA TM Virtual Phantoms for IGRT QA Why ImSimQA? ImSimQA was developed to overcome the limitations of physical phantoms for testing modern medical imaging and radiation therapy software systems, when there

More information

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute

Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201. Please do not (re)redistribute Deformable Registration, Contour Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD The University of Michigan Jean Pouliot, PhD University of California Learning

More information

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI

radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li NCAAPM Spring Meeting 2010 Madison, WI GPU-Accelerated autosegmentation for adaptive radiotherapy Andrew Godley, Ergun Ahunbay, Cheng Peng, and X. Allen Li agodley@mcw.edu NCAAPM Spring Meeting 2010 Madison, WI Overview Motivation Adaptive

More information

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT

REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT REAL-TIME ADAPTIVITY IN HEAD-AND-NECK AND LUNG CANCER RADIOTHERAPY IN A GPU ENVIRONMENT Anand P Santhanam Assistant Professor, Department of Radiation Oncology OUTLINE Adaptive radiotherapy for head and

More information

Overview of Proposed TG-132 Recommendations

Overview of Proposed TG-132 Recommendations Overview of Proposed TG-132 Recommendations Kristy K Brock, Ph.D., DABR Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and Fusion Conflict

More information

Good Morning! Thank you for joining us

Good Morning! Thank you for joining us Good Morning! Thank you for joining us Deformable Registration, Contour Propagation and Dose Mapping: 101 and 201 Marc Kessler, PhD, FAAPM The University of Michigan Conflict of Interest I receive direct

More information

Automatic Thoracic CT Image Segmentation using Deep Convolutional Neural Networks. Xiao Han, Ph.D.

Automatic Thoracic CT Image Segmentation using Deep Convolutional Neural Networks. Xiao Han, Ph.D. Automatic Thoracic CT Image Segmentation using Deep Convolutional Neural Networks Xiao Han, Ph.D. Outline Background Brief Introduction to DCNN Method Results 2 Focus where it matters Structure Segmentation

More information

May Signature of Author: Amelia Arbisser Department of Electrical Engineering and Computer Science May 21, 2012

May Signature of Author: Amelia Arbisser Department of Electrical Engineering and Computer Science May 21, 2012 Multi-atlas Segmentation in Head and Neck CT Scans by Amelia M. Arbisser B.S., Computer Science and Engineering, M.I.T., 2011 Submitted to the Department of Electrical Engineering and Computer Science

More information

Atlas-Based Auto-segmentation of Head and Neck CT Images

Atlas-Based Auto-segmentation of Head and Neck CT Images Atlas-Based Auto-segmentation of Head and Neck CT Images Xiao Han 1,MischaS.Hoogeman 2, Peter C. Levendag 2, Lyndon S. Hibbard 1, David N. Teguh 2, Peter Voet 2, Andrew C. Cowen 1, and Theresa K. Wolf

More information

Current state of multi-criteria treatment planning

Current state of multi-criteria treatment planning Current state of multi-criteria treatment planning June 11, 2010 Fall River NE AAPM meeting David Craft Massachusetts General Hospital Talk outline - Overview of optimization - Multi-criteria optimization

More information

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM

8/3/2017. Contour Assessment for Quality Assurance and Data Mining. Objective. Outline. Tom Purdie, PhD, MCCPM Contour Assessment for Quality Assurance and Data Mining Tom Purdie, PhD, MCCPM Objective Understand the state-of-the-art in contour assessment for quality assurance including data mining-based techniques

More information

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion

Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Methodological progress in image registration for ventilation estimation, segmentation propagation and multi-modal fusion Mattias P. Heinrich Julia A. Schnabel, Mark Jenkinson, Sir Michael Brady 2 Clinical

More information

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Multi-Atlas Segmentation of the Cardiac MR Right Ventricle Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department of Radiology, University

More information

TG 132: Use of Image Registration and Fusion in RT

TG 132: Use of Image Registration and Fusion in RT TG 132: Use of Image Registration and Fusion in RT Kristy K Brock, PhD, DABR, FAAPM Associate Professor Department of Radiation Oncology, University of Michigan Chair, AAPM TG 132: Image Registration and

More information

Prototype of Silver Corpus Merging Framework

Prototype of Silver Corpus Merging Framework www.visceral.eu Prototype of Silver Corpus Merging Framework Deliverable number D3.3 Dissemination level Public Delivery data 30.4.2014 Status Authors Final Markus Krenn, Allan Hanbury, Georg Langs This

More information

Implementation of Advanced Image Guided Radiation Therapy

Implementation of Advanced Image Guided Radiation Therapy Image Acquisition Course Outline Principles, characteristics& applications of the available modalities Image Processing in the T x room Image guided treatment delivery What can / can t we do in the room

More information

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration

Image Co-Registration II: TG132 Quality Assurance for Image Registration. Image Co-Registration II: TG132 Quality Assurance for Image Registration Image Co-Registration II: TG132 Quality Assurance for Image Registration Preliminary Recommendations from TG 132* Kristy Brock, Sasa Mutic, Todd McNutt, Hua Li, and Marc Kessler *Recommendations are NOT

More information

Auto-contouring the Prostate for Online Adaptive Radiotherapy

Auto-contouring the Prostate for Online Adaptive Radiotherapy Auto-contouring the Prostate for Online Adaptive Radiotherapy Yan Zhou 1 and Xiao Han 1 Elekta Inc., Maryland Heights, MO, USA yan.zhou@elekta.com, xiao.han@elekta.com, Abstract. Among all the organs under

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration

iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration iplan RT Image Advanced Contouring Workstation - Driving Physician Collaboration The iplan Contouring Workstation offers unique and innovative capabilities for faster contouring and consistent segmentation

More information

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation Xiahai Zhuang (PhD) Centre for Medical Image Computing University College London Fields-MITACS Conference on Mathematics

More information

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion

Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Attribute Similarity and Mutual-Saliency Weighting for Registration and Label Fusion Yangming Ou, Jimit Doshi, Guray Erus, and Christos Davatzikos Section of Biomedical Image Analysis (SBIA) Department

More information

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology

VALIDATION OF DIR. Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology VALIDATION OF DIR Raj Varadhan, PhD, DABMP Minneapolis Radiation Oncology Overview Basics: Registration Framework, Theory Discuss Validation techniques Using Synthetic CT data & Phantoms What metrics to

More information

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties

A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties A Generation Methodology for Numerical Phantoms with Statistically Relevant Variability of Geometric and Physical Properties Steven Dolly 1, Eric Ehler 1, Yang Lou 2, Mark Anastasio 2, Hua Li 2 (1) University

More information

4 CIM&Lab, Universidad Nacional de Colombia, Bogota, Colombia {edromero,

4 CIM&Lab, Universidad Nacional de Colombia, Bogota, Colombia {edromero, Segmentation of pelvic structures from planning CT based on a statistical shape model with a multiscale edge detector and geometrical likelihood measures Fabio Martinez 1,2,4, Oscar Acosta 1,2, Gaël Dréan

More information

AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING. Pallavi V. Joshi. Thesis. Submitted to the Faculty of the

AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING. Pallavi V. Joshi. Thesis. Submitted to the Faculty of the AUTOMATIC SEGMENTATION OF BRAIN STRUCTURES FOR RADIOTHERAPY PLANNING By Pallavi V. Joshi Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

Counter-Driven Regression for Label Inference in Atlas- Based Segmentation

Counter-Driven Regression for Label Inference in Atlas- Based Segmentation Counter-Driven Regression for Label Inference in Atlas- Based Segmentation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images

Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images Comparison of Different Metrics for Appearance-model-based 2D/3D-registration with X-ray Images Philipp Steininger 1, Karl D. Fritscher 1, Gregor Kofler 1, Benedikt Schuler 1, Markus Hänni 2, Karsten Schwieger

More information

Segmentation Using a Region Growing Thresholding

Segmentation Using a Region Growing Thresholding Segmentation Using a Region Growing Thresholding Matei MANCAS 1, Bernard GOSSELIN 1, Benoît MACQ 2 1 Faculté Polytechnique de Mons, Circuit Theory and Signal Processing Laboratory Bâtiment MULTITEL/TCTS

More information

Learning anatomy changes from patient populations to create artificial CT images for voxel-level validation of deformable image registration

Learning anatomy changes from patient populations to create artificial CT images for voxel-level validation of deformable image registration JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 1, 2016 Learning anatomy changes from patient populations to create artificial CT images for voxel-level validation of deformable image registration

More information

Shape-Aware Multi-Atlas Segmentation

Shape-Aware Multi-Atlas Segmentation Shape-Aware Multi-Atlas Segmentation Jennifer Alvén, Fredrik Kahl, Matilda Landgren, Viktor Larsson and Johannes Ulén Department of Signals and Systems, Chalmers University of Technology, Sweden Email:

More information

Help Guide. mm Copyright Mirada Medical Ltd, Mirada Medical RTx 1

Help Guide. mm Copyright Mirada Medical Ltd, Mirada Medical RTx 1 Help Guide mm3237-1.6-1 Copyright Mirada Medical Ltd, 2000-2014. Mirada Medical RTx 1 Contents Help Guide... 1 Contents... 2 Introduction to RTx... 4 Regulatory Statement... 6 Notes... 15 Data Supported...

More information

Where are we now? Structural MRI processing and analysis

Where are we now? Structural MRI processing and analysis Where are we now? Structural MRI processing and analysis Pierre-Louis Bazin bazin@cbs.mpg.de Leipzig, Germany Structural MRI processing: why bother? Just use the standards? SPM FreeSurfer FSL However:

More information

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration

Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Head and Neck Lymph Node Region Delineation with Auto-segmentation and Image Registration Chia-Chi Teng Department of Electrical Engineering University of Washington 1 Outline Introduction Related Work

More information

Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation

Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation University of Toronto Atlas-Based Segmentation of Abdominal Organs in 3D Ultrasound, and its Application in Automated Kidney Segmentation Authors: M. Marsousi, K. N. Plataniotis, S. Stergiopoulos Presenter:

More information

Learning-based Neuroimage Registration

Learning-based Neuroimage Registration Learning-based Neuroimage Registration Leonid Teverovskiy and Yanxi Liu 1 October 2004 CMU-CALD-04-108, CMU-RI-TR-04-59 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract

More information

The Insight Toolkit. Image Registration Algorithms & Frameworks

The Insight Toolkit. Image Registration Algorithms & Frameworks The Insight Toolkit Image Registration Algorithms & Frameworks Registration in ITK Image Registration Framework Multi Resolution Registration Framework Components PDE Based Registration FEM Based Registration

More information

MEDICAL IMAGE REGISTRATION GUIDED BY APPLICATION-SPECIFIC GEOMETRY FLORIS BERENDSEN

MEDICAL IMAGE REGISTRATION GUIDED BY APPLICATION-SPECIFIC GEOMETRY FLORIS BERENDSEN MEDICAL IMAGE REGISTRATION GUIDED BY APPLICATION-SPECIFIC GEOMETRY FLORIS BERENDSEN MEDICAL IMAGE REGISTRATION GUIDED BY APPLICATION-SPECIFIC GEOME- TRY PhD thesis, Utrecht University, The Netherlands

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D.

Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment. Huijun Xu, Ph.D. Coverage based treatment planning to accommodate organ deformable motions and contouring uncertainties for prostate treatment Huijun Xu, Ph.D. Acknowledgement and Disclosure Dr. Jeffrey Siebers Dr. DJ

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach

STIC AmSud Project. Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach STIC AmSud Project Graph cut based segmentation of cardiac ventricles in MRI: a shape-prior based approach Caroline Petitjean A joint work with Damien Grosgeorge, Pr Su Ruan, Pr JN Dacher, MD October 22,

More information

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images

Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Joint Tumor Segmentation and Dense Deformable Registration of Brain MR Images Sarah Parisot 1,2,3, Hugues Duffau 4, Stéphane Chemouny 3, Nikos Paragios 1,2 1. Center for Visual Computing, Ecole Centrale

More information

SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer

SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer SlicerRT Image-guided radiation therapy research toolkit for 3D Slicer Csaba Pinter 1, Andras Lasso 1, An Wang 2, David Jaffray 2, and Gabor Fichtinger 1 1Laboratory for Percutaneous Surgery, Queen s University,

More information

Is deformable image registration a solved problem?

Is deformable image registration a solved problem? Is deformable image registration a solved problem? Marcel van Herk On behalf of the imaging group of the RT department of NKI/AVL Amsterdam, the Netherlands DIR 1 Image registration Find translation.deformation

More information

Atlas-Based Autosegmentation. DICOM Conformance Statement DICOM 3.0

Atlas-Based Autosegmentation. DICOM Conformance Statement DICOM 3.0 DICOM Conformance Statement DICOM 3.0 Revision History, Trademarks ABAS DICOM Conformance Statement Revision History Revision Date Changes ABAS_DCS_100_A 04/2008 First version. ABAS_DCS_B 04/2009 Update

More information

3D Brain Segmentation Using Active Appearance Models and Local Regressors

3D Brain Segmentation Using Active Appearance Models and Local Regressors 3D Brain Segmentation Using Active Appearance Models and Local Regressors K.O. Babalola, T.F. Cootes, C.J. Twining, V. Petrovic, and C.J. Taylor Division of Imaging Science and Biomedical Engineering,

More information

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA Lilla Zöllei lzollei@nmr.mgh.harvard.edu A.A. Martinos Center, MGH; Boston, MA Bruce Fischl Gheorghe Postelnicu Jean Augustinack Anastasia Yendiki Allison Stevens Kristen Huber Sita Kakonoori + the FreeSurfer

More information

ACCURAY DEFORMABLE IMAGE REGISTRATION: DESCRIPTION AND EVALUATION

ACCURAY DEFORMABLE IMAGE REGISTRATION: DESCRIPTION AND EVALUATION WHITE PAPER Accuray Precision software ACCURAY DEFORMABLE IMAGE REGISTRATION: DESCRIPTION AND EVALUATION Petr Jordan, Andriy Myronenko, Kevin Gorczowski, Mark Foskey, Rich Holloway, Calvin R. Maurer, Jr.

More information

Atlas-Based Under-Segmentation

Atlas-Based Under-Segmentation Atlas-Based Under-Segmentation Christian Wachinger 1,2 and Polina Golland 1 1 Computer Science and Artificial Intelligence Lab, MIT 2 Massachusetts General Hospital, Harvard Medical School Abstract. We

More information

Using Pinnacle 16 Deformable Image registration in a re-treat scenario

Using Pinnacle 16 Deformable Image registration in a re-treat scenario Introduction Using Pinnacle 16 Deformable Image registration in a re-treat scenario This short Hands On exercise will introduce how the Deformable Image Registration (DIR) tools in Pinnacle can be used

More information

Interoperability Issues in Image Registration and ROI Generation

Interoperability Issues in Image Registration and ROI Generation 1 DICOM 2005 International Conference, Budapest, Hungary Interoperability Issues in Image Registration and ROI Generation Todd Kantchev PhD, Siemens Molecular Imaging, Oxford, UK 2 Scope The following

More information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information

Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Optimal MAP Parameters Estimation in STAPLE - Learning from Performance Parameters versus Image Similarity Information Subrahmanyam Gorthi 1, Alireza Akhondi-Asl 1, Jean-Philippe Thiran 2, and Simon K.

More information

Discriminative Dictionary Learning for Abdominal Multi-Organ Segmentation

Discriminative Dictionary Learning for Abdominal Multi-Organ Segmentation Discriminative Dictionary Learning for Abdominal Multi-Organ Segmentation Tong Tong a,, Robin Wolz a, Zehan Wang a, Qinquan Gao a, Kazunari Misawa b, Michitaka Fujiwara c, Kensaku Mori d, Joseph V. Hajnal

More information

Distance Transforms in Multi Channel MR Image Registration

Distance Transforms in Multi Channel MR Image Registration Distance Transforms in Multi Channel MR Image Registration Min Chen 1, Aaron Carass 1, John Bogovic 1, Pierre-Louis Bazin 2 and Jerry L. Prince 1 1 Image Analysis and Communications Laboratory, 2 The Laboratory

More information

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00 Marcel Prastawa 1 and Guido Gerig 1 Abstract July 17, 2008 1 Scientific Computing and Imaging

More information

Multimodality Imaging for Tumor Volume Definition in Radiation Oncology

Multimodality Imaging for Tumor Volume Definition in Radiation Oncology 81 There are several commercial and academic software tools that support different segmentation algorithms. In general, commercial software packages have better implementation (with a user-friendly interface

More information

Image Registration I

Image Registration I Image Registration I Comp 254 Spring 2002 Guido Gerig Image Registration: Motivation Motivation for Image Registration Combine images from different modalities (multi-modality registration), e.g. CT&MRI,

More information

A multi-atlas approach for prostate segmentation in MR images

A multi-atlas approach for prostate segmentation in MR images A multi-atlas approach for prostate segmentation in MR images Geert Litjens, Nico Karssemeijer, and Henkjan Huisman Diagnostic Image Analysis Group, Radboud University Nijmegen Medical Centre, Nijmegen,

More information

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience

Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience DVH Estimates Creating a Knowledge Based Model using RapidPlan TM : The Henry Ford Experience Karen Chin Snyder, MS, DABR AAMD Region V Meeting October 4, 2014 Disclosures The Department of Radiation Oncology

More information

Medical Image Analysis

Medical Image Analysis Computer assisted Image Analysis VT04 29 april 2004 Medical Image Analysis Lecture 10 (part 1) Xavier Tizon Medical Image Processing Medical imaging modalities XRay,, CT Ultrasound MRI PET, SPECT Generic

More information

ABSTRACT 1. INTRODUCTION 2. METHODS

ABSTRACT 1. INTRODUCTION 2. METHODS Finding Seeds for Segmentation Using Statistical Fusion Fangxu Xing *a, Andrew J. Asman b, Jerry L. Prince a,c, Bennett A. Landman b,c,d a Department of Electrical and Computer Engineering, Johns Hopkins

More information

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 10: Medical Image Segmentation as an Energy Minimization Problem SPRING 07 MEDICAL IMAGE COMPUTING (CAP 97) LECTURE 0: Medical Image Segmentation as an Energy Minimization Problem Dr. Ulas Bagci HEC, Center for Research in Computer Vision (CRCV), University of Central

More information

AUTOMATIC SEGMENTATION OF STRUCTURES IN CT IMAGES FOR HEAD AND NECK INTENSITY-MODULATED RADIATION THERAPY. Antong Chen.

AUTOMATIC SEGMENTATION OF STRUCTURES IN CT IMAGES FOR HEAD AND NECK INTENSITY-MODULATED RADIATION THERAPY. Antong Chen. AUTOMATIC SEGMENTATION OF STRUCTURES IN CT IMAGES FOR HEAD AND NECK INTENSITY-MODULATED RADIATION THERAPY By Antong Chen Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University

More information

RIGID IMAGE REGISTRATION

RIGID IMAGE REGISTRATION RIGID IMAGE REGISTRATION Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu What is registration? Image registration

More information

Algorithms for medical image registration and segmentation

Algorithms for medical image registration and segmentation Algorithms for medical image registration and segmentation Multi-atlas methods ernst.schwartz@meduniwien.ac.at www.cir.meduniwien.ac.at Overview Medical imaging hands-on Data formats: DICOM, NifTI Software:

More information

MR-Guided Mixed Reality for Breast Conserving Surgical Planning

MR-Guided Mixed Reality for Breast Conserving Surgical Planning MR-Guided Mixed Reality for Breast Conserving Surgical Planning Suba Srinivasan (subashini7@gmail.com) March 30 th 2017 Mentors: Prof. Brian A. Hargreaves, Prof. Bruce L. Daniel MEDICINE MRI Guided Mixed

More information

Automatized & Interactive. Muscle tissues characterization using. Na MRI

Automatized & Interactive. Muscle tissues characterization using. Na MRI Automatized & Interactive Human Skeletal Muscle Segmentation Muscle tissues characterization using 23 Na MRI Noura Azzabou 30 April 2013 What is muscle segmentation? Axial slice of the thigh of a healthy

More information

fmri pre-processing Juergen Dukart

fmri pre-processing Juergen Dukart fmri pre-processing Juergen Dukart Outline Why do we need pre-processing? fmri pre-processing Slice time correction Realignment Unwarping Coregistration Spatial normalisation Smoothing Overview fmri time-series

More information

CONTOURING ACCURACY. What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016

CONTOURING ACCURACY. What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016 CONTOURING ACCURACY What Have We Learned? And Where Do We Go From Here? BEN NELMS, PH.D. AUGUST 15, 2016 FIRST THINGS FIRST Happy Medical Dosimetrist s Week! OUTLINE 1. Objectives 2. The importance of

More information

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation!

Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation! Sparsity Based Spectral Embedding: Application to Multi-Atlas Echocardiography Segmentation Ozan Oktay, Wenzhe Shi, Jose Caballero, Kevin Keraudren, and Daniel Rueckert Department of Compu.ng Imperial

More information

Biomedical Image Processing

Biomedical Image Processing Biomedical Image Processing Jason Thong Gabriel Grant 1 2 Motivation from the Medical Perspective MRI, CT and other biomedical imaging devices were designed to assist doctors in their diagnosis and treatment

More information

Transitioning from pencil beam to Monte Carlo for electron dose calculations

Transitioning from pencil beam to Monte Carlo for electron dose calculations Transitioning from pencil beam to Monte Carlo for electron dose calculations Jessie Huang-Vredevoogd (jyhuang4@wisc.edu) University of Wisconsin NCC AAPM October 12, 2019 1 Topics to cover Background RayStation

More information

Contour-Driven Atlas-Based Segmentation

Contour-Driven Atlas-Based Segmentation Contour-Driven Atlas-Based Segmentation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Wachinger,

More information

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS

ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS ASSESSING REGISTRATION QUALITY VIA REGISTRATION CIRCUITS By Ryan Datteri Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements

More information

Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning

Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning Clinical Prospects and Technological Challenges for Multimodality Imaging Applications in Radiotherapy Treatment Planning Issam El Naqa, PhD Assistant Professor Department of Radiation Oncology Washington

More information

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas

Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Semi-supervised Segmentation Using Multiple Segmentation Hypotheses from a Single Atlas Tobias Gass, Gabor Szekely, and Orcun Goksel Computer Vision Lab, Dep. of Electrical Engineering, ETH Zurich, Switzerland.

More information

A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth

A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth Koen Van Leemput 1,2 and Mert R. Sabuncu 1 1 A.A. Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, USA 2

More information

Spatio-Temporal Registration of Biomedical Images by Computational Methods

Spatio-Temporal Registration of Biomedical Images by Computational Methods Spatio-Temporal Registration of Biomedical Images by Computational Methods Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial

More information

Segmentation algorithms of subcortical brain structures on MRI : a review

Segmentation algorithms of subcortical brain structures on MRI : a review Segmentation algorithms of subcortical brain structures on MRI : a review J. Dolz, L Massoptier, Maximilien Vermandel To cite this version: J. Dolz, L Massoptier, Maximilien Vermandel. Segmentation algorithms

More information

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches

Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Segmentation of the Pectoral Muscle in Breast MRI Using Atlas-Based Approaches Albert Gubern-Mérida 1, Michiel Kallenberg 2, Robert Martí 1, and Nico Karssemeijer 2 1 University of Girona, Spain {agubern,marly}@eia.udg.edu

More information

Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No.

Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132 Kristy K. Brock a) Department of Imaging Physics, The University

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

Modeling and preoperative planning for kidney surgery

Modeling and preoperative planning for kidney surgery Modeling and preoperative planning for kidney surgery Refael Vivanti Computer Aided Surgery and Medical Image Processing Lab Hebrew University of Jerusalem, Israel Advisor: Prof. Leo Joskowicz Clinical

More information

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION

PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION PROSTATE CANCER DETECTION USING LABEL IMAGE CONSTRAINED MULTIATLAS SELECTION Ms. Vaibhavi Nandkumar Jagtap 1, Mr. Santosh D. Kale 2 1 PG Scholar, 2 Assistant Professor, Department of Electronics and Telecommunication,

More information

Schedule. Tuesday, May 10: Thursday, May 12: Motion microscopy, separating shading and paint min. student project presentations, projects due.

Schedule. Tuesday, May 10: Thursday, May 12: Motion microscopy, separating shading and paint min. student project presentations, projects due. Schedule Tuesday, May 10: Motion microscopy, separating shading and paint Thursday, May 12: 5-10 min. student project presentations, projects due. Computer vision for photography Bill Freeman Computer

More information

Subcortical Structure Segmentation using Probabilistic Atlas Priors

Subcortical Structure Segmentation using Probabilistic Atlas Priors Subcortical Structure Segmentation using Probabilistic Atlas Priors Sylvain Gouttard 1, Martin Styner 1,2, Sarang Joshi 3, Brad Davis 2, Rachel G. Smith 1, Heather Cody Hazlett 1, Guido Gerig 1,2 1 Department

More information

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations

Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Hierarchical Multi structure Segmentation Guided by Anatomical Correlations Oscar Alfonso Jiménez del Toro oscar.jimenez@hevs.ch Henning Müller henningmueller@hevs.ch University of Applied Sciences Western

More information

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares

Biomedical Imaging Registration Trends and Applications. Francisco P. M. Oliveira, João Manuel R. S. Tavares Biomedical Imaging Registration Trends and Applications Francisco P. M. Oliveira, João Manuel R. S. Tavares tavares@fe.up.pt, www.fe.up.pt/~tavares Outline 1. Introduction 2. Spatial Registration of (2D

More information

MARS: Multiple Atlases Robust Segmentation

MARS: Multiple Atlases Robust Segmentation Software Release (1.0.1) Last updated: April 30, 2014. MARS: Multiple Atlases Robust Segmentation Guorong Wu, Minjeong Kim, Gerard Sanroma, and Dinggang Shen {grwu, mjkim, gerard_sanroma, dgshen}@med.unc.edu

More information

Correspondence Detection Using Wavelet-Based Attribute Vectors

Correspondence Detection Using Wavelet-Based Attribute Vectors Correspondence Detection Using Wavelet-Based Attribute Vectors Zhong Xue, Dinggang Shen, and Christos Davatzikos Section of Biomedical Image Analysis, Department of Radiology University of Pennsylvania,

More information

Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search

Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search Fully Automatic Multi-organ Segmentation based on Multi-boost Learning and Statistical Shape Model Search Baochun He, Cheng Huang, Fucang Jia Shenzhen Institutes of Advanced Technology, Chinese Academy

More information

Integrated Approaches to Non-Rigid Registration in Medical Images

Integrated Approaches to Non-Rigid Registration in Medical Images Work. on Appl. of Comp. Vision, pg 102-108. 1 Integrated Approaches to Non-Rigid Registration in Medical Images Yongmei Wang and Lawrence H. Staib + Departments of Electrical Engineering and Diagnostic

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl, and Polina Golland

A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl, and Polina Golland 1714 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 29, NO. 10, OCTOBER 2010 A Generative Model for Image Segmentation Based on Label Fusion Mert R. Sabuncu*, B. T. Thomas Yeo, Koen Van Leemput, Bruce Fischl,

More information