Evaluation and comparison of gene clustering methods in microarray analysis

Size: px
Start display at page:

Download "Evaluation and comparison of gene clustering methods in microarray analysis"

Transcription

1 Evaluation and comparison of gene clustering methods in microarray analysis Anbupalam Thalamuthu 1 Indranil Mukhopadhyay 1 Xiaojing Zheng 1 George C. Tseng 1,2 1 Department of Human Genetics 2 Department of Biostatistics University of Pittsburgh, USA

2 Acknowledgements Anbupalam Thalamuthu and Indranil Mukhopadhyay Thank Dr.Daniel E. Weeks Professor Department of Human Genetics and Department of Biostatistics University of Pittsburgh & Fogarty/NIH grant 5D43TW "India-US Research Training Program in Genetics and the University of Pittsburgh, USA

3 Overview Gene clustering analysis are useful for discovering groups of genes co-regulated or associated with disease or certain conditions. Several methods such as hierarchical, K-means, PAM, SOM, Model based clustering and Tight clustering are used for clustering genes. No comprehensive comparative study has been performed to compare effectiveness of these methods. Six clustering methods are compared using simulated data set with different levels of perturbation and two real data sets A weighted Rand index is proposed for measuring similarity of two clustering results with possible scattered genes.

4 Outline Problem of gene clustering Simulated data under different perturbation models Rand index for comparison of clustering methods Results of the simulation study Real data sets Comparison of clustering methods for real data sets Results for the real data sets

5 Problem of gene clustering Micro array data matrix X nxm (normalized and preprocessed) contains n genes on the rows and m genes on the column Group the n genes into K clusters. Number of genes is very large compared the number of samples. Several methods are available. Some of them are K-means, PAM, SOM, Model based clustering and Tight clustering. How these methods behave when noise points are included and perturbed?

6 Simulated Data Sets: Basic data generation Fifteen clusters C = ( C1, C2,..., C15) with dimension d=50 are simulated. Cluster sizes are 4 n c ~ Poisson( λ) m 1 m 2 m 3 m 4 mi = 50, mi > 2; mi are uniformly distributed log( T ( c) j ) ~ N(log( µ ( c) i ), σ 2 S ) & log( µ ( c) i ) ~ N( µ, σ c 2 c ) j = 1,2,..., m, m ,50 & i 1 1 = 1,2,3,4 x lj ~ N(log( T ( c) j ), σ ), l = 1,2,..., n, j c = 1,2,...50 Parameters : = 6, σ = 1, σ = 0.1, σ = 0.1& λ = 10 µ c c S

7 Perturbation models Type I : Add 0%,10%,20%,60%,100% and 200% of randomly simulated scattered genes to the original data set. Type II: To each log-transformed gene expression value x ij, a rand error simulated from normal distribution with mean zero and SDs 0.05,0.1,0.2,0.4,0.8 and 1.2 is added. Type III: A combination of both Type I and Type II perturbation. 25 data sets each replicated 100 times constitute a total of 2500 simulated data sets for our analysis

8 Representation of Perturbation Models 0 5% 10% 20% 60% 100% 200%

9 Rand Index (Rand, 1971) Measure of concordance between 2 clustering schemes Rand Index: R(Y,Y')= # concordant pair/total # pairs = (2+7)/15=0.6 Clustering Methods can be evaluated by R(Y,Y truth ) if Y truth is known

10 Rand Index v 1 v 2 v c-1 v noise u 1 n 11 n 12 n 1C-1 n 1C n 10 u 2 n 21 n 22 n 2C-1 n 1C n 20 M M M M M M u R-1 n R-11 n R-12 n R-1C-1 n R-1C n R-10 u noise u R1 n R2 n RC-1 n RC S 1 n 01 n 02 n C-10 n S 2 Consider all points in clustered as well as original dataset; R N =Rand(with noise) Drop noise points from clustered as well as original dataset; R 0 =Rand(no noise)

11 Rand Index Let S 1 = set of noise as in clustered set {U} S 2 = set of noise as in original set {V} Ran d = R 1 * 2 n i0 i=1 R C * n ij 1 n * i=1 j=1 R i=1 C * + n 0 j j=1 1 n * where a * = a(a 1) /2 Rand = λr N +(1-λ)R 0 * n i0 C j=1 R i=1 * n 0 j * n i0 C j=1 * n 0 j where λ=n(s 1 S 2 )/Total observations

12 Figure 1: Weighted Rand Index for hierarchical clustering with single (blue), complete (red) and average (black) linkage on simulated data.

13 Figure 2: Weighted Rand index of K-means with 1 (red), 100 (blue) and 1000 (black) random initial values on simulated data.

14 Figure 3: Weighted Rand index of PAM with 1 (red), 100 (blue) and 1000 (black) random initial values on simulated data.

15 Observations Hierarchical clustering is very sensitive to presence noise points in the data set. It is very much affected by perturbation of the data. K-means and PAM fall into local minima, therefore for practical applications, these algorithms, if used, should be used with many initial cluster centers. 100 random initial cluster centers seems to be adequate.

16 Figure 4: Weighted Rand index for SOM (violet), hierarchical (brown), K- means (black), PAM (green), model based clustering (red), tight clustering (blue) based on simulated data sets.

17 Observations Without scattered genes and perturbation in the data sets, all the methods except SOM performs better. Type I perturbation reveals that hierarchical clustering, K- means and PAM are very much affected by presence of noise points in the data sets. It is not so for tight clustering and model based clustering. Tight clustering and model based clustering performed equally well up to a perturbation SD 0.2~0.4 even when 200% scattered genes exist. SOM performs worst. Model based clustering needs correct specification of clusters. Its BIC criteria to select the model with correct number of clusters fails even in the data sets without perturbation and no scattered genes.

18 Real Data I: Yeast cell cycle Yeast cell cycle data (Spellman et al. 1998) contains 6179 genes genes were retained for analysis. Dropped genes with more than 20% missing values and SD values at log-2 scale less than 0.4. Missing values for the genes retained for analysis were imputed by KNN algorithm. 104 genes that are cell cycle regulated in yeast have been identified by traditional methods (Paul T. Spellman, 7www.stanford.edu/cellcycle/data/rawdata/KnownGe nes.doc of these 87 were found in our preprocessed data set.

19 Annotation of clusters: G-genes in the genome (G=87); Functional category F (Six functional categories). In a cluster of size C, h genes are found to be in a functional category F with m genes, then p-value (i.e. the probability of observing h or more annotated genes in the cluster is calculated as (Tavazoie et al. 1999): = = ] [ h i m G i m C G i C h X P A cluster is annotated as category F, if the p-value is less than a threshold level. δ

20 Prediction Accuracy Prediction Accuracy( δ ) = # Verifiable predictions Total number of predictions # verifiable prediction = total number of annotated genes Total number of predictions = Sum of all the cluster sizes in which annotated genes were found. Since number of clusters in real data sets were not known exactly several clusters with sizes 5~30 were run and the pooled prediction accuracy were calculated. Comparison of clustering methods can be done using the prediction accuracy plots.

21 Figure 5: Prediction accuracy for yeast cell cycle data

22 Real Data Set II: Yeast environmental change data 45 yeast samples analyzed under various changes in extracellular environment (Causton et al 2001) genes, of which 1744 were retained after preprocessing. Extracted 119 genes that are found annotated to the category of response to stress in SGD Gene Ontology Slim Mapper (

23 Figure 6: Prediction accuracy for yeast environmental change

24 Conclusion Tight clustering and model based clustering consistently performs well both for simulated data as well as in the real data sets. Between these two methods Tight clustering may be preferred over model based clustering, as this method allows some of the scatted genes in the data sets to be grouped into noise category. Although SOM gives a good visualization of the clustering solution, its performance is poor compared other methods. The authors recommend Tight clustering or Model based clustering for practical applications.

25 References 1. Kaufman, L & Rousseeuw, PJ (1990): Finding groups in data; An introduction cluster analysis; Wiley, NY 2. Struyf, A, Hubert, M & Rousseeuw, PJ (1997): Integrating robust clustering techniques in S-PLUS. Computational Statistics and Data Ananlysis, 26, Fraley, C & Raftery, AE (2002): Model based clustering, discreminant analysis and density estimation; JASA, 97, Tseng, GC (2005): Tight Clustering: A resampling-based approach for identifying stable and tight patterns in data; Biometrics, 61, Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9): Rand, WM (1971); Objective criteria for the evaluation of clustering methods. J Am Stat Assoc, 66,

26

Contents. ! Data sets. ! Distance and similarity metrics. ! K-means clustering. ! Hierarchical clustering. ! Evaluation of clustering results

Contents. ! Data sets. ! Distance and similarity metrics. ! K-means clustering. ! Hierarchical clustering. ! Evaluation of clustering results Statistical Analysis of Microarray Data Contents Data sets Distance and similarity metrics K-means clustering Hierarchical clustering Evaluation of clustering results Clustering Jacques van Helden Jacques.van.Helden@ulb.ac.be

More information

Clustering Jacques van Helden

Clustering Jacques van Helden Statistical Analysis of Microarray Data Clustering Jacques van Helden Jacques.van.Helden@ulb.ac.be Contents Data sets Distance and similarity metrics K-means clustering Hierarchical clustering Evaluation

More information

Exploratory data analysis for microarrays

Exploratory data analysis for microarrays Exploratory data analysis for microarrays Jörg Rahnenführer Computational Biology and Applied Algorithmics Max Planck Institute for Informatics D-66123 Saarbrücken Germany NGFN - Courses in Practical DNA

More information

Supervised Clustering of Yeast Gene Expression Data

Supervised Clustering of Yeast Gene Expression Data Supervised Clustering of Yeast Gene Expression Data In the DeRisi paper five expression profile clusters were cited, each containing a small number (7-8) of genes. In the following examples we apply supervised

More information

Double Self-Organizing Maps to Cluster Gene Expression Data

Double Self-Organizing Maps to Cluster Gene Expression Data Double Self-Organizing Maps to Cluster Gene Expression Data Dali Wang, Habtom Ressom, Mohamad Musavi, Cristian Domnisoru University of Maine, Department of Electrical & Computer Engineering, Intelligent

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Chapter 6 Continued: Partitioning Methods

Chapter 6 Continued: Partitioning Methods Chapter 6 Continued: Partitioning Methods Partitioning methods fix the number of clusters k and seek the best possible partition for that k. The goal is to choose the partition which gives the optimal

More information

Cluster Analysis for Microarray Data

Cluster Analysis for Microarray Data Cluster Analysis for Microarray Data Seventh International Long Oligonucleotide Microarray Workshop Tucson, Arizona January 7-12, 2007 Dan Nettleton IOWA STATE UNIVERSITY 1 Clustering Group objects that

More information

Missing Data Estimation in Microarrays Using Multi-Organism Approach

Missing Data Estimation in Microarrays Using Multi-Organism Approach Missing Data Estimation in Microarrays Using Multi-Organism Approach Marcel Nassar and Hady Zeineddine Progress Report: Data Mining Course Project, Spring 2008 Prof. Inderjit S. Dhillon April 02, 2008

More information

Tight Clustering: a method for extracting stable and tight patterns in expression profiles

Tight Clustering: a method for extracting stable and tight patterns in expression profiles Statistical issues in microarra analsis Tight Clustering: a method for etracting stable and tight patterns in epression profiles Eperimental design Image analsis Normalization George C. Tseng Dept. of

More information

Summer School in Statistics for Astronomers & Physicists June 15-17, Cluster Analysis

Summer School in Statistics for Astronomers & Physicists June 15-17, Cluster Analysis Summer School in Statistics for Astronomers & Physicists June 15-17, 2005 Session on Computational Algorithms for Astrostatistics Cluster Analysis Max Buot Department of Statistics Carnegie-Mellon University

More information

Supplementary text S6 Comparison studies on simulated data

Supplementary text S6 Comparison studies on simulated data Supplementary text S Comparison studies on simulated data Peter Langfelder, Rui Luo, Michael C. Oldham, and Steve Horvath Corresponding author: shorvath@mednet.ucla.edu Overview In this document we illustrate

More information

Visualizing Gene Clusters using Neighborhood Graphs in R

Visualizing Gene Clusters using Neighborhood Graphs in R Theresa Scharl & Friedrich Leisch Visualizing Gene Clusters using Neighborhood Graphs in R Technical Report Number 16, 2008 Department of Statistics University of Munich http://www.stat.uni-muenchen.de

More information

Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles

Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles Supporting Information to Inferring Regulatory Networks by Combining Perturbation Screens and Steady State Gene Expression Profiles Ali Shojaie,#, Alexandra Jauhiainen 2,#, Michael Kallitsis 3,#, George

More information

Clustering. Chapter 10 in Introduction to statistical learning

Clustering. Chapter 10 in Introduction to statistical learning Clustering Chapter 10 in Introduction to statistical learning 16 14 12 10 8 6 4 2 0 2 4 6 8 10 12 14 1 Clustering ² Clustering is the art of finding groups in data (Kaufman and Rousseeuw, 1990). ² What

More information

Biclustering Bioinformatics Data Sets. A Possibilistic Approach

Biclustering Bioinformatics Data Sets. A Possibilistic Approach Possibilistic algorithm Bioinformatics Data Sets: A Possibilistic Approach Dept Computer and Information Sciences, University of Genova ITALY EMFCSC Erice 20/4/2007 Bioinformatics Data Sets Outline Introduction

More information

University of Florida CISE department Gator Engineering. Clustering Part 5

University of Florida CISE department Gator Engineering. Clustering Part 5 Clustering Part 5 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville SNN Approach to Clustering Ordinary distance measures have problems Euclidean

More information

Comparisons and validation of statistical clustering techniques for microarray gene expression data. Outline. Microarrays.

Comparisons and validation of statistical clustering techniques for microarray gene expression data. Outline. Microarrays. Comparisons and validation of statistical clustering techniques for microarray gene expression data Susmita Datta and Somnath Datta Presented by: Jenni Dietrich Assisted by: Jeffrey Kidd and Kristin Wheeler

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2002 Paper 105 A New Partitioning Around Medoids Algorithm Mark J. van der Laan Katherine S. Pollard

More information

Tutorial:OverRepresentation - OpenTutorials

Tutorial:OverRepresentation - OpenTutorials Tutorial:OverRepresentation From OpenTutorials Slideshow OverRepresentation (about 12 minutes) (http://opentutorials.rbvi.ucsf.edu/index.php?title=tutorial:overrepresentation& ce_slide=true&ce_style=cytoscape)

More information

Comparison of Clustering Techniques for Cluster Analysis

Comparison of Clustering Techniques for Cluster Analysis Kasetsart J. (Nat. Sci.) 43 : 378-388 (2009) Comparison of Clustering Techniques for Cluster Analysis Piyatida Rujasiri* and Boonorm Chomtee ABSTRACT Cluster analysis is important for analyzing the number

More information

Clustering Algorithms: Can anything be Concluded?

Clustering Algorithms: Can anything be Concluded? Clustering Algorithms: Can anything be Concluded? Edward R. Dougherty, Seungchan Kim Texas A&M University Junior Barrera, Marcel Brun, Roberto Marcondes Universidade de Sao Paulo Yidong Chen, Michael Bittner,

More information

Hybrid Fuzzy C-Means Clustering Technique for Gene Expression Data

Hybrid Fuzzy C-Means Clustering Technique for Gene Expression Data Hybrid Fuzzy C-Means Clustering Technique for Gene Expression Data 1 P. Valarmathie, 2 Dr MV Srinath, 3 Dr T. Ravichandran, 4 K. Dinakaran 1 Dept. of Computer Science and Engineering, Dr. MGR University,

More information

/ Computational Genomics. Normalization

/ Computational Genomics. Normalization 10-810 /02-710 Computational Genomics Normalization Genes and Gene Expression Technology Display of Expression Information Yeast cell cycle expression Experiments (over time) baseline expression program

More information

More about liquid association

More about liquid association More about liquid association Liquid Association (LA) LA is a generalized notion of association for describing certain kind of ternary relationship between variables in a system. (Li 2002 PNAS) low (-)

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Differential Expression Analysis at PATRIC

Differential Expression Analysis at PATRIC Differential Expression Analysis at PATRIC The following step- by- step workflow is intended to help users learn how to upload their differential gene expression data to their private workspace using Expression

More information

How do microarrays work

How do microarrays work Lecture 3 (continued) Alvis Brazma European Bioinformatics Institute How do microarrays work condition mrna cdna hybridise to microarray condition Sample RNA extract labelled acid acid acid nucleic acid

More information

Clustering Techniques

Clustering Techniques Clustering Techniques Bioinformatics: Issues and Algorithms CSE 308-408 Fall 2007 Lecture 16 Lopresti Fall 2007 Lecture 16-1 - Administrative notes Your final project / paper proposal is due on Friday,

More information

CS313 Exercise 4 Cover Page Fall 2017

CS313 Exercise 4 Cover Page Fall 2017 CS313 Exercise 4 Cover Page Fall 2017 Due by the start of class on Thursday, October 12, 2017. Name(s): In the TIME column, please estimate the time you spent on the parts of this exercise. Please try

More information

An Efficient Optimal Leaf Ordering for Hierarchical Clustering in Microarray Gene Expression Data Analysis

An Efficient Optimal Leaf Ordering for Hierarchical Clustering in Microarray Gene Expression Data Analysis An Efficient Optimal Leaf Ordering for Hierarchical Clustering in Microarray Gene Expression Data Analysis Jianting Zhang Le Gruenwald School of Computer Science The University of Oklahoma Norman, Oklahoma,

More information

Clustering. Lecture 6, 1/24/03 ECS289A

Clustering. Lecture 6, 1/24/03 ECS289A Clustering Lecture 6, 1/24/03 What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

CS Introduction to Data Mining Instructor: Abdullah Mueen

CS Introduction to Data Mining Instructor: Abdullah Mueen CS 591.03 Introduction to Data Mining Instructor: Abdullah Mueen LECTURE 8: ADVANCED CLUSTERING (FUZZY AND CO -CLUSTERING) Review: Basic Cluster Analysis Methods (Chap. 10) Cluster Analysis: Basic Concepts

More information

How to use the DEGseq Package

How to use the DEGseq Package How to use the DEGseq Package Likun Wang 1,2 and Xi Wang 1. October 30, 2018 1 MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST /Department of Automation, Tsinghua University. 2

More information

Clustering. RNA-seq: What is it good for? Finding Similarly Expressed Genes. Data... And Lots of It!

Clustering. RNA-seq: What is it good for? Finding Similarly Expressed Genes. Data... And Lots of It! RNA-seq: What is it good for? Clustering High-throughput RNA sequencing experiments (RNA-seq) offer the ability to measure simultaneously the expression level of thousands of genes in a single experiment!

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Discussion 1: Rationale for Clustering Algorithm Selection Introduction: The process of machine learning is to design and employ computer programs that are capable to deduce patterns, regularities

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

The Generalized Topological Overlap Matrix in Biological Network Analysis

The Generalized Topological Overlap Matrix in Biological Network Analysis The Generalized Topological Overlap Matrix in Biological Network Analysis Andy Yip, Steve Horvath Email: shorvath@mednet.ucla.edu Depts Human Genetics and Biostatistics, University of California, Los Angeles

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-31-017 Outline Background Defining proximity Clustering methods Determining number of clusters Comparing two solutions Cluster analysis as unsupervised Learning

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Bradley Broom Department of Bioinformatics and Computational Biology UT MD Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org 19

More information

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland

Genetic Programming. Charles Chilaka. Department of Computational Science Memorial University of Newfoundland Genetic Programming Charles Chilaka Department of Computational Science Memorial University of Newfoundland Class Project for Bio 4241 March 27, 2014 Charles Chilaka (MUN) Genetic algorithms and programming

More information

OptCluster : an R package for determining the optimal clustering algorithm and optimal number of clusters.

OptCluster : an R package for determining the optimal clustering algorithm and optimal number of clusters. University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 5-2015 OptCluster : an R package for determining the optimal clustering algorithm

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Introduction to GE Microarray data analysis Practical Course MolBio 2012

Introduction to GE Microarray data analysis Practical Course MolBio 2012 Introduction to GE Microarray data analysis Practical Course MolBio 2012 Claudia Pommerenke Nov-2012 Transkriptomanalyselabor TAL Microarray and Deep Sequencing Core Facility Göttingen University Medical

More information

Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering

Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering Christian Röver and Gero Szepannek University of Dortmund Department of Statistics 44221 Dortmund, Germany roever@statistik.uni-dortmund.de

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1 Week 8 Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Part I Clustering 2 / 1 Clustering Clustering Goal: Finding groups of objects such that the objects in a group

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

GS Analysis of Microarray Data

GS Analysis of Microarray Data GS01 0163 Analysis of Microarray Data Keith Baggerly and Bradley Broom Department of Bioinformatics and Computational Biology UT M. D. Anderson Cancer Center kabagg@mdanderson.org bmbroom@mdanderson.org

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Analyzing ICAT Data. Analyzing ICAT Data

Analyzing ICAT Data. Analyzing ICAT Data Analyzing ICAT Data Gary Van Domselaar University of Alberta Analyzing ICAT Data ICAT: Isotope Coded Affinity Tag Introduced in 1999 by Ruedi Aebersold as a method for quantitative analysis of complex

More information

Similarity-Driven Cluster Merging Method for Unsupervised Fuzzy Clustering

Similarity-Driven Cluster Merging Method for Unsupervised Fuzzy Clustering Similarity-Driven Cluster Merging Method for Unsupervised Fuzzy Clustering Xuejian Xiong, Kian Lee Tan Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3 Singapore 117576 Abstract In this paper, a

More information

Use of biclustering for missing value imputation in gene expression data

Use of biclustering for missing value imputation in gene expression data ORIGINAL RESEARCH Use of biclustering for missing value imputation in gene expression data K.O. Cheng, N.F. Law, W.C. Siu Department of Electronic and Information Engineering, The Hong Kong Polytechnic

More information

Models and Heuristics for Robust Resource Allocation in Parallel and Distributed Computing Systems

Models and Heuristics for Robust Resource Allocation in Parallel and Distributed Computing Systems Models and Heuristics for Robust Resource Allocation in Parallel and Distributed Computing Systems D. Janovy, J. Smith, H. J. Siegel, and A. A. Maciejewski Colorado State University Outline n models and

More information

CHAPTER 4 AN IMPROVED INITIALIZATION METHOD FOR FUZZY C-MEANS CLUSTERING USING DENSITY BASED APPROACH

CHAPTER 4 AN IMPROVED INITIALIZATION METHOD FOR FUZZY C-MEANS CLUSTERING USING DENSITY BASED APPROACH 37 CHAPTER 4 AN IMPROVED INITIALIZATION METHOD FOR FUZZY C-MEANS CLUSTERING USING DENSITY BASED APPROACH 4.1 INTRODUCTION Genes can belong to any genetic network and are also coordinated by many regulatory

More information

SEEK User Manual. Introduction

SEEK User Manual. Introduction SEEK User Manual Introduction SEEK is a computational gene co-expression search engine. It utilizes a vast human gene expression compendium to deliver fast, integrative, cross-platform co-expression analyses.

More information

CLUSTERING. CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16

CLUSTERING. CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16 CLUSTERING CSE 634 Data Mining Prof. Anita Wasilewska TEAM 16 1. K-medoids: REFERENCES https://www.coursera.org/learn/cluster-analysis/lecture/nj0sb/3-4-the-k-medoids-clustering-method https://anuradhasrinivas.files.wordpress.com/2013/04/lesson8-clustering.pdf

More information

Performance assessment of kernel density clustering for gene expression profile data

Performance assessment of kernel density clustering for gene expression profile data Comparative and Functional Genomics Comp Funct Genom ; : 99. Published online in Wiley InterScience (www.interscience.wiley.com). DOI:./cfg.9 Primary Research Paper Performance assessment of kernel density

More information

Radmacher, M, McShante, L, Simon, R (2002) A paradigm for Class Prediction Using Expression Profiles, J Computational Biol 9:

Radmacher, M, McShante, L, Simon, R (2002) A paradigm for Class Prediction Using Expression Profiles, J Computational Biol 9: Microarray Statistics Module 3: Clustering, comparison, prediction, and Go term analysis Johanna Hardin and Laura Hoopes Worksheet to be handed in the week after discussion Name Clustering algorithms:

More information

Nature Methods: doi: /nmeth Supplementary Figure 1

Nature Methods: doi: /nmeth Supplementary Figure 1 Supplementary Figure 1 Schematic representation of the Workflow window in Perseus All data matrices uploaded in the running session of Perseus and all processing steps are displayed in the order of execution.

More information

Introduc)on to Machine Learning: Clustering Algorithms How to Analyze Your Own Genome Fall 2013

Introduc)on to Machine Learning: Clustering Algorithms How to Analyze Your Own Genome Fall 2013 Introduc)on to Machine Learning: Clustering Algorithms 02-223 How to Analyze Your Own Genome Fall 203 Organizing data into clusters such that there is high intra- cluster similarity low inter- cluster

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

Improved statistical methods for k-means clustering of noisy and directional data

Improved statistical methods for k-means clustering of noisy and directional data Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2008 Improved statistical methods for k-means clustering of noisy and directional data Ivan Peter Ramler Iowa

More information

Incorporating Known Pathways into Gene Clustering Algorithms for Genetic Expression Data

Incorporating Known Pathways into Gene Clustering Algorithms for Genetic Expression Data Incorporating Known Pathways into Gene Clustering Algorithms for Genetic Expression Data Ryan Atallah, John Ryan, David Aeschlimann December 14, 2013 Abstract In this project, we study the problem of classifying

More information

GenePilot : The Next Step in MicroArray Analysis. Why Choose GenePilot? Addressing Your Specific Needs!

GenePilot : The Next Step in MicroArray Analysis. Why Choose GenePilot? Addressing Your Specific Needs! GenePilot : The Next Step in MicroArray Analysis GenePilot is the new tool in the field of MicroArray Analysis, offering an integrated and sophisticated analysis suite which is more intuitive to use, uses

More information

EECS 730 Introduction to Bioinformatics Microarray. Luke Huan Electrical Engineering and Computer Science

EECS 730 Introduction to Bioinformatics Microarray. Luke Huan Electrical Engineering and Computer Science EECS 730 Introduction to Bioinformatics Microarray Luke Huan Electrical Engineering and Computer Science http://people.eecs.ku.edu/~jhuan/ GeneChip 2011/11/29 EECS 730 2 Hybridization to the Chip 2011/11/29

More information

Genomics - Problem Set 2 Part 1 due Friday, 1/26/2018 by 9:00am Part 2 due Friday, 2/2/2018 by 9:00am

Genomics - Problem Set 2 Part 1 due Friday, 1/26/2018 by 9:00am Part 2 due Friday, 2/2/2018 by 9:00am Genomics - Part 1 due Friday, 1/26/2018 by 9:00am Part 2 due Friday, 2/2/2018 by 9:00am One major aspect of functional genomics is measuring the transcript abundance of all genes simultaneously. This was

More information

A Memetic Heuristic for the Co-clustering Problem

A Memetic Heuristic for the Co-clustering Problem A Memetic Heuristic for the Co-clustering Problem Mohammad Khoshneshin 1, Mahtab Ghazizadeh 2, W. Nick Street 1, and Jeffrey W. Ohlmann 1 1 The University of Iowa, Iowa City IA 52242, USA {mohammad-khoshneshin,nick-street,jeffrey-ohlmann}@uiowa.edu

More information

Figures and figure supplements

Figures and figure supplements RESEARCH ARTICLE Figures and figure supplements Comprehensive machine learning analysis of Hydra behavior reveals a stable basal behavioral repertoire Shuting Han et al Han et al. elife 8;7:e35. DOI: https://doi.org/.755/elife.35

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Keywords: clustering algorithms, unsupervised learning, cluster validity

Keywords: clustering algorithms, unsupervised learning, cluster validity Volume 6, Issue 1, January 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Clustering Based

More information

Kapitel 4: Clustering

Kapitel 4: Clustering Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases WiSe 2017/18 Kapitel 4: Clustering Vorlesung: Prof. Dr.

More information

Unsupervised learning: Clustering & Dimensionality reduction. Theo Knijnenburg Jorma de Ronde

Unsupervised learning: Clustering & Dimensionality reduction. Theo Knijnenburg Jorma de Ronde Unsupervised learning: Clustering & Dimensionality reduction Theo Knijnenburg Jorma de Ronde Source of slides Marcel Reinders TU Delft Lodewyk Wessels NKI Bioalgorithms.info Jeffrey D. Ullman Stanford

More information

Orange3 Data Fusion Documentation. Biolab

Orange3 Data Fusion Documentation. Biolab Biolab Mar 07, 2018 Widgets 1 IMDb Actors 1 2 Chaining 5 3 Completion Scoring 9 4 Fusion Graph 13 5 Latent Factors 17 6 Matrix Sampler 21 7 Mean Fuser 25 8 Movie Genres 29 9 Movie Ratings 33 10 Table

More information

Correlation Motif Vignette

Correlation Motif Vignette Correlation Motif Vignette Hongkai Ji, Yingying Wei October 30, 2018 1 Introduction The standard algorithms for detecting differential genes from microarray data are mostly designed for analyzing a single

More information

Biosphere: the interoperation of web services in microarray cluster analysis

Biosphere: the interoperation of web services in microarray cluster analysis Biosphere: the interoperation of web services in microarray cluster analysis Kei-Hoi Cheung 1,2,*, Remko de Knikker 1, Youjun Guo 1, Guoneng Zhong 1, Janet Hager 3,4, Kevin Y. Yip 5, Albert K.H. Kwan 5,

More information

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science

Data Mining. Dr. Raed Ibraheem Hamed. University of Human Development, College of Science and Technology Department of Computer Science Data Mining Dr. Raed Ibraheem Hamed University of Human Development, College of Science and Technology Department of Computer Science 2016 201 Road map What is Cluster Analysis? Characteristics of Clustering

More information

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748

Giri Narasimhan. CAP 5510: Introduction to Bioinformatics. ECS 254; Phone: x3748 CAP 5510: Introduction to Bioinformatics Giri Narasimhan ECS 254; Phone: x3748 giri@cis.fiu.edu www.cis.fiu.edu/~giri/teach/bioinfs07.html 3/3/08 CAP5510 1 Gene g Probe 1 Probe 2 Probe N 3/3/08 CAP5510

More information

ROTS: Reproducibility Optimized Test Statistic

ROTS: Reproducibility Optimized Test Statistic ROTS: Reproducibility Optimized Test Statistic Fatemeh Seyednasrollah, Tomi Suomi, Laura L. Elo fatsey (at) utu.fi March 3, 2016 Contents 1 Introduction 2 2 Algorithm overview 3 3 Input data 3 4 Preprocessing

More information

Cutting the Dendrogram through Permutation Tests

Cutting the Dendrogram through Permutation Tests Cutting the Dendrogram through Permutation Tests Dario Bruzzese 1 and Domenico Vistocco 2 1 Dipartimento di Medicina Preventiva, Università di Napoli - Federico II Via S. Pansini 5, Napoli, Italy, dario.bruzzese@unina.it

More information

Clustering part II 1

Clustering part II 1 Clustering part II 1 Clustering What is Cluster Analysis? Types of Data in Cluster Analysis A Categorization of Major Clustering Methods Partitioning Methods Hierarchical Methods 2 Partitioning Algorithms:

More information

ECS 234: Data Analysis: Clustering ECS 234

ECS 234: Data Analysis: Clustering ECS 234 : Data Analysis: Clustering What is Clustering? Given n objects, assign them to groups (clusters) based on their similarity Unsupervised Machine Learning Class Discovery Difficult, and maybe ill-posed

More information

General Factorial Models

General Factorial Models In Chapter 8 in Oehlert STAT:5201 Week 9 - Lecture 2 1 / 34 It is possible to have many factors in a factorial experiment. In DDD we saw an example of a 3-factor study with ball size, height, and surface

More information

Clustering. k-mean clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein

Clustering. k-mean clustering. Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein Clustering k-mean clustering Genome 559: Introduction to Statistical and Computational Genomics Elhanan Borenstein A quick review The clustering problem: homogeneity vs. separation Different representations

More information

CompClustTk Manual & Tutorial

CompClustTk Manual & Tutorial CompClustTk Manual & Tutorial Brandon King Copyright c California Institute of Technology Version 0.1.10 May 13, 2004 Contents 1 Introduction 1 1.1 Purpose.............................................

More information

PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods

PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods Whatis Cluster Analysis? Clustering Types of Data in Cluster Analysis Clustering part II A Categorization of Major Clustering Methods Partitioning i Methods Hierarchical Methods Partitioning i i Algorithms:

More information

Introduction to Mfuzz package and its graphical user interface

Introduction to Mfuzz package and its graphical user interface Introduction to Mfuzz package and its graphical user interface Matthias E. Futschik SysBioLab, Universidade do Algarve URL: http://mfuzz.sysbiolab.eu and Lokesh Kumar Institute for Advanced Biosciences,

More information

Introduction The problem of cancer classication has clear implications on cancer treatment. Additionally, the advent of DNA microarrays introduces a w

Introduction The problem of cancer classication has clear implications on cancer treatment. Additionally, the advent of DNA microarrays introduces a w MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY and CENTER FOR BIOLOGICAL AND COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No.677 C.B.C.L Paper No.8

More information

Clustering gene expression data

Clustering gene expression data Clustering gene expression data 1 How Gene Expression Data Looks Entries of the Raw Data matrix: Ratio values Absolute values Row = gene s expression pattern Column = experiment/condition s profile genes

More information

Data Mining: Concepts and Techniques. Chapter March 8, 2007 Data Mining: Concepts and Techniques 1

Data Mining: Concepts and Techniques. Chapter March 8, 2007 Data Mining: Concepts and Techniques 1 Data Mining: Concepts and Techniques Chapter 7.1-4 March 8, 2007 Data Mining: Concepts and Techniques 1 1. What is Cluster Analysis? 2. Types of Data in Cluster Analysis Chapter 7 Cluster Analysis 3. A

More information

Model-Based Clustering for Image Segmentation and Large Datasets Via Sampling 1

Model-Based Clustering for Image Segmentation and Large Datasets Via Sampling 1 Model-Based Clustering for Image Segmentation and Large Datasets Via Sampling 1 Ron Wehrens and Lutgarde M.C. Buydens University of Nijmegen Chris Fraley and Adrian E. Raftery University of Washington

More information

EECS730: Introduction to Bioinformatics

EECS730: Introduction to Bioinformatics EECS730: Introduction to Bioinformatics Lecture 15: Microarray clustering http://compbio.pbworks.com/f/wood2.gif Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida) Microarray

More information

Community Detection. Jian Pei: CMPT 741/459 Clustering (1) 2

Community Detection. Jian Pei: CMPT 741/459 Clustering (1) 2 Clustering Community Detection http://image.slidesharecdn.com/communitydetectionitilecturejune0-0609559-phpapp0/95/community-detection-in-social-media--78.jpg?cb=3087368 Jian Pei: CMPT 74/459 Clustering

More information

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures

Clustering and Dissimilarity Measures. Clustering. Dissimilarity Measures. Cluster Analysis. Perceptually-Inspired Measures Clustering and Dissimilarity Measures Clustering APR Course, Delft, The Netherlands Marco Loog May 19, 2008 1 What salient structures exist in the data? How many clusters? May 19, 2008 2 Cluster Analysis

More information

Clustering Large Datasets using Data Stream Clustering Techniques

Clustering Large Datasets using Data Stream Clustering Techniques Clustering Large Datasets using Data Stream Clustering Techniques Matthew Bolaños 1, John Forrest 2, and Michael Hahsler 1 1 Southern Methodist University, Dallas, Texas, USA. 2 Microsoft, Redmond, Washington,

More information

Cluster Analysis chapter 7. cse634 Data Mining. Professor Anita Wasilewska Compute Science Department Stony Brook University NY

Cluster Analysis chapter 7. cse634 Data Mining. Professor Anita Wasilewska Compute Science Department Stony Brook University NY Cluster Analysis chapter 7 cse634 Data Mining Professor Anita Wasilewska Compute Science Department Stony Brook University NY Sources Cited [1] Driver, H. E. and A. L. Kroeber (1932) Quantitative expression

More information

Contents. Introduction 2. PerturbationClustering 2. SubtypingOmicsData 5. References 8

Contents. Introduction 2. PerturbationClustering 2. SubtypingOmicsData 5. References 8 PINSPlus: Clustering Algorithm for Data Integration and Disease Subtyping Hung Nguyen, Sangam Shrestha, and Tin Nguyen Department of Computer Science and Engineering University of Nevada, Reno, NV 89557

More information

Machine Learning and Data Mining. Clustering. (adapted from) Prof. Alexander Ihler

Machine Learning and Data Mining. Clustering. (adapted from) Prof. Alexander Ihler Machine Learning and Data Mining Clustering (adapted from) Prof. Alexander Ihler Overview What is clustering and its applications? Distance between two clusters. Hierarchical Agglomerative clustering.

More information

Multivariate analyses in ecology. Cluster (part 2) Ordination (part 1 & 2)

Multivariate analyses in ecology. Cluster (part 2) Ordination (part 1 & 2) Multivariate analyses in ecology Cluster (part 2) Ordination (part 1 & 2) 1 Exercise 9B - solut 2 Exercise 9B - solut 3 Exercise 9B - solut 4 Exercise 9B - solut 5 Multivariate analyses in ecology Cluster

More information